Appendix B

Traffic Impact Assessment

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun

Traffic Impact Assessment

Final Report January 2024

Prepared by: CKM Asia Limited

Prepared for: Wing Mau Tea House Limited

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun

CONTENTS

паст

CLIADTED

		AGE
1.0	INTRODUCTION Background Structure of Report	1
	Structure of Report	1
2.0	EXISTING SITUATION	2
	The Subject Site	2
	The Road Network	2
	Existing Traffic Flows	2
	Existing Junction Performance	2
	Public Transport Facilities	3
3.0	THE PROPOSED DEVELOPMENT	5
5.0	Key Parameters	5
	Provision of Internal Transport Facilities	5
	Planned Road Works near the Proposed Development	6
	Swept Path Analysis	6
4.0	TRAFFIC IMPACT	7
	Design Year	7
	Traffic Forecasting	7
	Estimated Traffic Growth Rate from 2031 to 2033	7
	Additional Planned/ Committed Developments near the Subject Site	7
	Planned Road Improvement works by the Development at San Hing Road an	
	Hong Po Road Net Increase in Traffic Generation between the Approved Scheme and the	8
	Proposed Development	9
	Year 2033 Traffic Flows	10
	Year 2033 Junction Capacity Analysis	10
5.0	SUMMARY	11
Appei	ndix A – Junction Capacity Analysis	
	ndix B – Planned Road Works near the Proposed Development	
	ndix C – Swept Path Analysis	
Appei	ndix D – Planned Road Works to be implemented by the Owner	

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun

TABLES

NUMBER

- 2.1 Existing Junction Performance
- 2.2 Road-Based Public Transport Services Operating Close to the Subject Site
- 3.1 Key Parameters
- 3.2 Provision of Internal Transport Facilities for Proposed Development
- 4.1 Hong Kong Population Projections from Census and Statistics Department
- 4.2 The Major Additional Planned / Committed Developments near the Subject Site
- 4.3 Planned Road Improvement Works near Proposed Development by CEDD
- 4.4 Adopted Trip Rates and Traffic Generation for Proposed Development
- 4.5 Adopted Trip Rates and Traffic Generation for Approved Scheme
- 4.6 Net Increase in Traffic Generation
- 4.7 Year 2033 Junction Performance

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun

FIGURES

NUMBER

- 1.1 Location of the Subject Site
- 2.1 Location of surveyed junctions
- 2.2 Layout of Junction of Unnamed Road/ Access Road
- 2.3 Layout of Junction of Ng Lau Road/ Unnamed Road
- 2.4 Layout of Junction of Ng Lau Road/ Lam Tei Interchange
- 2.5 Layout of Junction of Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
- 2.6 Layout of Junction of Lam Tei Interchange
- 2.7 Layout of Junction of Lam Tei Interchange/ Castle Peak Road Lam Tei
- 2.8 Layout of Junction of Tsing Lun Road/ Tsz Tin Road
- 2.9 Layout of Junction of San Hing Road/ Ng Lau Road (Southern)
- 2.10 Layout of Junction of San Hing Road/ Ng Lau Road (Northern)
- 2.11 Existing Peak Hour Traffic Flows
- 2.12 Road-Based Public Transport Services Operating Close to the Subject Site
- 3.1 Master Layout Plan
- 4.1 The Major Additional Planned / Committed Developments near the Subject Site
- 4.2 Year 2033 Peak Hour Traffic Flows with Approved Scheme
- 4.3 Year 2033 Peak Hour Traffic Flows with Proposed Development

1.0 INTRODUCTION

Background

- 1.1 The subject site is located in D.D.130, Lam Tei, Tuen Mun (the "Subject Site"). At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road. The location of the Subject Site is shown in **Figure 1.1**.
- 1.2 A Section 12A planning application for the minor relaxation of the maximum plot ratio restriction to 2.5 for residential use at the Subject Site was approved by the Town Planning Board (TPB ref: Y/TM-LTYY/9) on 24th September 2021 (the "Approved Scheme"). This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0 (the "Proposed Development").
- 1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Development. This report presents the findings and recommendations of the traffic impact assessment for the Proposed Development.

Structure of Report

1.4 The report is structured as follows:

Chapter One	-	Gives the background of the project;
Chapter Two	-	Describes the existing situation;
Chapter Three	-	Presents the Proposed Development;
Chapter Four	-	Describes the traffic impact analysis; and
Chapter Five	-	Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is bounded by the Tuen Mun - Yuen Long Light Rail Transit ("LRT") and the Tuen Ma Line to the East, and a nullah to the West. Access to the Subject Site is from the south and is via a bridge over the nullah. The Access Road is connected to Ng Lau Road.

The Road Network

- 2.2 Ng Lau Road is a single carriageway 2-lane 2-way local distributor which connects with the Lam Tei Interchange to the south and Castle Peak Road Lam Tei underneath the Kong Sham Western Highway. It provides access to villages, e.g., San Hing Tsuen, Tuen Tsz Wai, and Tsing Chuen Wai.
- 2.3 Lam Tei Interchange connects Tsing Lun Road, Hong Po Road, Ng Lau Road, Castle Peak Road – Lam Tei, Yuen Long Highway and Tuen Mun Road. It is the main access for traffic accessing the Subject Site and strategic routes.

Existing Traffic Flows

- 2.4 To quantify the traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Tuesday, 18th April 2023, Wednesday, 19th April 2023 and Wednesday, 26th April 2023 during the AM and PM peak at the following junctions:
 - J1: Unnamed Road/ Access Road;
 - J2: Ng Lau Road/ Unnamed Road;
 - J3: Ng Lau Road / Lam Tei Interchange;
 - J4: Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange;
 - J5: Lam Tei Interchange;
 - J6: Lam Tei Interchange/ Castle Peak Road Lam Tei;
 - J7: Tsing Lun Road/ Tsz Tin Road;
 - J8: San Hing Road / Ng Lau Road (Southern); and
 - J9: San Hing Road / Ng Lau Road (Northern).
- 2.5 The locations of these junctions and the area of influence ("AOI") are shown in **Figure 2.1** and the layouts are shown in **Figures 2.2 2.10** respectively.
- 2.6 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between 0800 0900 hours and 1700 1800 hours respectively. The existing AM and PM peak hour traffic flows in pcu/hour are presented in **Figure 2.11**.

Existing Junction Performance

2.7 The existing junction performance of the surveyed junctions are calculated based on the existing traffic flows, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in **Table 2.1** and the detailed calculations are found in **Appendix A**.

TABLE 2.1 EXISTING JUNCTION PERFORMANCE

Ref.	Junction	Type of Junction (Parameter)	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.000	0.000
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.033	0.030
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	104%	95%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.501	0.548
J5	Lam Tei Interchange	RA (DFC)	0.480	0.453
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	129%	223%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	67%	111%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.057	0.037
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.223	0.496
NI I				

Note: RC – reserve capacity; DFC – design flow/capacity ratio, RA – Roundabout

2.8 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.

Public Transport Facilities

2.9 The Subject Site is located close to public transport services, including franchised buses and public light buses and these operate within 500 metres or some 10-minutes' walk away. Details of these public transport services are presented in Table 2.2. The location and major pedestrian routes of these public transport services are shown in Figure 2.12.

