## Traffic Impact Assessment

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun<br>Traffic Impact Assessment<br>Final Report<br>January 2024

Prepared by: CKM Asia Limited
Prepared for: Wing Mau Tea House Limited
Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun
CONTENTS
CHAPTER ..... PAGE
1.0 INTRODUCTION ..... 1
Background ..... 1
Structure of Report ..... 1
2.0 EXISTING SITUATION ..... 2
The Subject Site ..... 2
The Road Network ..... 2
Existing Traffic Flows ..... 2
Existing Junction Performance ..... 2
Public Transport Facilities ..... 3
3.0 THE PROPOSED DEVELOPMENT ..... 5
Key Parameters ..... 5
Provision of Internal Transport Facilities ..... 5
Planned Road Works near the Proposed Development ..... 6
Swept Path Analysis ..... 6
4.0 TRAFFIC IMPACT ..... 7
Design Year ..... 7
Traffic Forecasting ..... 7
Estimated Traffic Growth Rate from 2031 to 2033 ..... 7
Additional Planned/ Committed Developments near the Subject Site ..... 7
Planned Road Improvement works by the Development at San Hing Road and Hong Po Road ..... 8
Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development ..... 9
Year 2033 Traffic Flows ..... 10
Year 2033 Junction Capacity Analysis ..... 10
5.0 SUMMARY ..... 11
Appendix A - Junction Capacity Analysis
Appendix B - Planned Road Works near the Proposed Development
Appendix C - Swept Path Analysis
Appendix D - Planned Road Works to be implemented by the Owner

# Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun 

## TABLES

## NUMBER

2.1 Existing Junction Performance
2.2 Road-Based Public Transport Services Operating Close to the Subject Site
3.1 Key Parameters
3.2 Provision of Internal Transport Facilities for Proposed Development
4.1 Hong Kong Population Projections from Census and Statistics Department
4.2 The Major Additional Planned / Committed Developments near the Subject Site
4.3 Planned Road Improvement Works near Proposed Development by CEDD
4.4 Adopted Trip Rates and Traffic Generation for Proposed Development
4.5 Adopted Trip Rates and Traffic Generation for Approved Scheme
4.6 Net Increase in Traffic Generation
4.7 Year 2033 Junction Performance

# Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun 

## FIGURES

## NUMBER

1.1 Location of the Subject Site
2.1 Location of surveyed junctions
2.2 Layout of Junction of Unnamed Road/ Access Road
2.3 Layout of Junction of Ng Lau Road/ Unnamed Road
2.4 Layout of Junction of Ng Lau Road/ Lam Tei Interchange
2.5 Layout of Junction of Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
2.6 Layout of Junction of Lam Tei Interchange
2.7 Layout of Junction of Lam Tei Interchange/ Castle Peak Road - Lam Tei
2.8 Layout of Junction of Tsing Lun Road/ Tsz Tin Road
2.9 Layout of Junction of San Hing Road/ Ng Lau Road (Southern)
2.10 Layout of Junction of San Hing Road/ Ng Lau Road (Northern)
2.11 Existing Peak Hour Traffic Flows
2.12 Road-Based Public Transport Services Operating Close to the Subject Site
3.1 Master Layout Plan
4.1 The Major Additional Planned / Committed Developments near the Subject Site
4.2 Year 2033 Peak Hour Traffic Flows with Approved Scheme
4.3 Year 2033 Peak Hour Traffic Flows with Proposed Development

### 1.0 INTRODUCTION

## Background

1.1 The subject site is located in D.D.130, Lam Tei, Tuen Mun (the "Subject Site"). At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road. The location of the Subject Site is shown in Figure 1.1.
1.2 A Section 12A planning application for the minor relaxation of the maximum plot ratio restriction to 2.5 for residential use at the Subject Site was approved by the Town Planning Board (TPB ref: Y/TM-LTYY/9) on $24^{\text {th }}$ September 2021 (the "Approved Scheme"). This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0 (the "Proposed Development").
1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Development. This report presents the findings and recommendations of the traffic impact assessment for the Proposed Development.

## Structure of Report

1.4 The report is structured as follows:

Chapter One - Gives the background of the project;
Chapter Two - Describes the existing situation;
Chapter Three - Presents the Proposed Development;
Chapter Four - Describes the traffic impact analysis; and
Chapter Five - Gives the overall conclusion.

### 2.0 EXISTING SITUATION

## The Subject Site

2.1 The Subject Site is bounded by the Tuen Mun - Yuen Long Light Rail Transit ("LRT") and the Tuen Ma Line to the East, and a nullah to the West. Access to the Subject Site is from the south and is via a bridge over the nullah. The Access Road is connected to Ng Lau Road.

## The Road Network

2.2 Ng Lau Road is a single carriageway 2-lane 2-way local distributor which connects with the Lam Tei Interchange to the south and Castle Peak Road - Lam Tei underneath the Kong Sham Western Highway. It provides access to villages, e.g., San Hing Tsuen, Tuen Tsz Wai, and Tsing Chuen Wai.
2.3 Lam Tei Interchange connects Tsing Lun Road, Hong Po Road, Ng Lau Road, Castle Peak Road - Lam Tei, Yuen Long Highway and Tuen Mun Road. It is the main access for traffic accessing the Subject Site and strategic routes.

## Existing Traffic Flows

2.4 To quantify the traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Tuesday, $18^{\text {th }}$ April 2023, Wednesday, $19^{\text {th }}$ April 2023 and Wednesday, $26^{\text {th }}$ April 2023 during the AM and PM peak at the following junctions:

- J1: Unnamed Road/ Access Road;
- J2: Ng Lau Road/ Unnamed Road;
- J3: Ng Lau Road / Lam Tei Interchange;
- J4: Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange;
- J5: Lam Tei Interchange;
- J6: Lam Tei Interchange/ Castle Peak Road - Lam Tei;
- J7: Tsing Lun Road/ Tsz Tin Road;
- J8: San Hing Road / Ng Lau Road (Southern); and
- J9: San Hing Road / Ng Lau Road (Northern).
2.5 The locations of these junctions and the area of influence ("AOI") are shown in Figure 2.1 and the layouts are shown in Figures 2.2-2.10 respectively.
2.6 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between $0800-0900$ hours and $1700-1800$ hours respectively. The existing AM and PM peak hour traffic flows in pcu/hour are presented in Figure 2.11.


## Existing Junction Performance

2.7 The existing junction performance of the surveyed junctions are calculated based on the existing traffic flows, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in Table 2.1 and the detailed calculations are found in Appendix $\mathbf{A}$.

## TABLE 2.1 EXISTING JUNCTION PERFORMANCE

| Ref. | Junction | Type of <br> Junction <br> (Parameter) | AM <br> Peak | PM <br> Peak |
| :---: | :--- | :---: | :---: | :---: |
| J1 | Unnamed Road/ Access Road | Priority (DFC) | 0.000 | 0.000 |
| J2 | Ng Lau Road/ Unnamed Road | Priority (DFC) | 0.033 | 0.030 |
| J3 | Ng Lau Road/ Lam Tei Interchange | Signal (RC) | $104 \%$ | $95 \%$ |
| J4 | Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange | RA (DFC) | 0.501 | 0.548 |
| J5 | Lam Tei Interchange | RA (DFC) | 0.480 | 0.453 |
| J6 | Lam Tei Interchange/ Castle Peak Road - Lam Tei | Signal (RC) | $129 \%$ | $223 \%$ |
| J7 | Tsing Lun Road/ Tsz Tin Road | Signal (RC) | $67 \%$ | $111 \%$ |
| J8 | San Hing Road/ Ng Lau Road (Southern) | Priority (DFC) | 0.057 | 0.037 |
| J9 | San Hing Road/ Ng Lau Road (Northern) | Priority (DFC) | 0.223 | 0.496 |

Note: RC - reserve capacity; DFC - design flow/capacity ratio, RA - Roundabout
2.8 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.

## Public Transport Facilities

2.9 The Subject Site is located close to public transport services, including franchised buses and public light buses and these operate within 500 metres or some 10minutes' walk away. Details of these public transport services are presented in Table 2.2. The location and major pedestrian routes of these public transport services are shown in Figure 2.12.