TABLE 2.2ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGCLOSE TO THE SUBJECT SITE

Route	Routing	Frequency (min)
CTB 50 ⁽¹⁾	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Tsim Sha Tsui (Kowloon Station) ^(A)	4 per day
	Tsim Sha Tsui (Kowloon Station) → Tuen Mun (Ching Tin and Wo Tin) ^(B)	4 per day
CTB 55 ⁽¹⁾	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Kwun Tong Ferry Pier ^(A)	4 per day
	Kwun Tong Ferry Pier \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	4 per day
CTB 56 ⁽¹⁾	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sheung Shui (Tin Ping Estate) ^(A)	4 per day
	Sheung Shui (Tin Ping Estate) → Tuen Mun (Ching Tin and Wo Tin) ^(B)	4 per day
CTB 56A ⁽¹⁾		
	Queen's Hill Fanling (via: Sheung Shui Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(C)	2 per day
CTB 950 ⁽¹⁾	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Exhibition Centre Station ^(A)	1 per day
	Exhibition Centre Station → Tuen Mun (Ching Tin and Wo Tin) ^(B)	1 per day
CTB 955 ⁽¹⁾	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sai Wan Ho ^(A)	1 per day
	Sai Wan Ho \rightarrow Tuen Mun (Ching Tin and Wo Tin) ^(B)	1 per day
CTB B3A	Shan King Estate - Shenzhen Bay Port	30 - 60
CTB N969 ^(D)	Tin Shui Wai Town Centre - Causeway Bay (Moreton Terrace)	20 - 45
KMB 53	Yoho Mall (Yuen Long) - Tsuen Wan (Nina Tower)	25 - 35
KMB 63X	Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station)	12 - 30
KMB 67M	Tuen Mun (Siu Hong Court) - Kwai Fong Station	5 - 20
KMB 67X	Tuen Mun (Siu Hong Court) - Mong Kok East Station	6 - 25
KMB 68A	Long Ping Estate - Tsing Yi Station	8 - 25
KMB 258A ⁽¹⁾	Hung Shui Kiu (Hung Fuk Estate) → Lam Tin Station	2 per day
KMB 258P ⁽²⁾	Hung Shui Kiu (Hung Fuk Estate) - Lam Tin Station	12 - 30
KMB 261P	Tuen Mun (Siu Hong Court) → Sheung Shui (Tin Ping) ^{(2)(A)}	2 - 3 per day
	Sheung Shui (Tin Ping) → Tuen Mun (Siu Hong Court) ^{(1)(B)}	1 per day
KMB 267X ⁽¹⁾	Tuen Mun (Siu Hong Court) \rightarrow Lam Tin Station ^(A)	2 per day
	Lam Tin Station → Tuen Mun (Siu Hong Court) ^(B)	2 per day

TABLE 2.2ROAD-BASEDPUBLICTRANSPORTSERVICESOPERATINGCLOSE TO THE SUBJECT SITE (CONT'D)

Shui Kiu (Hung Fuk Estate) ^(B)	1 per day		
Tuen Mun (Fu Tai Estate) → Causeway Bay (Victoria Park) ^(A)			
/ictoria Park) → Tuen Mun (Fu Tai Estate) ^(B)	1 per day		
Hung Yuen Road) → Causeway Bay (Victoria Park)	10 - 35		
/ictoria Park) → Hung Shui Kiu (Hung Yuen Road) (1)(B)	1 per day		
Hung Yuen Road) \rightarrow Quarry Bay (King's Road) ^(A)	8 per day		
's Road) → Hung Shui Kiu (Hung Yuen Road) ^(B)	8 per day		
lead - Mei Foo	20 - 25		
4 Hung Shui Kiu (Hung Yuen Road) - Airport (Ground Transportation Centre)			
Siu Hong Station (South) - Airport (Ground Transportation Centre)			
Tuen Mun (Fu Tai Estate) → Cathay Pacific City			
ty → Tuen Mun (Fu Tai Estate)	5 per day		
Tin Shui Wai Town Centre → Cathay Pacific City			
ty → Tin Shui Wai Town Centre	6 per day		
Station - Shenzhen Bay Port	25 - 40		
i - Tuen Mun Town Centre	13 – 15		
Cheung Rd) - Tsim Sha Tsui East	6 - 13		
5	i - Tuen Mun Town Centre cheung Rd) - Tsim Sha Tsui East VB – Long Win Bus CTB – CityBus GMB – Green		

NLB – New Lantao Bus

Note: ⁽¹⁾ Monday to Friday. (Except public holidays) ^(A) AM peak only ^(B) PM peak only itybus Givib – Green Minibus

⁽²⁾ Monday to Saturday (Except public holidays) ^(C) AM and PM peak only ^(D) Overnight service

3.0 THE PROPOSED DEVELOPMENT

Key Parameters

3.1 The Proposed Development key parameters are presented in **Table 3.1**.

TABLE 3.1	KEY PARAMETERS
-----------	----------------

	Item	Proposed Development
Site Area		About 8,896 m ²
Domestic	Plot Ratio	5.0
Domestic	GFA	44,480 m ²
Flat Mix	Flat Size ≤ 40m ²	1,110
(GFA)	$40m^2$ < Flat Size < $70m^2$	275
Total num	ber of Flats	<u>1,385</u>

Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Development are provided in accordance with the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") and are presented in **Table 3.2**.

TABLE 3.2	PROVISION	OF	INTERNAL	TRANSPORT	FACILITIES	FOR
	PROPOSED E	DEVEL	OPMENT			

Facility	HKPSG Recommendation	Provision
Car	For Residents:	
Parking	Parking Requirement = GPS x R1 x R2 x R3	222 nos. @ 5.0m (L) x
Space	Global Parking Standard (GPS): 1 car parking space per 4 - 7 flats	2.5m (W) x 2.4m (H) = HKPSG maximum
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	GFA Accessibility Adjustment Ratio(R2): 1.0 outside 500m-radius of rail station	
	Development Intensity Adjustment Ratio (R3): 1.0 for Plot Ratio 2.0 – 5.0	
	For 1,100 flats with flat size less than 40 m ² GFA Minimum: $(1,110 / 7 \times 0.5 \times 1.0 \times 1.0) = 79.3$, say 80 nos. Maximum: $(1,110 / 4 \times 0.5 \times 1.0 \times 1.0) = 138.8$, say 139 nos.	
	For 275 flats with flat size $40 - 70 \text{ m}^2 \text{ GFA}$ Minimum: $(275 / 7 \times 1.2 \times 1.0 \times 1.0) = 47.2$, say 48 nos.Maximum: $(275 / 4 \times 1.2 \times 1.0 \times 1.0) = 82.5$, say 83 nos.	
	$\frac{\text{Total}}{\text{Minimum}} = 80 + 48 = 128 \text{ nos.}$ Maximum = $139 + 83 = 222 \text{ nos.}$	
	For Visitors: Visitor car parking for private residential developments with more than 75 units per block should be provided at 5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.	25 nos . (22 nos. @ 5.0m(L) x 2.5m(W) x 2.4m(H) + 3 nos. @ 5.0m(L) x 3.5m(W) x 2.4m(H) for person with
	For 5 blocks: 5×5 nos. = 25 nos.	disabilities) = HKPSG maximum
	Total Car Parking Space: Minimum = 128 + 25 = 153 nos. Maximum = 222 + 25 = 247 nos. Note: For total no. of car parking space in lot = 151 – 250 nos., the Building (planning) regulation 72 require provision of 3 accessible car parking spaces	247 nos. (including 3 accessible car parking spaces)

TABLE 3.2PROVISIONOFINTERNALTRANSPORTFACILITIESFORPROPOSEDDEVELOPMENT (CONT'D)

Facility	HKPSG Recommendation	Provision
Motorcycle	For Residential Uses:	14 nos. @ 2.4m (L) x
Parking	1 motorcycle parking space per 100 – 150 flats excluding	1.0m (W) x Min. 2.4m
Space	non-residential elements	(H)
		= HKPSG maximum,
	For 1,385 flats: <u>10 – 14 nos.</u>	ОК
Goods	For Residential Uses:	5 nos. @ 11.0m (L) x
Vehicle	Minimum of 1 loading / unloading bay for goods vehicles	3.5m (W) x Min. 4.7m
Loading/	within the site for every 800 flats or part thereof, subject to a	(H)
Unloading	minimum of 1 bay for each housing block or as determined	= HKPSG minimum,
Bay	by the Authority.	OK
	For 5 blocks, each block less than 800 flats: <u>5 no.</u>	
Bicycle	For Residential Uses:	93 по. @ 1.8m (L) x
Parking	Within 0.5 – 2km to rail station, 1 space per 15 flats with flat	0.8m (W) x Min. 2.4m
Spaces	size < 70m ²	(H)
	$= 1,385 \div 15$	= comply HKPSG,
	= 93 nos.	ΟΚ

3.3 **Table 3.2** shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The master layout plan of the Proposed Development is shown in **Figure 3.1**.

Planned Road Works near the Proposed Development

3.4 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a 7.3m-wide road carriageway, a 2m-wide footpath and a 2m-wide cycle track (the "Planned Road Works"). The Planned Road Works to be implemented by the Owner as part of the Approved Scheme and is found in **Appendix B**.

Swept Path Analysis

3.5 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Development, and the swept path analysis drawings are found in **Appendix C**. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2028. Therefore, Year 2033 is adopted for junction capacity analysis.

Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.

Estimated Traffic Growth Rate from 2031 to 2033

4.3 Reference is made to the "Hong Kong Population Projections 2020 – 2069" published by Census and Statistics Department. The information is presented in **Table 4.1**.