TABLE 2.2 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE

| Route | Routing | Frequency (min) |
| :---: | :---: | :---: |
| CTB 50 ${ }^{(1)}$ | Tuen Mun (Ching Tin and Wo Tin) $\rightarrow$ Tsim Sha Tsui (Kowloon Station) ${ }^{(A)}$ | 4 per day |
|  | Tsim Sha Tsui (Kowloon Station) $\rightarrow$ Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$ | 4 per day |
| CTB 55 ${ }^{(1)}$ | Tuen Mun (Ching Tin and Wo Tin) $\rightarrow$ Kwun Tong Ferry Pier ${ }^{\left({ }^{(1)}\right.}$ | 4 per day |
|  | Kwun Tong Ferry Pier $\rightarrow$ Tuen Mun (Ching Tin and Wo Tin) ${ }^{(8)}$ | 4 per day |
| CTB 56 ${ }^{(1)}$ | Tuen Mun (Ching Tin and Wo Tin) $\rightarrow$ Sheung Shui (Tin Ping Estate) ${ }^{(A)}$ | 4 per day |
|  | Sheung Shui (Tin Ping Estate) $\rightarrow$ Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$ | 4 per day |
| CTB 56A ${ }^{(1)}$ | Tuen Mun (Ching Tin and Wo Tin) $\rightarrow$ Queen's Hill Fanling (via: Sheung Shui Station) | 3 per day |
|  | Queen's Hill Fanling (via: Sheung Shui Station) $\rightarrow$ Tuen Mun (Ching Tin and Wo Tin) ${ }^{(\mathrm{C})}$ | 2 per day |
| CTB 950 ${ }^{(1)}$ | Tuen Mun (Ching Tin and Wo Tin) $\rightarrow$ Exhibition Centre Station ${ }^{(4)}$ | 1 per day |
|  | Exhibition Centre Station $\rightarrow$ Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$ | 1 per day |
| CTB 955 ${ }^{(1)}$ | Tuen Mun (Ching Tin and Wo Tin) $\rightarrow$ Sai Wan Ho ${ }^{(A)}$ | 1 per day |
|  | Sai Wan Ho $\rightarrow$ Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$ | 1 per day |
| CTB B3A | Shan King Estate - Shenzhen Bay Port | 30-60 |
| CTB N969 ${ }^{(\text {D) }}$ | Tin Shui Wai Town Centre - Causeway Bay (Moreton Terrace) | 20-45 |
| KMB 53 | Yoho Mall (Yuen Long) - Tsuen Wan (Nina Tower) | 25-35 |
| KMB 63X | Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station) | 12-30 |
| KMB 67M | Tuen Mun (Siu Hong Court) - Kwai Fong Station | 5-20 |
| KMB 67X | Tuen Mun (Siu Hong Court) - Mong Kok East Station | 6-25 |
| KMB 68A | Long Ping Estate - Tsing Yi Station | 8-25 |
| KMB 258A ${ }^{(1)}$ | Hung Shui Kiu (Hung Fuk Estate) $\rightarrow$ Lam Tin Station | 2 per day |
| KMB 258P ${ }^{(2)}$ | Hung Shui Kiu (Hung Fuk Estate) - Lam Tin Station | 12-30 |
| KMB 261P | Tuen Mun (Siu Hong Court) $\rightarrow$ Sheung Shui (Tin Ping) ${ }^{(2)(A)}$ | 2-3 per day |
|  | Sheung Shui (Tin Ping) $\rightarrow$ Tuen Mun (Siu Hong Court) ${ }^{(1)(\mathrm{B})}$ | 1 per day |
| KMB 267X ${ }^{(1)}$ | Tuen Mun (Siu Hong Court) $\rightarrow$ Lam Tin Station ${ }^{(A)}$ | 2 per day |
|  | Lam Tin Station $\rightarrow$ Tuen Mun (Siu Hong Court) ${ }^{(B)}$ | 2 per day |

TABLE 2.2 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE (CONT'D)

| KMB 960A ${ }^{(1)}$ | Central $\rightarrow$ Hung Shui Kiu (Hung Fuk Estate) ${ }^{(B)}$ | 1 per day |
| :---: | :---: | :---: |
| KMB 960C ${ }^{(1)}$ | Tuen Mun (Fu Tai Estate) $\rightarrow$ Causeway Bay (Victoria Park) ${ }^{(A)}$ | 2 per day |
|  | Causeway Bay (Victoria Park) $\rightarrow$ Tuen Mun (Fu Tai Estate) ${ }^{(\mathrm{B})}$ | 1 per day |
| KMB 960P | Hung Shui Kiu (Hung Yuen Road) $\rightarrow$ Causeway Bay (Victoria Park) | 10-35 |
|  | Causeway Bay (Victoria Park) $\rightarrow$ Hung Shui Kiu (Hung Yuen Road) ${ }^{(1)(\mathrm{B})}$ | 1 per day |
| KMB 960X ${ }^{(1)}$ | Hung Shui Kiu (Hung Yuen Road) $\rightarrow$ Quarry Bay (King's Road) ${ }^{(A)}$ | 8 per day |
|  | Quarry Bay (King's Road) $\rightarrow$ Hung Shui Kiu (Hung Yuen Road) ${ }^{(B)}$ | 8 per day |
| KMB N260 ${ }^{(\mathrm{D})}$ | Tuen Mun Pier Head - Mei Foo | 20-25 |
| LWB A34 | Hung Shui Kiu (Hung Yuen Road) - Airport (Ground Transportation Centre) | 20-60 |
| LWB E33P | Siu Hong Station (South) - Airport (Ground Transportation Centre) | 12-45 |
| LWB NA33 ${ }^{(\mathrm{D})}$ | Tuen Mun (Fu Tai Estate) $\rightarrow$ Cathay Pacific City | 3 per day |
|  | Cathay Pacific City $\rightarrow$ Tuen Mun (Fu Tai Estate) | 5 per day |
| LWB NA37 ${ }^{(\mathrm{D})}$ | Tin Shui Wai Town Centre $\rightarrow$ Cathay Pacific City | 5 per day |
|  | Cathay Pacific City $\rightarrow$ Tin Shui Wai Town Centre | 6 per day |
| NLB B2 | Yuen Long MTR Station - Shenzhen Bay Port | 25-40 |
| GMB 42 | Tsing Chuen Wai - Tuen Mun Town Centre | 13-15 |
| GMB 606S ${ }^{(\mathrm{D})}$ | Yuen Long (Fung Cheung Rd) - Tsim Sha Tsui East | 6-13 |

KMB - Kowloon Motor Bus $\quad$ LWB - Long Win Bus $\quad$ CTB - CityBus GMB - Green Minibus
NLB - New Lantao Bus
Note: ${ }^{(1)}$ Monday to Friday. (Except public holidays)
${ }^{(\text {A) }}$ AM peak only $\quad{ }^{\text {(B) }}$ PM peak only
${ }^{(2)}$ Monday to Saturday (Except public holidays)
${ }^{(C)}$ AM and PM peak only ${ }^{(D)}$ Overnight service

### 3.0 THE PROPOSED DEVELOPMENT

## Key Parameters

3.1 The Proposed Development key parameters are presented in Table 3.1.

## TABLE 3.1 KEY PARAMETERS

| Item | Proposed Development |
| :--- | :--- |
| Site Area | About $8,896 \mathrm{~m}^{2}$ |
| Domestic Plot Ratio | 5.0 |
| Domestic GFA | $44,480 \mathrm{~m}^{2}$ |
| Flat Mix <br> (GFA) | Flat Size $\leq 40 \mathrm{~m}^{2}$ |
|  | $40 \mathrm{~m}^{2}<$ Flat Size $\leq 70 \mathrm{~m}^{2}$ |
| Total number of Flats |  |

## Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Development are provided in accordance with the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") and are presented in Table 3.2.

TABLE 3.2 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR PROPOSED DEVELOPMENT

| Facility | HKPSG Recommendation | Provision |
| :---: | :---: | :---: |
| Car <br> Parking <br> Space | For Residents: <br> Parking Requirement $=$ GPS $\times$ R1 $\times$ R2 $\times$ R3 <br> Global Parking Standard (GPS): 1 car parking space per 4-7 <br> flats <br> Demand Adjustment Ratio (R1): $\quad 0.5$ for flat size $\leq 40 \mathrm{~m}^{2}$ GFA <br> 1.2 for flat size $40-70 \mathrm{~m}^{2}$ <br> GFA <br> Accessibility Adjustment Ratio(R2): 1.0 outside 500m-radius of rail station <br> Development Intensity Adjustment Ratio (R3): 1.0 for Plot Ratio 2.0-5.0 <br> For 1,100 flats with flat size less than $40 \mathrm{~m}^{2}$ GFA <br> Minimum: $(1,110 / 7 \times 0.5 \times 1.0 \times 1.0)=79.3$, say 80 nos. <br> Maximum: $(1,110 / 4 \times 0.5 \times 1.0 \times 1.0)=138.8$, say 139 nos. <br> For 275 flats with flat size $40-70 \mathrm{~m}^{2}$ GFA <br> Minimum: $(275 / 7 \times 1.2 \times 1.0 \times 1.0)=47.2$, say 48 nos. <br> Maximum: $(275 / 4 \times 1.2 \times 1.0 \times 1.0)=82.5$, say 83 nos. <br> Total $\begin{aligned} & \text { Minimum }=80+48=128 \text { nos. } \\ & \text { Maximum }=139+83=222 \text { nos. } \end{aligned}$ | $\begin{aligned} & 222 \text { nos. @ } 5.0 \mathrm{~m}(\mathrm{~L}) \mathrm{x} \\ & 2.5 \mathrm{~m}(\mathrm{~W}) \times 2.4 \mathrm{~m}(\mathrm{H}) \\ & =\text { HKPSG maximum } \end{aligned}$ |
|  | For Visitors: <br> Visitor car parking for private residential developments with more than 75 units per block should be provided at 5 visitor spaces per block in addition to the recommendations, or as determined by the Authority. <br> For 5 blocks: $5 \times 5$ nos. $=25$ nos. | 25 nos. (22 nos. @ <br> $5.0 \mathrm{~m}(\mathrm{~L}) \times 2.5 \mathrm{~m}(\mathrm{~W}) \mathrm{x}$ <br> $2.4 \mathrm{~m}(\mathrm{H})+3$ nos. @ <br> $5.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \mathrm{x}$ <br> $2.4 \mathrm{~m}(\mathrm{H})$ for person with disabilities) <br> = HKPSG maximum |
|  | Total Car Parking Space: <br> Minimum $=128+25=153$ nos. <br> Maximum $=222+25=\mathbf{2 4 7}$ nos. <br> Note: For total no. of car parking space in lot $=151-250$ nos., the Building (planning) regulation 72 require provision of 3 accessible car parking spaces | 247 nos. (including 3 accessible car parking spaces) |