TABLE 4.1HONG KONG POPULATION PROJECTIONS FROM CENSUS
AND STATISTICS DEPARTMENT

Year	Population in Hong Kong (thousands)
2031	7,945.8
2033	7,998.4
Average Annual Growth (2031 – 2033)	0.33%

4.4 **Table 4.1** shows that the annual population growth between 2031 and 2033 is 0.33%, and is adopted for estimated traffic growth rate from 2031 to 2033.

Additional Planned/ Committed Developments near the Subject Site

4.5 The additional planned/ committed developments near the Subject Site after 2019 which are not considered in the BDTM are included in the forecast. The major additional planned / committed developments are listed in **Table 4.2** and the locations are presented in **Figure 4.1**.

TABLE 4.2THEMAJORADDITIONALPLANNED/COMMITTEDDEVELOPMENTSNEARTHESUBJECTSITE

Ref. No.	Development	Intake Year	Land Use	GFA (m²)	No. of Flat (no.)	Average Flat Size (m ²)	No.
Tue	n Mun Area 54 (1)				/		
А	Site 1 &1A	2022	PRH		4,232		
	Wo Tin Estate		Retail	2,420			
			SWF	1,060			
			Kindergarten				1 no.
В	Site 2	2017	PRH		4,688		
	Yan Tin Estate		Retail	4,250			
			SWF	3,600			
С	Site 3 & 4 (East)	2022	PRH		5,183		
	Ching Tin Estate		Retail	3,130			
			SWF	1,810			
			Kindergarten				1 no.
D	Site 3 & 4 (West)	2025	Private Housing		4,600		
	Novo Land		Retail	5,000			
Е	Site 4A (East)		Primary School				1 no.
			Secondary School				1 no.
F	Site 4A (West)		Sport Centre & Community Hall				1 no.
G	Site 4A (South)	2028	PRH		1,475		
			Kindergarten				1 no.
Н	Site 5	2028	SSF		1,020		
			SWF	1,300			
Dev		ng Road	and Hong Po Road, Tuen Mu	n ⁽²⁾			
I	San Hing Road	2031	PRH / SSF		9,400		
	Site		Primary School				2 nos
			Kindergarten				2 nos
			SWF	N/A			
J	San Hing Road	2030	PRH / SSF		1,700		
	Site Extension		Retail	5,000 ⁽⁴⁾			
			Secondary School				1 no.
			Primary School				2 no.
Κ	Ho Pong Road	2033	PRH / SSF		10,500		
	Site		Retail	5,000 ⁽⁴⁾			
			Kindergarten				2 no.
			SWF	N/A			
	er Planning Applica			····			
L	A/TM-LTYY/ 426	2026	Private Housing		184	31	
Μ	Y/TM-LTYY/ 10		Private Housing		288	40	
Ν	A/TM-LTYY/ 301		NTEH ⁽³⁾		1	195	
0	A/TM-LTYY/ 335		NTEH ⁽³⁾		1	195	
Р	A/TM-LTYY/ 336		NTEH ⁽³⁾		1	195	
Q	A/TM-LTYY/ 370		NTEH ⁽³⁾		1	195	
R	A/TM-LTYY/ 371		NTEH ⁽³⁾		1	195	
S	A/TM-LTYY/ 372		NTEH ⁽³⁾		1	195	

PRH – Public Rental Housing SSF – Subsidised Sale Flats NTEH – New Territories Exempted House SWF – Social Welfare Facilities

(1) extracted from TIA of Approved Planning Applications A/TM/500 and A/TM/583

(2) extracted from Chapter 2 of EIA report of "Development at San Hing Road and Hong Po Road, Tuen Mun"

(3) extracted from Planning Statement of Approved Planning Applications

(4) No information on area for retail uses is found in public domain, assumed 5,000 m² GFA of retail

<u>Planned Road Improvement works by the Development at San Hing Road and</u> Hong Po Road

4.6 Some road improvement works are planned under the "Site Formation and Infrastructural Works for the Development at San Hing Road and Hong Po Road, Tuen Mun – Feasibility Study" (Agreement No. CE 68/2017 (CE)) by Civil Engineering and Development Department ("CEDD"), and these are summarized in **Table 4.3**. The road improvement works are found in **Appendix D**.

TABLE 4.3PLANNED ROAD IMPROVEMENT WORKS NEAR PROPOSED
DEVELOPMENT BY CEDD

Ref	Brief Description of the Improvement	
J3	Provide 2 left-turn lanes at Ng Lau Road southbound	
	Provide 1 left-turn lane at Lam Tei Interchange eastbound	
J4	Provide exclusive left-turn lane from Hong Po Road southbound	
	Modify the entry lanes from Lam Tei Interchange westbound	
J6 Provide 3 left-turn and 1 straight ahead lane at Castle Peak Road – Lam Tei northb		
	rearrange the channelized island at Castle Peak Road – Lam Tei northbound	
	Provide a channelized island at Castle Peak Road – Lam Tei southbound	
J7	Provide a channelized island at Tsz Tin Road eastbound	
	Rearrange 4 lanes at southern-side of Tsing Lun Road at the junction to provide 2	
	northbound and 2 southbound lanes	

4.7 The improvement work described in **Table 4.3** will be completed gradually before 2030 – 2033, i.e., the intake of public housing of San Hing Road site, and San Hing Road site extension and Hong Po Road site (Note: These are items I, J and K in **Table 4.2**). These improvement works are adopted for the Year 2033 junction capacity analysis.

Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development

4.8 The Proposed Development average flat size is around 32m² GFA, and to estimate its traffic generation, reference is made to the smallest flat size in the TPDM, i.e., 60m² GFA. The adopted trip generation rates and the estimated AM and PM peak hour traffic generation are presented in **Table 4.4**.

TABLE 4.4ADOPTEDTRIPRATESANDTRAFFICGENERATIONFORPROPOSEDDEVELOPMENT

Proposed Development	AM Peak		PM Peak		
	Generation	Attraction	Generation	Attraction	
Trip Rates(pcu/ flat/ hr)			<u>.</u>		
Residential Use with average 60m ² GFA	0.0718	0.0425	0.0286	0.0370	
Traffic Generations (pcu/ hr)					
1,385 flats with average flat about 32m ² GFA	<u>100</u>	<u>59</u>	<u>40</u>	<u>52</u>	
	<u>159</u>		<u>92</u>		

4.9 The traffic generation of Approved Scheme found in the approved traffic impact assessment is presented in **Table 4.5**.

TABLE 4.5ADOPTED TRAFFIC GENERATION FOR APPROVED SCHEME

Scheme	AM Peak		PM Peak		
	Generation	Attraction	Generation	Attraction	
Approved Scheme	37	22	<u>18</u>	23	
		<u>59</u>		41	

4.10 The net increase in traffic generation between the Approved Scheme and the Proposed Development is presented in **Table 4.6**.

Scheme	Traffic Generation (pcu/ hr)					
	AM Peak		PM Peak			
	Generation	Attraction	Generation	Attraction		
Proposed Development (from Table 4.4) [a]	100	59	40	52		
Approved Scheme (from Table 4.5) [b]	37	22	18	23		
Net Increase [a] – [b]:	+63	+37	+22	+ 29		
	+ 100		+51			

 TABLE 4.6
 NET INCREASE IN TRAFFIC GENERATION

4.11 **Table 4.6** shows that the Proposed Development is expected to generate 100 and 51 additional pcu (2-way) in AM and PM peak respectively.

Year 2033 Traffic Flows

4.12 Year 2033 traffic flows for the following cases are derived:

Year 2033 With Approved = Scheme [A]	Traffic flows derived with reference to 2031 NTW1 BDTM + estimated traffic growth between 2031 and 2033 + estimated traffic generation of the planned / committed developments after 2019 + estimated traffic generation for Approved Scheme
Year 2033 With Proposed =	[A] + net increase in traffic generation by Proposed
Development [B]	Development

4.13 Year 2033 peak hour traffic flows for the above two cases are shown in **Figures 4.2 and 4.3** respectively.

Year 2033 Junction Capacity Analysis

4.14 Year 2033 junction capacity analysis for the cases, i.e., with Approved Scheme and with Proposed Development are summarised in **Table 4.7** and detailed calculations are found in the **Appendix A**.