TABLE 3.2 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR PROPOSED DEVELOPMENT (CONT'D)

| Facility | HKPSG Recommendation | Provision |
| :---: | :---: | :---: |
| Motorcycle <br> Parking <br> Space | For Residential Uses: <br> 1 motorcycle parking space per 100-150 flats excluding non-residential elements <br> For 1,385 flats: $\mathbf{1 0 - 1 4}$ nos. | ```14 nos.@ 2.4m (L) x 1.0m (W) x Min. 2.4m (H) = HKPSG maximum, OK``` |
| Goods <br> Vehicle <br> Loading/ <br> Unloading <br> Bay | For Residential Uses: <br> Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority. <br> For 5 blocks, each block less than 800 flats: $\mathbf{5}$ no. | ```5 nos.@ 11.0m (L) x 3.5m (W) x Min. 4.7m (H) = HKPSG minimum, OK``` |
| Bicycle <br> Parking <br> Spaces | For Residential Uses: <br> Within $0.5-2 \mathrm{~km}$ to rail station, 1 space per 15 flats with flat size $<70 \mathrm{~m}^{2}$ $=1,385 \div 15$ $=93 \mathrm{nos} .$ | ```93 no.@ 1.8m (L) x 0.8m(W) x Min. 2.4m (H) = comply HKPSG, OK``` |

3.3 Table 3.2 shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The master layout plan of the Proposed Development is shown in Figure 3.1.

## Planned Road Works near the Proposed Development

3.4 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a $7.3 \mathrm{~m}-$ wide road carriageway, a 2 m-wide footpath and a 2 m -wide cycle track (the "Planned Road Works"). The Planned Road Works to be implemented by the Owner as part of the Approved Scheme and is found in Appendix B.

## Swept Path Analysis

3.5 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Development, and the swept path analysis drawings are found in Appendix C. Vehicles are found to have no manoeuvring problems.

### 4.0 TRAFFIC IMPACT

## Design Year

4.1 The Proposed Development is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2028. Therefore, Year 2033 is adopted for junction capacity analysis.

## Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.

## Estimated Traffic Growth Rate from 2031 to 2033

4.3 Reference is made to the "Hong Kong Population Projections 2020 - 2069" published by Census and Statistics Department. The information is presented in Table 4.1.

TABLE 4.1 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

| Year | Population in Hong Kong (thousands) |
| :---: | :---: |
| 2031 | $7,945.8$ |
| 2033 | $7,998.4$ |
| Average Annual Growth (2031 - 2033) | $\mathbf{0 . 3 3 \%}$ |

4.4 Table 4.1 shows that the annual population growth between 2031 and 2033 is $0.33 \%$, and is adopted for estimated traffic growth rate from 2031 to 2033.

## Additional Planned/ Committed Developments near the Subject Site

4.5 The additional planned/committed developments near the Subject Site after 2019 which are not considered in the BDTM are included in the forecast. The major additional planned / committed developments are listed in Table 4.2 and the locations are presented in Figure 4.1.

TABLE 4.2 THE MAJOR ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS NEAR THE SUBJECT SITE

| Ref. No. | Development | Intake Year | Land Use | $\begin{aligned} & \text { GFA } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$ | No. of Flat (no.) | Average Flat Size ( $\mathrm{m}^{2}$ ) | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuen Mun Area $54{ }^{(1)}$ |  |  |  |  |  |  |  |
| A | Site $1 \& 1 \mathrm{~A}$ Wo Tin Estate | 2022 | PRH | -- | 4,232 | -- | -- |
|  |  |  | Retail | 2,420 | -- | -- | -- |
|  |  |  | SWF | 1,060 | -- | -- | -- |
|  |  |  | Kindergarten | -- | -- | -- | 1 no. |
| B | $\begin{aligned} & \text { Site } 2 \\ & \text { Yan Tin Estate } \end{aligned}$ | 2017 | PRH | - | 4,688 | -- | -- |
|  |  |  | Retail | 4,250 | - | -- | -- |
|  |  |  | SWF | 3,600 | -- | -- | -- |
| C | Site 3 \& 4 (East) Ching Tin Estate | 2022 | PRH | -- | 5,183 | -- | -- |
|  |  |  | Retail | 3,130 | -- | -- | -- |
|  |  |  | SWF | 1,810 | -- | -- | -- |
|  |  |  | Kindergarten | -- | -- | -- | 1 no. |
| D | Site $3 \& 4$ (West) Novo Land | 2025 | Private Housing | -- | 4,600 | -- | -- |
|  |  |  | Retail | 5,000 | -- | -- | -- |
| E | Site 4A (East) | --- | Primary School | -- | -- | -- | 1 no. |
|  |  |  | Secondary School | -- | -- | -- | 1 no. |
| F | Site 4A (West) | --- | Sport Centre \& Community Hall | -- | -- | -- | 1 no. |
| G | Site 4A (South) | 2028 | PRH | -- | 1,475 | -- | -- |
|  |  |  | Kindergarten | -- | -- | -- | 1 no. |
| H | Site 5 | 2028 | SSF | -- | 1,020 | -- | -- |
|  |  |  | SWF | 1,300 | -- | -- | -- |
| Development at San Hing Road and Hong Po Road, Tuen Mun ${ }^{(2)}$ |  |  |  |  |  |  |  |
| I | San Hing Road Site | [2031 | PRH / SSF | -- | 9,400 | -- | -- |
|  |  |  | Primary School | -- | -- | - | 2 nos. |
|  |  |  | Kindergarten | -- | -- | - | 2 nos. |
|  |  |  | SWF | N/A | -- | -- | -- |
| J | San Hing Road Site Extension | 2030 | PRH / SSF | -- | 1,700 | -- | -- |
|  |  |  | Retail | 5,000 ${ }^{(4)}$ | -- | -- | -- |
|  |  |  | Secondary School | -- | -- | -- | 1 no. |
|  |  |  | Primary School | -- | -- | -- | 2 no. |
| K | Ho Pong Road Site | 2033 | PRH/SSF | -- | 10,500 | -- | -- |
|  |  |  | Retail | $5,000^{(4)}$ | - | -- | --- |
|  |  |  | Kindergarten | -- | -- | -- | 2 no. |
|  |  |  | SWF | N/A | -- | -- | -- |
| Other Planning Applications Nearby ${ }^{(3)}$ |  |  |  |  |  |  |  |
| L | A/TM-LTYY/ 426 | -2026 | Private Housing | -- | 184 | 31 | -- |
| M | Y/TM-LTYY/ 10 | -- | Private Housing | -- | 288 | 40 | -- |
| N | A/TM-LTYY/ 301 | -- | NTEH ${ }^{(3)}$ | -- | 1 | 195 | -- |
| O | A/TM-LTYY/ 335 | -- | NTEH ${ }^{(3)}$ | -- | 1 | 195 | -- |
| P | A/TM-LTYY/ 336 | -- | NTEH ${ }^{(3)}$ | -- | 1 | 195 | -- |
| Q | A/TM-LTYY/ 370 | --- | NTEH ${ }^{(3)}$ | -- | 1 | 195 | -- |
| R | A/TM-LTYY/ 371 | -- | NTEH ${ }^{(3)}$ | -- | 1 | 195 | -- |
| S | A/TM-LTYY/ 372 | -- | NTEH ${ }^{(3)}$ | -- | 1 | 195 | -- |

PRH - Public Rental Housing SSF - Subsidised Sale Flats NTEH - New Territories Exempted House
SWF - Social Welfare Facilities
(1) extracted from TIA of Approved Planning Applications A/TM/500 and A/TM/583
(2) extracted from Chapter 2 of EIA report of "Development at San Hing Road and Hong Po Road, Tuen Mun"
(3) extracted from Planning Statement of Approved Planning Applications
(4) No information on area for retail uses is found in public domain, assumed 5,000 $\mathrm{m}^{2}$ GFA of retail

## Planned Road Improvement works by the Development at San Hing Road and Hong Po Road

4.6 Some road improvement works are planned under the "Site Formation and Infrastructural Works for the Development at San Hing Road and Hong Po Road, Tuen Mun - Feasibility Study" (Agreement No. CE 68/2017 (CE)) by Civil

Engineering and Development Department ("CEDD"), and these are summarized in Table 4.3. The road improvement works are found in Appendix D.