Ref	Junction	Type of Junction (Parameter)	2033 With Approved Scheme		2033 With Proposed Development	
			AM	PM	AM	PM
			Peak	Peak	Peak	Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.057	0.050	0.059	0.051
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.121	0.079	0.238	0.119
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	28%	42%	23%	39%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.754	0.681	0.775	0.691
J5	Lam Tei Interchange	RA (DFC)	0.816	0.694	0.844	0.710
J6	Lam Tei Interchange/ Castle Peak Road – Lam Tei	Signal (RC)	29%	27%	29%	26%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	24%	56%	23%	55%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.093	0.056	0.093	0.056
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.243	0.519	0.243	0.519

TABLE 4.7YEAR 2033 JUNCTION PERFORMANCE

Note: RC - reserve capacity; RA - Roundabout, DFC - design flow/capacity ratio

4.15 **Table 4.7** shows that the Proposed Development has negligible traffic impact to the road junctions analysed.

5.0 SUMMARY

- 5.1 The Subject Site is located in D.D.130, Lam Tei, Tuen Mun. At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road. This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0.
- 5.2 Manual classified counts were conducted at junctions which are located in the vicinity in order to establish the existing traffic flows during AM Peak and PM peak hours.
- 5.3 The internal transport facilities provided for residential use comply with recommendations of the HKPSG.
- 5.4 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.
- 5.5 This TIA concluded that the Proposed Development has negligible traffic impact to the surrounding road network, and, is acceptable from traffic terms.

Figures

\JOB\J7250-J7299\J7265\2024 01_R5A\Fig 1.1 RevF.dwg

\JOB\J7250-J7299\J7265\2024 01_R5A\Fig 2.2 - 2.10 RevF dwg

\JOB\J7250-J7299\J7265\2024 01_R5A\Fig 2.2 - 2.10 RevF.dwg

0B\J7250-J7299\J7265\2024 01_R5A\Fig 2.11 RevF.dwg

OB/J7250-J7299/J7265/2024 01_R5A/Fig 2.12 RevF.dwg

HESJECT	UPOAD U
	五柳路 NG LAU ROAD 藍地交匯處 LAM TEI INTERCHANGE
SK (
E)	Development at San Hing Road and Hong Po Road, Tuen Mun
	I San Hing Road Site
	J San Hing Road Site Extension
	K Ho Pong Road Site
	Other Planning Applications Nearby
	L A/TM-LTYY/ 426
	M Y/TM-LTYY/ 10
n Estate	N A/TM-LTYY/ 301
and	O A/TM-LTYY/ 335
	P A/TM-LTYY/ 336
	Q A/TM-LTYY/ 370
	R A/TM-LTYY/ 371
	S A/TM-LTYY/ 372
1.1	F CKM Asia Limited
Drawn by WSW	Checked by Traffic and Transportation Planning Consultants K C 21st Floor, Methodist House, 36 Hennessy Road
Dote 11 J	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

0B\J7250-J7299\J7265\2024 01_R5A\Fig 4.3 RevF dwg

Appendix A – Junction Capacity Analysis

Priority Junction Analysis

						Olgital J	unction A	laiysis									
Junction:	Ng Lau Road		Intercha	inge										-	Job Nu	mber:	
Scenario: Design Year:	Existing Cond		ed By:				-	Checke	d By:					Date:	14	P. Sep 20	
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Lam Tei Intercha		SA+LT	A1	1	3.65	30.0	Gradient	23	(pcu/hr) 1957	(pcu/hr) 534	0.273		60	(pcu/hr) 1922	(pcu/hr) 408	0.212	
		SA	A2	1	3.65				2120	579	0.273			2120	450	0.212	
Lam Tei Intercha	ange WB	SA+LT	A3	1	3.65	15.0		0	1980	563	0.284	0.284	0	1980	626	0.316	0.316
		SA	A4	1	3.65				2120	602	0.284			2120	670	0.316	
Ng Lau Road SB	3	LT	B1	2	4.00	12.0		100	1791	203	0.113	0.113	100	1791	180	0.100	0.100
pedestrian pha	ase		C _(P)	1		min c	rossing	ime =	8	sec	GM +	8	sec F	GM =	16	sec	
			D _(P)	2		min c	rossing	ime =	8	sec	GM +	9	sec F	GM =	17	sec	
AM Traffic Flow (pcu/h	ır) 203		N	PM Traffic	Flow (pcu/hr)		180		N		⊦ 100 (W-3.			0 (W-3.25)	Note:		
† ¹²					↑ ²⁴⁴		Ľ			SM = S / (1 + 1.5 f/r) AM	SM = Peak		(1 + 1.5 f/r) Peak			
	989	1165			→	614		1296			1+2		1+2				
		0						0		Sum y L (s)	0.398 8		0.417 8				
										C (s)	82		82				
										practical y R.C. (%)	0.812 104%		0.812 95%				
1		2				3				4				5			
	C(P)		D _(P)	B1													
A1 A2	C _(P) A3 A4			B1													
	A3 A4		• D _(P)	B1 ↓													
	▲ A4	G= 5	G =	Ļ	1/G =	5	G =		I/G =		G =		I/G =		G =		
A2	A4 = VG = VG	6= 5 6= 5	G = G = G =	Ļ	1/G = 1/G = 1/G =		G = G = G =		VG = VG = VG =		G = G = G =		1/G = 1/G = 1/G =		G = G = G =		

						Signal J	unction Ar	lalysis									
Junction:	Ng Lau Roa	d / Lam Tei	Intercha	ange											Job Nu	mber:	J7265
Scenario:	With Approv	ed Scheme														P.	8
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	14	1 Sep 20	23
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Lam Tei Intercha	inge EB	LT	A1	1	4.00	30.0	Gradient	100	(pcu/hr) 1919	(pcu/hr) 421	0.219		100	(pcu/hr) 1919	(pcu/hr) 528	0.275	
	5	SA	A2	1	4.00	30.0		100	2155	763	0.219		100	2155	507	0.275	
		SA	A3	1	4.00				2155	762	0.354			2155	506	0.235	
			73		4.00				2100	102	0.334			2155	500	0.233	
Lam Tei Intercha	inge WB	SA+LT	B1	1	4.00	15.0		0	2015	998	0.495	0 495	0	2015	959	0.476	0.476
		SA	B2	1	4.00	10.0		0	2155	1068	0.496	0.100	0	2155	1025	0.476	0.110
			DZ		4.00			0	2100	1000	0.400		0	2100	1020	0.470	
Ng Lau Road SB		LT	C1	2	5.50	10.0		100	1883	259	0.138	0 138	100	1883	181	0.096	0.096
		LT	C2	2	5.00	15.0		100	2050	281	0.137	0.100	100	2050	198	0.097	0.000
			02		0.00	10.0		100	2000	201	0.107		100	2000	100	0.001	
pedestrian pha	ise		D _(P)	1		min c	rossing t	time =	5	sec	GM +	13	sec F	GM =	18	sec	
podootnanphe			E _(P)	2			rossing f		10		GM +	12	sec F		22	sec	
			F _(P)	2			rossing f		5		GM +	7		GM =	12	sec	
			(.)	2		1111110	1055illig I	ume –	5	360		1	3601	GIW -	12	360	
				DUT (0)											h		
AM Traffic Flow (pcu/h	r)		N ↑	PM Traffic I	Flow (pcu/hr)				N ←	S = 1940 -	+ 100 (W-3.	25) S =	2080 + 10	0 (W-3.25)	Note:		
	540						379			SM = S / (1 + 1.5 f/r)	SM =	S - 230) / (1 + 1.5 f/r)			
† 42	1				⁵²⁸		L.				AM	Peak	PM	Peak			
	1525	۰ ـــ				1013		•			1+2		1+2				
		2066						1984		Sum y	0.633		0.572				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y	0.812		0.812				
										R.C. (%)	28%		42%				
1		2				3				4				5			
A1	D(P)		F _(P)	C2 C1													
A2	← -≌ ≯	-	← →														
A3	← B2			`ب ب													
	■ B1			Em													
				-(r)													
						۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				1				1			
AM G =		/G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G		/G =	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
PM G =		/G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G =		
G	- 1	/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						Signal J	unction A	nalysis									
Junction:	Ng Lau Road			ange											Job Nu		J7265
Scenario:	With Propos							<u>.</u>								P.	
Design Year:	2033	Designe	ed By:				-	Checke	d By:					Date:	14	I Sep 20	23
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %	Sat. Flow	AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
.		1.7		-			Gradient		(pcu/hr)	(pcu/hr)		,		(pcu/hr)	(pcu/hr)		,
Lam Tei Intercha	inge EB	LT SA	A1	1	4.00	30.0		100	1919	458	0.239		100	1919	557	0.290	
		SA	A2	1	4.00				2155	763	0.354			2155	507	0.235	
			A3	1	4.00				2155	762	0.354			2155	506	0.235	
Lam Tei Intercha	inge WB	SA+LT	B1	1	4.00	15.0		0	2015	1025	0.509	0.509	0	2015	972	0.482	0.482
		SA	B2	1	4.00	1010		Ű	2155	1097	0.509	0.000	Ű	2155	1040	0.483	0.102
								0					0				
Ng Lau Road SB		LT	C1	2	5.50	10.0		100	1883	289	0.154	0.154	100	1883	192	0.102	0.102
		LT	C2	2	5.00	15.0		100	2050	314	0.153		100	2050	209	0.102	
pedestrian pha	ise		D _(P)	1		min c	rossing	time =	5	sec	GM +	13	sec F	GM =	18	sec	
			E _(P)	2		min c	rossing	time =	10	sec	GM +	12	sec F	GM =	22	sec	
			F _(P)	2		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
AM Traffic Flow (pcu/hr	r)		N A	PM Traffic	Flow (pcu/hr)				N (S = 1940 -	+ 100 (W-3	25) S =	2080 + 10	0 (W-3.25)	Note:		
	603						401			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) / (1 + 1.5 f/r)			
45					5 57		L.		1		AM	Peak	PM	Peak			
	1525					1013					1+2		1+2				
		2122						2012		Sum y	0.662		0.584				
		0						0		L (s)	8		8				
										C (s)	82		82				
										practical y	0.812		0.812 39%				
		-				r				R.C. (%)	23%		39%				
1 †		2				3				4				5			
A1			F _(P) ← →	C2 C1													
A3	► B2			L,													
	€ B1			_ †													
	*			E(P)													
						5				I				l			
AM G=		/G = 5	G = G =		I/G =	Э	G = G =		I/G =		G = G =		I/G =		G =		
G = PM G =		/G = /G = 5	G =		I/G =	5	G =		I/G =		G =		I/G =		G = G =		
РМ G = G =		/G = 0 /G =			I/G =	5	G = G =		I/G =				I/G =		G = G =		
G =	- 1/		G =		I/G =		G =		ı/G =		G =		1/G =		G =		

Scenario	Existing Co	ondition									Page	10
Design Ye	· · ·	2023			Job Numbe	r	J7265			Date	14 Septerr	ber 2023
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c *	1	
From A	101	109	760	197					1167	253		
From B	181	0	76	21					278	1231		
From C	504	41	10	29					584	610		
From D	328	39	53	1					421	946		
From E												
From F												
From G												
From H												
Total	1114	189	899	248					2450			
					* q _c in ex	kisting cond	lition is adjusted	d due to Tem	porary Traffic	Arrangemen	t	
PM Peak											_	
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c *		
From A	204	90	692	311					1297	201		
From B	91	0	67	22					180	1350		
From C	404	32	18	37					491	720		
From D	160	26	33	2					221	839		
From E												
From E From F											1	
From F												

* Parameter in existing condition is adjusted for TTA

Limitation Г

s

Legend	
Arm	Road (in clockwise order)
А	Slip Road from Lam Tei Interchange
В	Access Road from Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
н	

Geometrie	: Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	10.0	7.3	20.0	10.0	55	45	0.4
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D*	6.0	4.5	27.0	6.0	55	10	0.4
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

- Q_E Entry Capacity \mathbf{q}_{c} Circulating Flow across the Entry
- Κ $= 1\text{-}0.00347(\varnothing\text{-}30)\text{-}0.978[(1/r)\text{-}0.05]$
- = 303x₂ F
- $= 0.210t_D(1+0.2x_2)$ \mathbf{f}_{c}
- \mathbf{t}_{D} = 1+0.5/(1+M)
- Μ = exp[(D-60)/10]
- = v+(e-v)/(1+2S)**x**₂
- S = 1.6(e-v)/L

е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°

0.0 - 3.0

Sharpness of Flare

							Q _E		Entry Flow		R	=C
Arm	х ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	8.748	0.607	1.311	0.948	2651	0.757	2331	2369	1167	1297	0.501	0.548
From B	7.597	0.607	1.311	1.051	2302	0.694	1522	1435	278	180	0.183	0.125
From C	9.398	0.607	1.311	1.063	2848	0.793	2514	2421	584	491	0.232	0.203
From D	5.333	0.607	1.311	1.082	1616	0.569	1166	1232	421	221	0.361	0.179
From E												
From F												
From G												
From H												

Location	Tsing Lun Road	1 / Hong Po Road	I / Lam Tei Interchange
----------	----------------	------------------	-------------------------

Scenario With A	Approved Scheme				Page	11
Design Year	2033	Job Number	J7265	Date	14 Septem	ber 2023
AM Peak						
AWFEdK						

AIVI Feak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	340	0	1063	541					1944	490
From B	196	0	86	20					302	2328
From C	787	50	11	131					979	1097
From D	624	56	373	0					1053	1384
From E										
From F										
From G										
From H										
Total	1947	106	1533	692					4278	

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	429	0	815	641					1885	262
From B	107	0	76	25					208	2066
From C	559	41	20	157					777	1202
From D	445	40	161	0					646	1156
From E										
From F										
From G										
From H										
Total	1540	81	1072	823					3516	

Legend

Legena	
Arm	Road (in clockwise order)
А	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometri	c Paramete	ers					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	6.0	55	19	0.6
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q _c	Circulating Flow across the Entry

- K = 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
- F = 303x₂
- $f_c = 0.210t_D(1+0.2x_2)$
- $t_D = 1+0.5/(1+M)$
- M = exp[(D-60)/10]
- $x_2 = v+(e-v)/(1+2S)$
- S = 1.6(e-v)/L

Limitati	Limitation								
е	Entry Width	4.0 - 15.0 m							
v	Approach Half Width	2.0 - 7.3 m							
r	Entry Radius	6.0 - 100.0 m							
L	Effective Length of Flare	1.0 - 100.0 m							
D	Inscribed Circle Diameter	15 - 100 m							
Ø	Entry Angle	10° - 60°							
S	Sharpness of Flare	0.0 - 3.0							

							C) _Е	Entry	Flow	RI	=C
Arm	Х ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2580	2769	1944	1885	0.754	0.681
From B	7.812	0.607	1.311	1.051	2367	0.706	761	956	302	208	0.397	0.218
From C	9.398	0.607	1.311	1.063	2848	0.793	2103	2015	979	777	0.465	0.386
From D	10.493	0.607	1.311	1.094	3179	0.853	2186	2399	1053	646	0.482	0.269
From E												
From F												
From G												
From H												

Scenario	With Prop	osed Devel	lopment								Page	12
Design Ye	ar	2033	-		Job Numb	er	J7265			Date	14 Septem	ber 2023
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c	1	
From A	372	0	1087	541					2000	490		
From B	196	0	86	20					302	2384		
From C	792	50	11	131					984	1129		
From D	624	56	373	0					1053	1421		
From E												
From F												
From G												
From H												
Total	1984	106	1557	692					4339			

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	453	0	819	641					1913	262
From B	107	0	76	25					208	2094
From C	564	41	20	157					782	1226
From D	0	40	161	0					201	1185
From E										
From F										
From G										
From H										
Total	1124	81	1076	823					3104	

Legend

Legenu	
Arm	Road (in clockwise order)
Α	Slip Road to Lam Tei Interchange
В	Access Road to Siu Hong Station
С	Tsing Lun Road
D	Hong Po Road
Е	
F	
G	
Н	

Geometric Parameters Arm e (m) v (m) r (m) L (m) D (m) Ø (°) S From A 11.0 7.8 30.0 10.0 55 20 0.5 From B 9.0 6.8 28.0 4.0 55 19 0.9 From C 11.5 7.8 100.0 9.0 55 23 0.7 From D 14.0 8.5 40.0 10.0 55 10 0.9 From E From F From G From H

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry

- K = 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
- $F = 303x_2$
- $f_c = 0.210 t_D (1 + 0.2 x_2)$
- $t_D = 1+0.5/(1+M)$
- M = exp[(D-60)/10]
- $x_2 = v+(e-v)/(1+2S)$
- S = 1.6(e-v)/L