## TABLE 4.3 PLANNED ROAD IMPROVEMENT WORKS NEAR PROPOSED DEVELOPMENT BY CEDD

| Ref | Brief Description of the Improvement |
| :---: | :---: |
| J3 | Provide 2 left-turn lanes at Ng Lau Road southbound |
|  | Provide 1 left-turn lane at Lam Tei Interchange eastbound |
| J4 | Provide exclusive left-turn lane from Hong Po Road southbound |
|  | Modify the entry lanes from Lam Tei Interchange westbound |
| J6 | Provide 3 left-turn and 1 straight ahead lane at Castle Peak Road - Lam Tei northbound |
|  | rearrange the channelized island at Castle Peak Road - Lam Tei northbound |
|  | Provide a channelized island at Castle Peak Road - Lam Tei southbound |
| J7 | Provide a channelized island at Tsz Tin Road eastbound |
|  | Rearrange 4 lanes at southern-side of Tsing Lun Road at the junction to provide 2 northbound and 2 southbound lanes |

4.7 The improvement work described in Table 4.3 will be completed gradually before 2030 - 2033, i.e., the intake of public housing of San Hing Road site, and San Hing Road site extension and Hong Po Road site (Note: These are items I, J and K in Table 4.2). These improvement works are adopted for the Year 2033 junction capacity analysis.

## Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development

4.8 The Proposed Development average flat size is around $32 \mathrm{~m}^{2}$ GFA, and to estimate its traffic generation, reference is made to the smallest flat size in the TPDM, i.e., $60 \mathrm{~m}^{2}$ GFA. The adopted trip generation rates and the estimated AM and PM peak hour traffic generation are presented in Table 4.4.

TABLE 4.4 ADOPTED TRIP RATES AND TRAFFIC GENERATION FOR PROPOSED DEVELOPMENT

| Proposed Development | AM Peak |  | PM Peak |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Generation | Attraction | Generation | Attraction |
| Trip Rates(pcu/ flat/ hr) |  |  |  |  |
| Residential Use with average $60 \mathrm{~m}^{2}$ GFA | 0.0718 | 0.0425 | 0.0286 | 0.0370 |
| Traffic Generations (pcu/ hr) |  |  |  |  |
| 1,385 flats with average flat about 32m² GFA | 100 | 59 | 40 | 52 |
|  | 159 |  | 92 |  |

4.9 The traffic generation of Approved Scheme found in the approved traffic impact assessment is presented in Table 4.5.

TABLE 4.5 ADOPTED TRAFFIC GENERATION FOR APPROVED SCHEME

| Scheme | AM Peak |  | PM Peak |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Generation | Attraction | Generation Attraction |  |
| Approved Scheme | 37 | 22 | 18 |  |
|  | $\underline{59}$ |  | $\underline{41}$ |  |

4.10 The net increase in traffic generation between the Approved Scheme and the Proposed Development is presented in Table 4.6.

TABLE 4.6 NET INCREASE IN TRAFFIC GENERATION

| Scheme | Traffic Generation (pcu/ hr) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AM Peak |  | PM Peak |  |
|  | Generation | Attraction | Generation | Attraction |
| Proposed Development (from Table 4.4) [a] | 100 | 59 | 40 | 52 |
| Approved Scheme (from Table 4.5) [b] | 37 | 22 | 18 | 23 |
| Net Increase [a] - [b]: | +63 | +37 | +22 | +29 |
|  | +100 |  | +51 |  |

4.11 Table 4.6 shows that the Proposed Development is expected to generate 100 and 51 additional pcu (2-way) in AM and PM peak respectively.

## Year 2033 Traffic Flows

4.12 Year 2033 traffic flows for the following cases are derived:

Year 2033 With Approved = Traffic flows derived with reference to 2031 NTW1 BDTM Scheme [A] + estimated traffic growth between 2031 and 2033 + estimated traffic generation of the planned / committed developments after 2019 + estimated traffic generation for Approved Scheme

Year 2033 With Proposed $=[A]+$ net increase in traffic generation by Proposed Development [B] Development
4.13 Year 2033 peak hour traffic flows for the above two cases are shown in Figures 4.2 and 4.3 respectively.

Year 2033 Junction Capacity Analysis
4.14 Year 2033 junction capacity analysis for the cases, i.e., with Approved Scheme and with Proposed Development are summarised in Table 4.7 and detailed calculations are found in the Appendix A.

TABLE 4.7 YEAR 2033 JUNCTION PERFORMANCE

| Ref | Junction | Type of Junction (Parameter) | 2033 With <br> Approved Scheme |  | 2033 With <br> Proposed Development |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AM Peak | PM Peak | AM Peak | PM <br> Peak |
| J1 | Unnamed Road/ Access Road | Priority (DFC) | 0.057 | 0.050 | 0.059 | 0.051 |
| J2 | Ng Lau Road/ Unnamed Road | Priority (DFC) | 0.121 | 0.079 | 0.238 | 0.119 |
| J3 | Ng Lau Road/ Lam Tei Interchange | Signal (RC) | 28\% | 42\% | 23\% | 39\% |
| J4 | Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange | RA (DFC) | 0.754 | 0.681 | 0.775 | 0.691 |
| J5 | Lam Tei Interchange | RA (DFC) | 0.816 | 0.694 | 0.844 | 0.710 |
| J6 | Lam Tei Interchange/ Castle Peak Road - Lam Tei | Signal (RC) | 29\% | 27\% | 29\% | 26\% |
| J7 | Tsing Lun Road/ Tsz Tin Road | Signal (RC) | 24\% | 56\% | 23\% | 55\% |
| J8 | San Hing Road/ Ng Lau Road (Southern) | Priority (DFC) | 0.093 | 0.056 | 0.093 | 0.056 |
| J9 | San Hing Road/ Ng Lau Road (Northern) | Priority (DFC) | 0.243 | 0.519 | 0.243 | 0.519 |

Note: RC - reserve capacity; RA - Roundabout, DFC - design flow/capacity ratio
4.15 Table 4.7 shows that the Proposed Development has negligible traffic impact to the road junctions analysed.

### 5.0 SUMMARY

5.1 The Subject Site is located in D.D.130, Lam Tei, Tuen Mun. At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road. This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0.
5.2 Manual classified counts were conducted at junctions which are located in the vicinity in order to establish the existing traffic flows during AM Peak and PM peak hours.
5.3 The internal transport facilities provided for residential use comply with recommendations of the HKPSG.
5.4 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.
5.5 This TIA concluded that the Proposed Development has negligible traffic impact to the surrounding road network, and, is acceptable from traffic terms.

Figures

















Priority Junction Analysis

| Junction: | Unnamed Road / Access Road |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2023 Job Number: | J7265 | Date: | 14 Sep 2023 |
| Scenario: | Existing Condition |  |  | P. 1 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by $D, E, F$ are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :---: | :---: | :--- | :---: | :--- | ---: | :---: |
| W | 5.70 | V-rBA | 100 | W-BA | 2.05 | D | 0.8093 |  |
| W-CR | 0.00 | V-IBA | 100 | W-BC | 2.05 | E | 0.8343 |  |
|  |  | V-rBC | 100 | W-CB | 2.70 | F | 0.8943 |  |
|  |  | V-rCB | 100 |  |  | Y | 0.8034 |  |

Analysis :

| Traffic Flows, pcu/hr | AM |  | PM Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 9 | 16 | Q-BA | 502 | 501 |
| q-CB | 0 | 0 | Q-BC | 617 | 618 |
| q-AB | 0 | 0 | Q-CB | 662 | 662 |
| q-AC | 18 | 16 | Q-BAC | 502 | 501 |
| q-BA | 0 | 0 |  |  |  |
| q-BC | 0 | 0 |  |  |  |
| f | 0.000 | 0.000 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.000 | 0.000 |
| B-C | 0.000 | 0.000 |
| C-B | 0.000 | 0.000 |
| B-AC | 0.000 | 0.000 |

Priority Junction Analysis

| Junction: | Unnamed Road / Access Road |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2033 Job Number: | J7265 | Date: | 14 Sep 2023 |
| Scenario: | With Approved Scheme |  |  | P. 2 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by $D, E, F$ are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | ---: | :--- | ---: | :--- | :--- | :--- | ---: | :---: |
| W | 6.90 | V-rBA | 60 | W-BA | 4.70 | D | 0.8093 |  |
| W-CR | 0.00 | V-IBA | 90 | W-BC | 0.00 | E | 0.8343 |  |
|  |  | V-rBC | 0.00 | W-CB | 0.00 | F | 0.8943 |  |
|  |  | V-rCB | 55 |  |  | Y | 0.8034 |  |

Analysis :

| Traffic Flows, pcu/hr | AM |  | PM | Capacity, pcu/hr | AM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 37 | 18 | QM |  |  |
| q-CB | 0 | 0 | Q-BC | 495 | 497 |
| q-AB | 15 | 20 | Q-CB | 615 | 614 |
| q-AC | 22 | 23 | Q-BAC | 657 | 655 |
| q-BA | 28 | 25 |  | 495 | 497 |
| q-BC | 0 | 0 |  |  |  |
| f | 0.000 | 0.000 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.057 | 0.050 |
| B-C | 0.000 | 0.000 |
| C-B | 0.000 | 0.000 |
| B-AC | 0.057 | 0.050 |