Limitati	Limitation							
е	Entry Width	4.0 - 15.0 m						
v	Approach Half Width	2.0 - 7.3 m						
r	Entry Radius	6.0 - 100.0 m						
L	Effective Length of Flare	1.0 - 100.0 m						
D	Inscribed Circle Diameter	15 - 100 m						
Ø	Entry Angle	10° - 60°						
S	Sharpness of Flare	0.0 - 3.0						

							C	2 _E	Entry	Flow	RI	-C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	9.381	0.607	1.311	1.051	2842	0.792	2580	2769	2000	1913	0.775	0.691
From B	7.597	0.607	1.311	1.051	2302	0.694	681	893	302	208	0.443	0.233
From C	9.398	0.607	1.311	1.063	2848	0.793	2076	1994	984	782	0.474	0.392
From D	10.493	0.607	1.311	1.094	3179	0.853	2151	2372	1053	201	0.489	0.085
From E												
From F												
From G												
From H												

Location Lam T	ei Interchange					
Scenario Existir	g Condition				Page	13
Design Year	2023	Job Number	J7265	Date	14 Septem	ber 2023
AM Peak						

AWITCAN										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	16	0	878						894	605
From B	292	3	275						570	907
From C	315	589	13						917	311
From D										
From E										
From F										
From G										
Total	623	592	1166						2381	

PM	Peak

PINI Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	7	0	891						898	448
From B	266	0	380						646	924
From C	175	422	26						623	273
From D										
From E										
From F										
From G										
From H										
Total	448	422	1297						2167	

F

Leaend

Legena	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Coomean	o i aramou	510					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

-	
Q_E	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f_{c}	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation

minianc		
е	Entry Width	4.0 - 15.0 m
v	Approach Half Width	2.0 - 7.3 m
r	Entry Radius	6.0 - 100.0 m
L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

							Q _E		Entry Flow		RFC	
Arm	х ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.223	1.409	1.052	2212	0.728	1864	1984	894	898	0.480	0.453
From B	7.877	0.223	1.409	1.048	2387	0.762	1777	1763	570	646	0.321	0.366
From C	7.012	0.223	1.409	1.084	2125	0.711	2064	2093	917	623	0.444	0.297
From D												
From E												
From F												
From G												
From H												

	·····	oved Scher	me		Job Numb	~ ~	17065			Data	Page	14
Design Ye	ar	2033	-		Job Numb	er	J7265			Date	14 Septem	iber 2023
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c	1	
From A	18	0	1173						1191	1075		
From B	323	0	771						1094	1313		
From C	591	953	122						1666	341		
From D												
From E												
From F												
From G												
From H												
Total	932	953	2066						3951			

FINI FEak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1148						1163	743
From B	283	0	775						1058	1224
From C	380	682	61						1123	298
From D										
From E										
From F										
From G										
From H										
Total	678	682	1984						3344	

F

Legend

Logona	
Arm	Road (in clockwise order)
А	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Scometin		13					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q_E	Entry Capacity
q_{c}	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f_{c}	$= 0.210t_{D}(1+0.2x_{2})$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation 4.0 - 15.0 m Entry Width е 2.0 - 7.3 m Approach Half Width ۷ Entry Radius 6.0 - 100.0 m r Effective Length of Flare 1.0 - 100.0 m L D 15 - 100 m Inscribed Circle Diameter 10° - 60° Ø Entry Angle

0.0 - 3.0

Sharpness of Flare

Ratio-of-Flow to Capacity (RFC)

							C	ζE	Entry	Flow	RI	=C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.223	1.409	1.052	2212	0.728	1504	1758	1191	1163	0.792	0.661
From B	7.877	0.223	1.409	1.048	2387	0.762	1452	1524	1094	1058	0.753	0.694
From C	7.012	0.223	1.409	1.084	2125	0.711	2041	2074	1666	1123	0.816	0.542
From D												
From E												
From F												
From G												
From H												

s

Location	Lam Tei Int	erchange										
Scenario	With Propo	sed Deve	lopment								Page	15
Design Ye	ear <u>2</u>	2033	-		Job Numb	er	J7265			Date	14 Septerr	ber 2023
AM Peak												
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c		
From A	18	0	1185						1203	1121		
From B	323	0	791						1114	1349		
From C	601	975	146						1722.211	341		
From D												
From E												
From F												
From G												
From H												
Total	942.2107	975	2122						4039.211			

PM Peak										
Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q _c
From A	15	0	1155						1170	757
From B	283	0	792						1075	1235
From C	384	692	65						1141.386	298
From D										
From E										
From F										
From G										
From H										
Total	682.3857	692	2012						3386.386	

hana I

Legena	
Arm	Road (in clockwise order)
Α	Slip Road to Castle Peak Road
В	Slip Road to Tuen Mun Road
С	Slip Road to Tsing Lun Road
D	
Е	
F	
G	
Н	

Geometric Parameters

Geometri	c i aramett	513					
Arm	e (m)	v (m)	r (m)	L (m)	D (m)	Ø (°)	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Predictive Equation $Q_E = K(F - f_cq_c)$

Q _E	Entry Capacity
q _c	Circulating Flow across the Entry
К	= 1-0.00347(Ø-30)-0.978[(1/r)-0.05]
F	= 303x ₂
f _c	$= 0.210t_D(1+0.2x_2)$
t _D	= 1+0.5/(1+M)
М	= exp[(D-60)/10]
x ₂	= v+(e-v)/(1+2S)
S	= 1.6(e-v)/L

Limitation Entry Width е Approach Half Width ۷ Entry Radius r Effective Length of Flare

L	Effective Length of Flare	1.0 - 100.0 m
D	Inscribed Circle Diameter	15 - 100 m
Ø	Entry Angle	10° - 60°
S	Sharpness of Flare	0.0 - 3.0

4.0 - 15.0 m

2.0 - 7.3 m

6.0 - 100.0 m

							C	Q _E	Entry	Flow	RI	=C
Arm	x ₂	М	t _D	К	F	f _c	AM	PM	AM	PM	AM	PM
From A	7.300	0.223	1.409	1.052	2212	0.728	1469	1748	1203	1170	0.819	0.669
From B	7.877	0.223	1.409	1.048	2387	0.762	1424	1515	1114	1075	0.782	0.710
From C	7.012	0.223	1.409	1.084	2125	0.711	2041	2074	1722	1141	0.844	0.550
From D												
From E												
From F												
From G												
From H												

						Signal J	unction A	nalysis									
Junction:	Lam Tei Intero	hange / C	astle Pe	eak Roa	ıd – Lam	Tei								-	Job Nu	mber:	J7265
Scenario:	Existing Cond	ition														P.	16
Design Year:	2023	Designe	ed By:				-	Checke	d By:				-	Date:	14	1 Sep 20	23
						r											
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow	AM Peak Flow (pcu/hr)	y value	Critical y	Turning %		PM Peak Flow (pcu/hr)	y value	Critical y
Castle Peak Road	I -Lam Tei SB	LT	A1	1,4	3.25	80.0	Gradient	100	(pcu/hr) 1904	(pcu/nr) 363	0.191	0.191	100	(pcu/hr) 1904	248	0.130	0.130
		SA	A2	1,4	3.25	00.0		100	2080	156	0.075	0.101	100	2080	132	0.063	0.100
		SA+RT	A3	1	3.25	22.5		64	1995	150	0.075		56	2005	127	0.063	
		RT	A4	1	3.25	20.0		100	1935	145	0.075		100	1935	122	0.063	
Olia Daad faara La		_															
Slip Road from La	m Tei Interchang	LI	B1	2,3	3.50	8.0		100	1655	162	0.098		100	1655	115	0.069	
		LT+RT	B2	2,3	3.50	30.0		100	2005	255	0.127		100	2005	191	0.095	
		RT	B3	2,3	3.50	26.0		100	1990	253		0.127	100	1990	189	0.095	0.095
		RT	B4	2,3	3.50	23.0		100	1976	229	0.116		100	1976	124	0.063	
Castle Peak Road	I NB	LT	C1	3,4	3.50	14.0		100	1775	454	0.256	l	100	1775	375	0.211	
		LT	C2	3,4	3.50	19.0		100	1951	499	0.256		100	1951	413	0.211	
		SA	D1	4	3.50				2105	137	0.065			2105	223	0.106	
		SA	D2	4	3.50				2105	136	0.065		1	2105	222	0.105	
pedestrian phas	se		E _(P)	1,3		min c	rossing	time =	6	sec	GM +	12	sec F	GM =	18	sec	
			F _(P)	1		min c	rossing	time =	5	sec	GM +	7	sec F	GM =	12	sec	
			G _(P)	2		min c	rossing	time =	6	sec	GM +	11	sec F	GM =	17	sec	
			$H_{(P)}$	2		min c	rossing	time =	5	sec	GM +	9	sec F	GM =	14	sec	
AM Traffic Flow (pcu/hr)			Ν	PM Traffic	Flow (pcu/hr)				N	0 1010	400 011 0	05) 0	= 2080 + 10	0.000.000	Note:		
		7						7		S = 1940 +	+ 100 (W-3.)	,		(1 + 1.5 f/r)			
▲ 363					▲ ²⁴⁸					SIVI = 37 (Peak		Peak			
→	210	273	_		\rightarrow	188		445			1,4+2,3	reak	1,4+2,3	reak			
¥ 241		♥ 953			¥ 193			▼ 788		Sum y	0.318		0.225				
										L (s)	21		21				
	162 508	→ 229				115	380	124		C (s)	110		110				
	11 1					11	I			practical y	0.728		0.728				
										R.C. (%)	129%		223%				
1		2				3				4				5			
		2 G _(P)	ŧ			3				4 A1				0			
		G(P)	ŧ							A2		←	D2				
A4						_			C2 C1			—	D1 C2				
Em 1		*]*	╷╷	-		• • •	╈┎╸	- -	C1			ţ	C1				
· (P) ♦ ← + E _{P)}	•	B1	 B2 B3 B4		← – – ► H _(P)	l B1	B2 B3 B4				←+ E _(P)	•					
AM G =	VG	= 15	G =		I/G =	1	G =		I/G =	8	G =		I/G =	1	G =		
G =		= 15	G =		I/G =		G =		I/G =		G =		1/G =	7	G =		
PM G =		= 15	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =	I/G	= 15	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		

						Signal J	unction A	nalysis									
Junction:		nterchange / C		eak Roa	ıd – Lam	Tei									Job Nu	mber:	
Scenario: Design Year:	2033	roved Scheme Designe						Checke	d By:					Date:	14	P. Sep 20	17 23
										AM Peak			1		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Castle Peak Roa	d SB	LT	A1	1,4	3.50	80.0		100	1929	394	0.204		100	1929	273	0.142	
		SA	A2	1	3.50	85.0			2105	230	0.109	0.109		2105	160	0.076	
		SA+RT	A3	1	3.50	25.0		30	2068	226	0.109		54	2039	155	0.076	
		RT	A4	1	3.50	20.0		100	1958	214	0.109		100	1958	150	0.077	0.077
on 5 17																	
Slip Road from		+(To YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	537		0.255	100	2005	391	0.195	0.195
Lam Tei Intercha	nge	(To YL Hwy) RT	B3	2,3	3.50	25.0		100	1986	507	0.255		100	2086	407	0.195	
		(To CPR) RT	B4	2,3	3.50	20.0		100	1958	287	0.147		100	1958	148	0.076	
Cootle DI-D		, -															
Castle Peak Roa	UNB	LT	C1	3,4	3.50	25.0		100	1854	399	0.215		100	1854	322	0.174	
		LT	C2	3,4	3.50	20.0		100	1958	422	0.216		100	1958	341	0.174	
		LT	C3	3,4	3.50	20.0		100	1958	422	0.216		100	2105	366	0.174	
		SA	C4	4	3.50				2105	440	0.209	0.209		2105	660	0.314	0.314
pedestrian pha	ise		D _(P)	1		min c	rossing	time =	7	sec	GM +	10	sec F	GM =	17	sec	
			E _(P)	1,4		min c	rossing	time =	12	sec	GM +	15	sec F	GM =	27	sec	
			F _(P)	2		min c	rossing	time =	9	sec	GM +	11	sec F	GM =	20	sec	
			G _(P)	2,3		min c	rossing	time =	11	sec	GM +	14	sec F	GM =	25	sec	
AM Traffic Flow (pcu/hr	r)		Ν	PM Traffic	Flow (pcu/hr)				N	S = 1940 +	+ 100 (W-3.:	25) Si	= 2080 + 10	0 (W-3.25)	Note:		
		7						Γ		SM = S / (1			(S - 230) / (
▲ ³⁹⁴	4				▲ 273							Peak		Peak			
│	389	440	-		→	231		660	_		1+2,3+4	Jun	1 + 2,3 + 4	5000			
¥ 28'	1	¥ 1243			↓ 234			♥ 1029		Sum y	0.573		0.585				
										L (s)	19		19				
	208 83	287				142	656	► 148		C (s)	108		108				
	11	I				11	I	. 40		practical y	0.742		0.742				
										R.C. (%)	29%		27%				
		1									,,		,*				
1 A1	1	2	↑			3	↑			4	t			5			
A2 A3	•	G _(P)	ŧ			G _(P)	ŧ			A1		•	C4				
A4								•	C3 C2			<u>+</u>	C3 C2 C1				
, ,		•	╷╷╷╷	•		ר <u>י</u> ן	╹┓╸	;	C1			ţ—	C1				
^D (P)	►)	B1	B2 B3 B4		← → F _(P)	B1	B2 B3 B4				← • E _(P)	•					
AM G =		1/G = 8	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 8	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						Signal J	unction A	nalysis									
Junction:		Interchange / C		eak Roa	ıd – Larr	Tei									Job Nu	mber:	-
Scenario: Design Year:	2033	posed Develop Designe						Checke	d By:					Date:	14	P. Sep 20	18 23
,		0	-		-		-		,								
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %		AM Peak Flow	y value	Critical y	Turning %	Sat. Flow	PM Peak Flow	y value	Critical y
Castle Peak Roa	d SB	LT	A1	1,4	3.50	80.0	Gradient	100	(pcu/hr) 1929	(pcu/hr) 394	0.204		100	(pcu/hr) 1929	(pcu/hr) 273	0.142	
		SA	A2	1	3.50	85.0			2105	231		0.110		2105	161	0.076	
		SA+RT	A3	1	3.50	25.0		30	2068	227	0.110		55	2038	156	0.077	
		RT	A4	1	3.50	20.0		100	1958	214	0.109		100	1958	150	0.077	0.077
Slip Road from	LT·	+(To YL Hwy)RT	B2	2,3	3.50	30.0		100	2105	544	0.258	0.258	100	2005	395	0.197	0.197
Lam Tei Intercha	nge	(To YL Hwy) RT	B3	2,3	3.50	25.0		100	1986	514	0.259		100	2086	410	0.197	
		(To CPR) RT	B4	2,3	3.50	20.0		100	1958	290	0.148		100	1958	149	0.076	
Castle Peak Roa		LT	C1	3,4	3.50	25.0		100	1854	403	0.217		100	1854	324	0.175	
		LT	C2 C3	3,4 3,4	3.50 3.50	20.0 20.0		100 100	1958 1958	425 425	0.217		100 100	1958 2105	342 368	0.175 0.175	
		SA	C3	3,4 4	3.50	20.0		100	2105	440		0.209	100	2105	660	0.314	0.314
pedestrian pha	ise		D _(P)	1		min c	rossing	time =	7	sec	GM +	10	sec F	GM =	17	sec	
			E _(P)	1,4			rossing		12	sec	GM +	15	sec F	GM =	27	sec	
			F _(P)	2		min c	rossing	time =	9	sec	GM +	11	sec F	GM =	20	sec	
			$G_{(P)}$	2,3		min c	rossing	time =	11	sec	GM +	14	sec F	GM =	25	sec	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N						Note:		
		7						7		S = 1940 + SM = S / (*	⊦ 100 (W-3. 1 + 1.5 f/r)		= 2080 + 10 (S - 230) /				
↑ ³⁹⁴	4											Peak		Peak			
	389	440			\rightarrow	231		660			1 + 2,3 + 4		1 + 2,3 + 4				
28	3	1253			236			1034		Sum y	0.577		0.587				
						. +		•		L (s)	19		19				
	209 84	49 290				142	663	149		C (s)	108		108				
										practical y R.C. (%)	0.742 28%		0.742 26%				
		-				-				K.C. (76)	2070		2070				
1 A1	t	2 G _(P)	ţ			3 G _(P)	ţ			4 A1	t			5			
	•	(P)	+			(P)	ŧ		C3			-	C4				
A4		•_•	┝┰╼┎╸┍	•		•	ŧ┰ ┾ ┎┾┍╴		C2 C1			*	C3 C2 C1				
D _(P) ↓ +	•				←>			*			د +	*					
E _{(P}	")	B1	B2 B3 B4		F _(P)	B1	B2 B3 B4				E _(P)						
AM G =		I/G = 8	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
G =		I/G =	G =		I/G =		G =		I/G =	7	G =		I/G =	7	G =		
PM G =		I/G = 8	G =		I/G = I/G =		G =		I/G =	1	G =		I/G =	1	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						Signal J	unction A	nalysis									
Junction:		n Road/ Tsz Tir	n Road/	Access	Road to	Siu Hor	ng Court							_	Job Nu		J7265
Scenario: Design Year:	Existing C 2023		ad By:					Checke	d By:					Date [.]	1/	P. 4 Sep 20	<u>19</u> 123
Design Tear.	2023	Designe	su Dy.				-	CHECKE	a Dy.				•	Date.		+ 0ep 20	125
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill	Turning %		AM Peak Flow	y value	Critical y	Turning %		PM Peak Flow	y value	Critical y
Tsing Lun Road	d SB	LT+SA	A1	1	3.65	13.0	Gradient	4	(pcu/hr) 1971	(pcu/hr) 486	0.247	0.247	12	(pcu/hr) 1953	(pcu/hr) 337	0.173	
		RT	A2	1	3.65	15.0		100	1927	341	0.177		100	2120	397		0.187
Tsing Lun Road		LT+SA															
		SA	C1 C2	2	3.30 3.40	23.0		37	1899 2095	115 126	0.061	0.061	33	1904 2095	120 132	0.063	0.063
		RT	C3	2	3.40	15.0		100	1905	7	0.000		100	1905	17	0.009	
Access Road to)	LT+SA+RT	D1	3	3.50	15.0		90	1803	67	0.037	0.037	88	1806	58	0.032	0.032
Siu Hong Court	WB																
Tsz Tin Road E	В	LT	B1	4	2.20	10.0		100	1698	143	0.084	0.084	100	1698	98	0.058	0.058
		LT+SA+RT	B2	4	3.38 3.37	15.0		98	1905	143	0.085	0.064	94	2092	120	0.058	0.056
pedestrian pha	se		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/hr))		Ν	PM Traffic	Flow (pcu/hr)				Ν	S = 1940 -	+ 100 (W-3.	25) Si	= 2080 + 10	00 (W-3.25)	Note:		
		I	\uparrow				I		\uparrow		1 + 1.5 f/r)			(1 + 1.5 f/r)			
1 ²¹⁶	341 🗲	→ 21			¹⁶⁴	397	++	39	1		AM	Peak	PM	Peak			
	3	▼ 465 46			<u> </u>	7	298	39			1+2+3+4		1+2+3+4				
85	198	7			47	212	7	1		Sum y	0.429		0.340				
43					40	$ \rightarrow $	17	12		L (s) C (s)	24 118		24 118				
	I	14				I		12		practical y	0.717		0.717				
										R.C. (%)	67%		111%				
1	A2 A1	2				3				4				5			
	ĨĹ										+						
F _(P) ↓	↓ ↓	F _(P)	∓ ↓			F _(P)	Ŧ	ŧ		B1 B2							
		•	┤╽╹	•				+	D1		≜						
			C1 C2 C3							E _(P)	÷						
						6				0	-			7	~		
AM G = G =		VG = 6 VG = 6	G = G =		I/G = I/G =		G = G =		I/G =		G = G =	14	I/G = I/G =		G = G =		
			<u> </u>		.0=		0 -			•	0-		.0-		0 -		
PM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		