Priority Junction Analysis

| Junction: | Unnamed Road / Access Road |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Design Year: | Job Number: | J7265 |  | Date: |
| Scenario: | With Proposed Development |  |  | 14 Sep 2023 |
|  |  |  |  | P. 3 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by $D, E, F$ are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | ---: | :--- | ---: | :--- | :--- | :--- | ---: | :---: |
| W | 6.90 | V-rBA | 60 | W-BA | 4.70 | D | 0.8093 |  |
| W-CR | 0.00 | V-IBA | 90 | W-BC | 0.00 | E | 0.8343 |  |
|  |  | V-rBC | 0.00 | W-CB | 0.00 | F | 0.8943 |  |
|  |  | V-rCB | 55 |  |  | Y | 0.8034 |  |

Analysis :

| Traffic Flows, pcu/hr | AM | PM | Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 100 | 40 | Q-BA | 477 | 487 |
| q-CB | 0 | 0 | Q-BC | 606 | 607 |
| q-AB | 15 | 20 | Q-CB | 647 | 647 |
| q-AC | 59 | 52 | Q-BAC | 477 | 487 |
| q-BA | 28 | 25 |  |  |  |
| q-BC | 0 | 0 |  |  |  |
| f | 0.000 | 0.000 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.059 | 0.051 |
| B-C | 0.000 | 0.000 |
| C-B | 0.000 | 0.000 |
| B-AC | 0.059 | 0.051 |

Priority Junction Analysis

| Junction: | Ng Lau Road / Unnamed Road |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2023 Job Number: | J7265 | Date: | 14 Sep 2023 |
| Scenario: | Existing Condition |  |  | P. 4 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | ---: | :--- | :--- | :--- | :--- | :---: |
| W | 8.65 | V-rBA | 30 | W-BA | 2.05 | D | 0.7574 |  |
| W-CR | 0.00 | V-IBA | 100 | W-BC | 2.05 | E | 0.7808 |  |
|  |  | V-rBC | 30 | W-CB | 4.70 | F | 1.0394 |  |
|  |  | V-rCB | 60 |  |  | Y | 0.7016 |  |

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
$f$

| AM | PM | Capacity, pcu/hr | AM | PM |
| ---: | :---: | :---: | :---: | ---: |
| 116 | 231 | Q-BA | 422 | 411 |
| 8 | 14 | Q-BC | 545 | 549 |
| 1 | 2 | Q-CB | 725 | 730 |
| 186 | 165 | Q-BAC | 545 | 537 |
| 0 | 1 |  |  |  |
| 18 | 15 |  |  |  |
| 1.000 | 0.938 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.000 | 0.002 |
| B-C | 0.033 | 0.027 |
| C-B | 0.011 | 0.019 |
| B-AC | 0.033 | 0.030 |

Priority Junction Analysis

| Junction: | Ng Lau Road / Unnamed Road |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2033 Job Number: | J7265 | Date: | 14 Sep 2023 |
| Scenario: | With Approved Scheme |  |  | P. 5 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: |
| W | 7.50 | V-rBA | 20 | w-BA | 2.05 | D | 0.7574 |  |
| W-CR | 0.00 | V-IBA | 90 | w-BC | 2.05 | E | 0.7808 |  |
|  |  | V-rBC | 20 | w-CB | 4.70 | F | 1.0394 |  |
|  |  | V-rCB | 25 |  |  | Y | 0.7016 |  |

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
$f$

| AM | PM |
| ---: | ---: |
| 136 | 252 |
| 37 | 43 |
| 0 | 0 |
| 220 | 187 |
| 0 | 0 |
| 65 | 43 |
| 1.000 | 1.000 |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.000 | 0.000 |
| B-C | 0.121 | 0.079 |
| C-B | 0.052 | 0.059 |
| B-AC | 0.121 | 0.079 |

Priority Junction Analysis

| Junction: | Ng Lau Road / Unnamed Road |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2033 Job Number: | J7265 | Date: | 14 Sep 2023 |
| Scenario: | With Proposed Development |  |  | P. 6 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: |
| W | 7.50 | V-rBA | 20 | w-BA | 2.05 | D | 0.7574 |  |
| W-CR | 0.00 | V-IBA | 90 | w-BC | 2.05 | E | 0.7808 |  |
|  |  | V-rBC | 20 | w-CB | 4.70 | F | 1.0394 |  |
|  |  | V-rCB | 25 |  |  | Y | 0.7016 |  |

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
$f$

| AM | PM |
| ---: | ---: |
| 136 | 252 |
| 74 | 72 |
| 0 | 0 |
| 220 | 187 |
| 0 | 0 |
| 128 | 65 |
| 1.000 | 1.000 |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.000 | 0.000 |
| B-C | 0.238 | 0.119 |
| C-B | 0.103 | 0.099 |
| B-AC | 0.238 | 0.119 |

Signal Junction Analysis


Signal Junction Analysis


Signal Junction Analysis


## Roundabout Analysis

| Scenario Existing Condition |  |  |  | Page | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Design Year 2023 | Job Number | J 7265 | Date | 14 Sept | r 2023 |


| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total | $\mathrm{q}_{\mathrm{c}}$ * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 101 | 109 | 760 | 197 |  |  |  |  | 1167 | 253 |
| From B | 181 | 0 | 76 | 21 |  |  |  |  | 278 | 1231 |
| From C | 504 | 41 | 10 | 29 |  |  |  |  | 584 | 610 |
| From D | 328 | 39 | 53 | 1 |  |  |  |  | 421 | 946 |
| From E |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |
| Total | 1114 | 189 | 899 | 248 |  |  |  |  | 2450 |  |

PM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total | $\mathrm{q}_{\mathrm{c}}$ * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 204 | 90 | 692 | 311 |  |  |  |  | 1297 | 201 |
| From B | 91 | 0 | 67 | 22 |  |  |  |  | 180 | 1350 |
| From C | 404 | 32 | 18 | 37 |  |  |  |  | 491 | 720 |
| From D | 160 | 26 | 33 | 2 |  |  |  |  | 221 | 839 |
| From E |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |
| Total | 859 | 148 | 810 | 372 |  |  |  |  | 2189 |  |

Legend

| Arm | Road (in clockwise order) |
| :---: | :--- |
| A | Slip Road from Lam Tei Interchange |
| B | Access Road from Siu Hong Station |
| C | Tsing Lun Road |
| D | Hong Po Road |
| E |  |
| F |  |
| G |  |
| H |  |

Geometric Parameters

| Arm | $\mathrm{e}(\mathrm{m})$ | $\mathrm{v}(\mathrm{m})$ | $\mathrm{r}(\mathrm{m})$ | $\mathrm{L}(\mathrm{m})$ | $\mathrm{D}(\mathrm{m})$ | $\varnothing\left(^{\circ}\right)$ | S |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 10.0 | 7.3 | 20.0 | 10.0 | 55 | 45 | 0.4 |
| From B | 9.0 | 6.8 | 28.0 | 4.0 | 55 | 19 | 0.9 |
| From C | 11.5 | 7.8 | 100.0 | 9.0 | 55 | 23 | 0.7 |
| From D* | 6.0 | 4.5 | 27.0 | 6.0 | 55 | 10 | 0.4 |
| From E |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |

* Parameter in existing condition is adjusted for TTA
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| $\mathrm{Q}_{E}$ | Entry Capacity |
| :--- | :--- |
| $\mathrm{q}_{\mathrm{c}}$ | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$ |
| F | $=303 \mathrm{x}_{2}$ |
| $\mathrm{f}_{\mathrm{c}}$ | $=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$ |
| $\mathrm{t}_{\mathrm{D}}$ | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(\mathrm{D}-60) / 10]$ |
| $\mathrm{x}_{2}$ | $=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$ |
| S | $=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$ |

Limitation

| e | Entry Width | $4.0-15.0 \mathrm{~m}$ |
| :--- | :--- | :--- |
| v | Approach Half Width | $2.0-7.3 \mathrm{~m}$ |
| r | Entry Radius | $6.0-100.0 \mathrm{~m}$ |
| L | Effective Length of Flare | $1.0-100.0 \mathrm{~m}$ |
| D | Inscribed Circle Diameter | $15-100 \mathrm{~m}$ |
| $\varnothing$ | Entry Angle | $10^{\circ}-60^{\circ}$ |
| S | Sharpness of Flare | $0.0-3.0$ |

Ratio-of-Flow to Capacity (RFC)

| Arm | $\mathrm{X}_{2}$ | M | $t_{\text {D }}$ | K | F | $\mathrm{f}_{\mathrm{c}}$ | $\mathrm{Q}_{\mathrm{E}}$ |  | Entry Flow |  | RFC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | AM | PM | AM | PM | AM | PM |
| From A | 8.748 | 0.607 | 1.311 | 0.948 | 2651 | 0.757 | 2331 | 2369 | 1167 | 1297 | 0.501 | 0.548 |
| From B | 7.597 | 0.607 | 1.311 | 1.051 | 2302 | 0.694 | 1522 | 1435 | 278 | 180 | 0.183 | 0.125 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2514 | 2421 | 584 | 491 | 0.232 | 0.203 |
| From D | 5.333 | 0.607 | 1.311 | 1.082 | 1616 | 0.569 | 1166 | 1232 | 421 | 221 | 0.361 | 0.179 |
| From E |  |  |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |  |  |

## Roundabout Analysis


AM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 340 | 0 | 1063 | 541 |  |  |  |  | 1944 |
| From B | 196 | 0 | 86 | 20 |  |  |  |  | 490 |
| From C | 787 | 50 | 11 | 131 |  |  |  |  | 979 |
| From D | 624 | 56 | 373 | 0 |  |  |  | 1053 | 1384 |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 1947 | 106 | 1533 | 692 |  |  |  |  |  |

PM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 429 | 0 | 815 | 641 |  |  |  |  | 1885 |
| From B | 107 | 0 | 76 | 25 |  |  |  |  | 262 |
| From C | 559 | 41 | 20 | 157 |  |  |  |  |  |
| From D | 445 | 40 | 161 | 0 |  |  |  |  | 777 |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 1540 | 81 | 1072 | 823 |  |  |  |  |  |

Legend

| Arm | Road (in clockwise order) |
| :---: | :--- |
| A | Slip Road to Lam Tei Interchange |
| B | Access Road to Siu Hong Station |
| C | Tsing Lun Road |
| D | Hong Po Road |
| E |  |
| F |  |
| G |  |
| H |  |

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| $\mathrm{Q}_{\mathrm{E}}$ | Entry Capacity |
| :--- | :--- |
| $\mathrm{q}_{\mathrm{c}}$ | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$ |
| F | $=303 \mathrm{x}_{2}$ |
| $\mathrm{f}_{\mathrm{c}}$ | $=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$ |
| $\mathrm{t}_{\mathrm{D}}$ | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(\mathrm{D}-60) / 10]$ |
| $\mathrm{x}_{2}$ | $=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$ |
| S | $=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$ |

Geometric Parameters

| Arm | $\mathrm{e}(\mathrm{m})$ | $\mathrm{v}(\mathrm{m})$ | $\mathrm{r}(\mathrm{m})$ | $\mathrm{L}(\mathrm{m})$ | $\mathrm{D}(\mathrm{m})$ | $\varnothing\left({ }^{\circ}\right)$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 11.0 | 7.8 | 30.0 | 10.0 | 55 | 20 | 0.5 |
| From B | 9.0 | 6.8 | 28.0 | 6.0 | 55 | 19 | 0.6 |
| From C | 11.5 | 7.8 | 100.0 | 9.0 | 55 | 23 | 0.7 |
| From D | 14.0 | 8.5 | 40.0 | 10.0 | 55 | 10 | 0.9 |
| From E |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |

Limitation

| e | Entry Width | $4.0-15.0 \mathrm{~m}$ |
| :--- | :--- | :--- |
| v | Approach Half Width | $2.0-7.3 \mathrm{~m}$ |
| r | Entry Radius | $6.0-100.0 \mathrm{~m}$ |
| L | Effective Length of Flare | $1.0-100.0 \mathrm{~m}$ |
| D | Inscribed Circle Diameter | $15-100 \mathrm{~m}$ |
| $\varnothing$ | Entry Angle | $10^{\circ}-60^{\circ}$ |
| S | Sharpness of Flare | $0.0-3.0$ |

Ratio-of-Flow to Capacity (RFC)

| Arm | $\mathrm{x}_{2}$ | M | $\mathrm{t}_{\mathrm{D}}$ | K | F | $\mathrm{f}_{\mathrm{c}}$ | AM | PM | AM | PM | AM | PM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 9.381 | 0.607 | 1.311 | 1.051 | 2842 | 0.792 | 2580 | 2769 | 1944 | 1885 | 0.754 | 0.681 |
| From B | 7.812 | 0.607 | 1.311 | 1.051 | 2367 | 0.706 | 761 | 956 | 302 | 208 | 0.397 | 0.218 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2103 | 2015 | 979 | 777 | 0.465 | 0.386 |
| From D | 10.493 | 0.607 | 1.311 | 1.094 | 3179 | 0.853 | 2186 | 2399 | 1053 | 646 | 0.482 | 0.269 |
| From E |  |  |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |  |  |

## Roundabout Analysis

| Location | Tsing Lun Road / Hong Po Road / Lam Tei Interchange |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | ---: |
| Scenario |  |  |  |  |  |
| With Proposed Development |  | Page | 12 |  |  |
| Design Year | $\underline{2033}$ |  | Job Number | $\underline{J 7265}$ | Date |


| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total | $\mathrm{q}_{\mathrm{c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 372 | 0 | 1087 | 541 |  |  |  |  | 2000 | 490 |
| From B | 196 | 0 | 86 | 20 |  |  |  |  | 302 | 2384 |
| From C | 792 | 50 | 11 | 131 |  |  |  |  | 984 | 1129 |
| From D | 624 | 56 | 373 | 0 |  |  |  |  | 1053 | 1421 |
| From E |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |
| Total | 1984 | 106 | 1557 | 692 |  |  |  |  | 4339 |  |

PM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 453 | 0 | 819 | 641 |  |  |  |  | 1913 |
| From B | 107 | 0 | 76 | 25 |  |  |  |  | 262 |
| From C | 564 | 41 | 20 | 157 |  |  |  |  |  |
| From D | 0 | 40 | 161 | 0 |  |  |  |  | 782 |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 1124 | 81 | 1076 | 823 |  |  |  |  |  |

Legend

| Arm | Road (in clockwise order) |
| :---: | :--- |
| A | Slip Road to Lam Tei Interchange |
| B | Access Road to Siu Hong Station |
| C | Tsing Lun Road |
| D | Hong Po Road |
| E |  |
| F |  |
| G |  |
| H |  |

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| $\mathrm{Q}_{\mathrm{E}}$ | Entry Capacity |
| :--- | :--- |
| $\mathrm{q}_{\mathrm{c}}$ | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$ |
| F | $=303 \mathrm{x}_{2}$ |
| $\mathrm{f}_{\mathrm{c}}$ | $=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$ |
| $\mathrm{t}_{\mathrm{D}}$ | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(\mathrm{D}-60) / 10]$ |
| $\mathrm{x}_{2}$ | $=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$ |
| S | $=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$ |


| Arm | $\mathrm{e}(\mathrm{m})$ | $\mathrm{v}(\mathrm{m})$ | $\mathrm{r}(\mathrm{m})$ | $\mathrm{L}(\mathrm{m})$ | $\mathrm{D}(\mathrm{m})$ | $\varnothing\left({ }^{\circ}\right)$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 11.0 | 7.8 | 30.0 | 10.0 | 55 | 20 | 0.5 |
| From B | 9.0 | 6.8 | 28.0 | 4.0 | 55 | 19 | 0.9 |
| From C | 11.5 | 7.8 | 100.0 | 9.0 | 55 | 23 | 0.7 |
| From D | 14.0 | 8.5 | 40.0 | 10.0 | 55 | 10 | 0.9 |
| From E |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |

Limitation

| e | Entry Width | $4.0-15.0 \mathrm{~m}$ |
| :--- | :--- | :--- |
| v | Approach Half Width | $2.0-7.3 \mathrm{~m}$ |
| r | Entry Radius | $6.0-100.0 \mathrm{~m}$ |
| L | Effective Length of Flare | $1.0-100.0 \mathrm{~m}$ |
| D | Inscribed Circle Diameter | $15-100 \mathrm{~m}$ |
| $\varnothing$ | Entry Angle | $10^{\circ}-60^{\circ}$ |
| S | Sharpness of Flare | $0.0-3.0$ |

Ratio-of-Flow to Capacity (RFC)

| Arm | $\mathrm{x}_{2}$ | M | $\mathrm{t}_{\mathrm{D}}$ | K | F | $\mathrm{f}_{\mathrm{c}}$ | AM | PM | AM | PM | AM | PM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 9.381 | 0.607 | 1.311 | 1.051 | 2842 | 0.792 | 2580 | 2769 | 2000 | 1913 | 0.775 | 0.691 |
| From B | 7.597 | 0.607 | 1.311 | 1.051 | 2302 | 0.694 | 681 | 893 | 302 | 208 | 0.443 | 0.233 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2076 | 1994 | 984 | 782 | 0.474 | 0.392 |
| From D | 10.493 | 0.607 | 1.311 | 1.094 | 3179 | 0.853 | 2151 | 2372 | 1053 | 201 | 0.489 | 0.085 |
| From E |  |  |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |  |  |

Roundabout Analysis

AM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 16 | 0 | 878 |  |  |  |  |  | $\mathrm{q}_{\mathrm{c}}$ |
| From B | 292 | 3 | 275 |  |  |  |  |  | 594 |
| From C | 315 | 589 | 13 |  |  |  |  |  |  |
| From D |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| Total | 623 | 592 | 1166 |  |  |  |  |  |  |

PM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7 | 0 | 891 |  |  |  |  |  | 898 |
| From B | 266 | 0 | 380 |  |  |  |  |  | 448 |
| From C | 175 | 422 | 26 |  |  |  |  |  |  |
| From D |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 448 | 422 | 1297 |  |  |  |  |  |  |

Legend

| Arm | Road (in clockwise order) |
| :---: | :--- |
| A | Slip Road to Castle Peak Road |
| B | Slip Road to Tuen Mun Road |
| C | Slip Road to Tsing Lun Road |
| D |  |
| E |  |
| F |  |
| G |  |
| H |  |

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| $Q_{E}$ | Entry Capacity |
| :--- | :--- |
| $\mathrm{q}_{\mathrm{c}}$ | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$ |
| F | $=303 \mathrm{x}_{2}$ |
| $\mathrm{f}_{\mathrm{c}}$ | $=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$ |
| $\mathrm{t}_{\mathrm{D}}$ | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(\mathrm{D}-60) / 10]$ |
| $\mathrm{x}_{2}$ | $=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$ |
| S | $=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$ |


| Arm | $\mathrm{e}(\mathrm{m})$ | $\mathrm{v}(\mathrm{m})$ | $\mathrm{r}(\mathrm{m})$ | $\mathrm{L}(\mathrm{m})$ | $\mathrm{D}(\mathrm{m})$ | $\varnothing\left({ }^{\circ}\right)$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.3 | 7.3 | 40.0 | 1.0 | 45 | 22 | 0.0 |
| From B | 8.8 | 7.3 | 65.0 | 3.0 | 45 | 26 | 0.8 |
| From C | 7.7 | 6.0 | 100.0 | 8.0 | 45 | 17 | 0.3 |
| From D |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |

Limitation

| e | Entry Width | $4.0-15.0 \mathrm{~m}$ |
| :--- | :--- | :--- |
| v | Approach Half Width | $2.0-7.3 \mathrm{~m}$ |
| r | Entry Radius | $6.0-100.0 \mathrm{~m}$ |
| L | Effective Length of Flare | $1.0-100.0 \mathrm{~m}$ |
| D | Inscribed Circle Diameter | $15-100 \mathrm{~m}$ |
| $\varnothing$ | Entry Angle | $10^{\circ}-60^{\circ}$ |
| S | Sharpness of Flare | $0.0-3.0$ |

Ratio-of-Flow to Capacity (RFC)

| Arm | $\mathrm{x}_{2}$ | M | $\mathrm{t}_{\mathrm{D}}$ | K | F | $\mathrm{f}_{\mathrm{c}}$ | AM | PM | AM | PM | AM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1864 | 1984 | 894 | 898 | 0.480 | 0.453 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1777 | 1763 | 570 | 646 | 0.321 | 0.366 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2064 | 2093 | 917 | 623 | 0.444 | 0.297 |
| From D |  |  |  |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |  |  |


| Location Lam Tei Interchange |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Scenario With Approved Scheme |  |  | Page | 14 |
| Design Year 2033 | Job Number J7265 | Date | 14 Sep | r 2023 |

AM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 18 | 0 | 1173 |  |  |  |  |  | 1191 |
| From B | 323 | 0 | 771 |  |  |  |  | 1075 |  |
| From C | 591 | 953 | 122 |  |  |  |  |  | 1094 |
| From D |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 932 | 953 | 2066 |  |  |  |  |  |  |

PM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 15 | 0 | 1148 |  |  |  |  |  | 1163 |
| From B | 283 | 0 | 775 |  |  |  |  |  | 143 |
| From C | 380 | 682 | 61 |  |  |  |  |  | 1123 |
| From D |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 678 | 682 | 1984 |  |  |  |  |  |  |

Legend

| Arm | Road (in clockwise order) |
| :---: | :--- |
| A | Slip Road to Castle Peak Road |
| B | Slip Road to Tuen Mun Road |
| C | Slip Road to Tsing Lun Road |
| D |  |
| E |  |
| F |  |
| G |  |
| H |  |

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| $Q_{E}$ | Entry Capacity |
| :--- | :--- |
| $\mathrm{q}_{\mathrm{c}}$ | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$ |
| F | $=303 \mathrm{x}_{2}$ |
| $\mathrm{f}_{\mathrm{c}}$ | $=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$ |
| $\mathrm{t}_{\mathrm{D}}$ | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(\mathrm{D}-60) / 10]$ |
| $\mathrm{x}_{2}$ | $=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$ |
| S | $=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$ |


| Arm | $\mathrm{e}(\mathrm{m})$ | $\mathrm{v}(\mathrm{m})$ | $\mathrm{r}(\mathrm{m})$ | $\mathrm{L}(\mathrm{m})$ | $\mathrm{D}(\mathrm{m})$ | $\varnothing\left({ }^{\circ}\right)$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.3 | 7.3 | 40.0 | 1.0 | 45 | 22 | 0.0 |
| From B | 8.8 | 7.3 | 65.0 | 3.0 | 45 | 26 | 0.8 |
| From C | 7.7 | 6.0 | 100.0 | 8.0 | 45 | 17 | 0.3 |
| From D |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |

Limitation

| e | Entry Width | $4.0-15.0 \mathrm{~m}$ |
| :--- | :--- | :--- |
| v | Approach Half Width | $2.0-7.3 \mathrm{~m}$ |
| r | Entry Radius | $6.0-100.0 \mathrm{~m}$ |
| L | Effective Length of Flare | $1.0-100.0 \mathrm{~m}$ |
| D | Inscribed Circle Diameter | $15-100 \mathrm{~m}$ |
| $\varnothing$ | Entry Angle | $10^{\circ}-60^{\circ}$ |
| S | Sharpness of Flare | $0.0-3.0$ |

Ratio-of-Flow to Capacity (RFC)

| Arm | $\mathrm{x}_{2}$ | M | $\mathrm{t}_{\mathrm{D}}$ | K | F | $\mathrm{f}_{\mathrm{c}}$ | AM | PM | AM | PM | AM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1504 | 1758 | 1191 | 1163 | 0.792 | 0.661 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1452 | 1524 | 1094 | 1058 | 0.753 | 0.694 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2041 | 2074 | 1666 | 1123 | 0.816 | 0.542 |
| From D |  |  |  |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |  |  |


AM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 18 | 0 | 1185 |  |  |  |  |  | $\mathrm{q}_{\mathrm{c}}$ |
| From B | 323 | 0 | 791 |  |  |  |  |  | 1203 |
| From C | 601 | 975 | 146 |  |  |  |  |  | 1121 |
| From D |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 942.2107 | 975 | 2122 |  |  |  |  |  |  |

PM Peak

| Arm | To A | To B | To C | To D | To E | To F | To G | To H | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 15 | 0 | 1155 |  |  |  |  |  | 1170 |
| From B | 283 | 0 | 792 |  |  |  |  |  | 757 |
| From C | 384 | 692 | 65 |  |  |  |  |  | 1075 |
| From D |  |  |  |  |  |  |  |  | 1235 |
| From E |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |
| Total | 682.3857 | 692 | 2012 |  |  |  |  |  |  |

Legend

| Arm | Road (in clockwise order) |
| :---: | :--- |
| A | Slip Road to Castle Peak Road |
| B | Slip Road to Tuen Mun Road |
| C | Slip Road to Tsing Lun Road |
| D |  |
| E |  |
| F |  |
| G |  |
| H |  |

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

| $Q_{E}$ | Entry Capacity |
| :--- | :--- |
| $\mathrm{q}_{\mathrm{c}}$ | Circulating Flow across the Entry |
| K | $=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$ |
| F | $=303 \mathrm{x}_{2}$ |
| $\mathrm{f}_{\mathrm{c}}$ | $=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$ |
| $\mathrm{t}_{\mathrm{D}}$ | $=1+0.5 /(1+\mathrm{M})$ |
| M | $=\exp [(\mathrm{D}-60) / 10]$ |
| $\mathrm{x}_{2}$ | $=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$ |
| S | $=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$ |


| Arm | $\mathrm{e}(\mathrm{m})$ | $\mathrm{v}(\mathrm{m})$ | $\mathrm{r}(\mathrm{m})$ | $\mathrm{L}(\mathrm{m})$ | $\mathrm{D}(\mathrm{m})$ | $\varnothing\left({ }^{\circ}\right)$ | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.3 | 7.3 | 40.0 | 1.0 | 45 | 22 | 0.0 |
| From B | 8.8 | 7.3 | 65.0 | 3.0 | 45 | 26 | 0.8 |
| From C | 7.7 | 6.0 | 100.0 | 8.0 | 45 | 17 | 0.3 |
| From D |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |

Limitation

| e | Entry Width | $4.0-15.0 \mathrm{~m}$ |
| :--- | :--- | :--- |
| v | Approach Half Width | $2.0-7.3 \mathrm{~m}$ |
| r | Entry Radius | $6.0-100.0 \mathrm{~m}$ |
| L | Effective Length of Flare | $1.0-100.0 \mathrm{~m}$ |
| D | Inscribed Circle Diameter | $15-100 \mathrm{~m}$ |
| $\varnothing$ | Entry Angle | $10^{\circ}-60^{\circ}$ |
| S | Sharpness of Flare | $0.0-3.0$ |

Ratio-of-Flow to Capacity (RFC)

| Arm | $\mathrm{x}_{2}$ | M | $\mathrm{t}_{\mathrm{D}}$ | K | F | $\mathrm{f}_{\mathrm{c}}$ | AM | PM | AM | PM | AM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1469 | 1748 | 1203 | 1170 | 0.819 | 0.669 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1424 | 1515 | 1114 | 1075 | 0.782 | 0.710 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2041 | 2074 | 1722 | 1141 | 0.844 | 0.550 |
| From D |  |  |  |  |  |  |  |  |  |  |  |  |
| From E |  |  |  |  |  |  |  |  |  |  |  |  |
| From F |  |  |  |  |  |  |  |  |  |  |  |  |
| From G |  |  |  |  |  |  |  |  |  |  |  |  |
| From H |  |  |  |  |  |  |  |  |  |  |  |  |

Signal Junction Analysis


Priority Junction Analysis

| Junction: Design Year: Scenario: | San Hing Road / Ng Lau Road (Southern) |  |  | Date: | 14 Sep 2023 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2023 | Job Number: | J7265 |  |  |  |
|  | Existing Condition |  |  |  | P. 22 |  |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| W | 6.65 | V-rBA | 23 | w-BA | 2.40 | D | 0.7441 |  |
| W-CR | 0.00 | V-IBA | 23 | w-BC | 2.40 | E | 0.8078 |  |
|  |  | V-rBC | 26 | w-CB | 3.00 | F | 0.8857 |  |
|  |  | V-rCB | 57 |  |  | Y | 0.7706 |  |

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
$f$

| AM | PM |
| ---: | ---: |
| 166 | 152 |
| 7 | 1 |
| 24 | 18 |
| 93 | 214 |
| 21 | 15 |
| 4 | 0 |
| 0.160 | 0.000 |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.050 | 0.037 |
| B-C | 0.007 | 0.000 |
| C-B | 0.011 | 0.002 |
| B-AC | 0.057 | 0.037 |

Priority Junction Analysis

| Junction: Design Year: Scenario: | San Hing Road / Ng Lau Road (Southern) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2033 Job Number: | J7265 | Date: | 14 Sep 2023 |
|  | With Approved Scheme |  |  | P. 23 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| W | 6.65 | V-rBA | 23 | W-BA | 2.40 | D | 0.7441 |  |
| W-CR | 0.00 | V-IBA | 23 | W-BC | 2.40 | E | 0.8078 |  |
|  |  | V-rBC | 26 | W-CB | 3.00 | F | 0.8857 |  |
|  |  | V-rCB | 57 |  |  | Y | 0.7706 |  |

Analysis :

| Traffic Flows, pcu/hr | AM | PM | Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 185 | 165 | Q-BA | 415 | 395 |
| q-CB | 10 | 2 | Q-BC | 576 | 549 |
| q-AB | 36 | 28 | Q-CB | 626 | 597 |
| q-AC | 100 | 224 | Q-BAC | 430 | 395 |
| q-BA | 35 | 22 |  |  |  |
| q-BC | 5 | 0 |  |  |  |
| f | 0.125 | 0.000 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.084 | 0.056 |
| B-C | 0.009 | 0.000 |
| C-B | 0.016 | 0.003 |
| B-AC | 0.093 | 0.056 |

Priority Junction Analysis

| Junction: | San Hing Road / Ng Lau Road (Southern) |  | Date: |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2033 Job Number: | J7265 |  | 14 Sep 2023 |
| Scenario: | With Proposed Development |  |  | P. 24 |



The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| W | 6.65 | V-rBA | 23 | w-BA | 2.40 | D | 0.7441 |  |
| W-CR | 0.00 | V-IBA | 23 | w-BC | 2.40 | E | 0.8078 |  |
|  |  | V-rBC | 26 | w-CB | 3.00 | F | 0.8857 |  |
|  |  | V-rCB | 57 |  |  | Y | 0.7706 |  |

Analysis :

| Traffic Flows, pcu/hr | AM | PM | Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 185 | 165 | Q-BA | 415 | 395 |
| q-CB | 10 | 2 | Q-BC | 576 | 549 |
| q-AB | 36 | 28 | Q-CB | 626 | 597 |
| q-AC | 100 | 224 | Q-BAC | 430 | 395 |
| q-BA | 35 | 22 |  |  |  |
| q-BC | 5 | 0 |  |  |  |
| f | 0.125 | 0.000 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.084 | 0.056 |
| B-C | 0.009 | 0.000 |
| C-B | 0.016 | 0.003 |
| B-AC | 0.093 | 0.056 |

Priority Junction Analysis

| Junction: Design Year: Scenario: | San Hing Road / Ng Lau Road (Northern) |  |  | Date: |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2023 | Job Number: | J7265 |  | 14 Sep 2023 |
|  | Existing Condition |  |  |  | P. 25 |

San Hing Road (Arm C)
Ng Lau Road (Arm A)


The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by $D, E, F$ are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| W | 6.63 | V-rBA | 45 | W-BA | 1.90 | D | 0.7207 |  |
| W-CR | 0.00 | V-IBA | 25 | W-BC | 1.90 | E | 0.7768 |  |
|  |  | V-rBC | 42 | W-CB | 3.50 | F | 0.9344 |  |
|  |  | V-rCB | 62 |  |  | Y | 0.7714 |  |

Analysis:

| Traffic Flows, pcu/hr | AM |  | PM Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 9 | 15 | Q-BA | 432 | 430 |
| q-CB | 8 | 13 | Q-BC | 561 | 561 |
| q-AB | 165 | 141 | Q-CB | 648 | 652 |
| q-AC | 18 | 26 | Q-BAC | 436 | 433 |
| q-BA | 93 | 207 |  |  |  |
| q-BC | 4 | 8 |  |  |  |
| f | 0.041 | 0.037 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.216 | 0.482 |
| B-C | 0.007 | 0.014 |
| C-B | 0.012 | 0.020 |
| B-AC | 0.223 | 0.496 |

Priority Junction Analysis

| Junction: Design Year: Scenario: | San Hing Road / Ng Lau Road (Northern) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2033 | Job Number: | J7265 | Date: | 14 Sep 2023 |  |
|  | With Approved Scheme |  |  |  | P. 26 |  |

San Hing Road (Arm C) $\quad$ Ng Lau Road (Arm A)


The predictive equations of capacity of movement are:
$\mathrm{Q}-\mathrm{BA}=\mathrm{D}[627+14 \mathrm{~W}-\mathrm{CR}-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB}+0.229 \mathrm{q}-\mathrm{CA}+0.52 \mathrm{q}-\mathrm{CB})]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by $D, E, F$ are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v$-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| W | 6.63 | V-rBA | 45 | w-BA | 1.90 | D | 0.7207 |  |
| W-CR | 0.00 | V-IBA | 25 | w-BC | 1.90 | E | 0.7768 |  |
|  |  | V-rBC | 42 | w-CB | 3.50 | F | 0.9344 |  |
|  |  | V-rCB | 62 |  |  | Y | 0.7714 |  |

Analysis :

| Traffic Flows, pcu/hr | AM | PM | Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 28 | 27 | Q-BA | 427 | 427 |
| q-CB | 11 | 14 | Q-BC | 559 | 560 |
| q-AB | 184 | 152 | Q-CB | 643 | 650 |
| q-AC | 19 | 24 | Q-BAC | 431 | 432 |
| q-BA | 100 | 214 |  |  |  |
| q-BC | 5 | 10 |  |  |  |
| f | 0.048 | 0.045 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.234 | 0.501 |
| B-C | 0.009 | 0.018 |
| C-B | 0.017 | 0.022 |
| B-AC | 0.243 | 0.519 |

Priority Junction Analysis

| Junction: | San Hing Road / Ng Lau Road (Northern) |  | Date: |  |
| :---: | :---: | :---: | :---: | :---: |
| Design Year: | 2033 Job Number: | J7265 |  | 14 Sep 2023 |
| Scenario: | With Proposed Development |  |  | P. 27 |

San Hing Road (Arm C) $\quad$ Ng Lau Road (Arm A)


The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by $D, E, F$ are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-$ rBA -120$)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
$v$-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

| Input |  | Input |  |  | Input |  | Calculated |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| W | 6.63 | V-rBA | 45 | W-BA | 1.90 | D | 0.7207 |  |
| W-CR | 0.00 | V-IBA | 25 | W-BC | 1.90 | E | 0.7768 |  |
|  |  | V-rBC | 42 | W-CB | 3.50 | F | 0.9344 |  |
|  |  | V-rCB | 62 |  |  | Y | 0.7714 |  |

Analysis :

| Traffic Flows, pcu/hr | AM | PM | Capacity, pcu/hr | AM | PM |
| :---: | ---: | ---: | :---: | ---: | ---: |
| q-CA | 28 | 27 | Q-BA | 427 | 427 |
| q-CB | 11 | 14 | Q-BC | 559 | 560 |
| q-AB | 184 | 152 | Q-CB | 643 | 650 |
| q-AC | 19 | 24 | Q-BAC | 431 | 432 |
| q-BA | 100 | 214 |  |  |  |
| q-BC | 5 | 10 |  |  |  |
| f | 0.048 | 0.045 |  |  |  |


| Ratio-of-flow to Capacity | AM | PM |
| :---: | :--- | :--- |
| B-A | 0.234 | 0.501 |
| B-C | 0.009 | 0.018 |
| C-B | 0.017 | 0.022 |
| B-AC | 0.243 | 0.519 |

Pre-submission for Proposed Rezoning from "Residential (G roup B)1" Zone to "Residential (G roup B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public Use at Various Lots and Adjacent Government Land in DD 130, Lam Tei, Tuen Mun






Appendix D - Junction Improvements Planned near Proposed Development