						Signal J	unction A	naiysis									
Junction:	Tsing Lun	n Road/ Tsz Tir	n Road/	Access	Road to	Siu Ho	ng Court							_	Job Nu	mber:	J7265
Scenario:	With App	roved Scheme														Ρ.	20
Design Year:	2033	Designe	ed By:				_	Checke	ed By:					Date:	14	1 Sep 20	23
					1	1	1	1		AM Peak			1		PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsing Lun Roa	id SB	LT+SA	A1	1	3.65	13.0	Gradion	4	1971	724	0.367		10	1957	494	0.252	
		SA+RT	A2	1	3.65	15.0		72	1978	727	0.368	0.368	96	1934	488	0.252	0.252
Tai a La Da Da		17.04		-													
Tsing Lun Roa		LT+SA SA+RT	C1	2	3.30	23.0		43	1892	210		0.111	51	1882	243		0.129
		3ATK I	C2	2	3.40	20.0			2095	233	0.111			2095	271	0.129	
Access Road t	to	LT+SA+RT	D1	3	3.50	15.0		88	1806	85	0.047	0.047	87	1808	75	0.041	0.041
Siu Hong Cour	rt WB																
Tsz Tin Road I	ER	LT						100	4000				100	1000			
132 HILKOdu I	LD	SA+RT	B1 B2	4,1 4	3.38	10.0		100 90	1698	438	0.258	0.052	100 87	1698	260	0.153	0.027
		0,1111	DZ	4	3.37	15.0		90	1919	100	0.052	0.052	0/	1925	71	0.037	0.037
pedestrian pha	250		E _(P)	2		mino	rossing	time –	5	500	GM +	10	500 F	=GM =	15	sec	
pedesthan pha	156		⊏ _(P) F _(P)	3			rossing		5		GM +	6		=GM =	11	sec	
							lossing			300		0	3001	0101 =		300	
AM Traffic Flow (pcu/h	r)		N	PM Traffic	Flow (pcu/hr)				N	S = 1940 ·	+ 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	Note:		
		1					I			SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
⁴³		→ 30			1 ²⁶⁰	470	\leftrightarrow	51	1		AM	Peak	PM	Peak			
9	• 10	896 55			62	9	461	45			1+2+3+4		1+2+3+4				
9	342	10			02	390	10	1		Sum y	0.578		0.460				
9	1 + 10	20			124	$ \rightarrow $	25	20		L (s)	24 118		24				
		20						20		C (s) practical y	0.717		118 0.717				
										R.C. (%)	24%		56%				
1	10.11	2				3				4				5			
	A2 A1					-								-			
_{В1} т	¶₽	F _(P)	↑ ↓			F _(P)	1			B1 B2	\rightarrow						
								+	D1								
								•		E _(P)	∓ ŧ						
			C1 C2														
AM G =		I/G = 6	G =		I/G =	6	G =		I/G =	9	G =		I/G =	7	G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		
PM G =		I/G = 6	G =		I/G =		G =		I/G =		G =		I/G =		G =		
G =		I/G =	G =		I/G =		G =		I/G =		G =		I/G =		G =		

						Signal J	unction A	laiysis									
Junction:	Tsing Lun	n Road/ Tsz Tir	n Road/	Access	Road to	Siu Hor	ng Court							_	Job Nu	mber:	J7265
Scenario:	With Prop	osed Develop	ment													Ρ.	21
Design Year:	2033	Designe	ed By:				-	Checke	ed By:					Date:	14	4 Sep 20	23
										AM Peak					PM Peak		
	Approach		Phase	Stage	Width (m)	Radius (m)	% Up-hill Gradient	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y	Turning %	Sat. Flow (pcu/hr)	Flow (pcu/hr)	y value	Critical y
Tsing Lun Roa	id SB	LT+SA	A1	1	3.65	13.0		4	1971	736	0.373		10	1957	496	0.253	
		SA+RT	A2	1	3.65	15.0		71	1979	739	0.373	0.373	96	1934	490	0.253	0.253
Tsing Lun Roa	id NB	LT+SA	C1	2	3.30	23.0		43	1892	213		0.113	51	1882	246	0.131	0.131
		SA+RT	C2	2	3.40	20.0			2095	235	0.112			2095	273	0.130	
Access Road t	'n	LT+SA+RT	D4	2	2.50	45.0		00	4000	05	0.047	0.047	07	4000	75	0.044	0.044
Siu Hong Cour		EHOAIRI	D1	3	3.50	15.0		88	1806	85	0.047	0.047	87	1808	75	0.041	0.041
olu Hong ooul																	
Tsz Tin Road B	EB	LT	B1	4,1	3.38	10.0		100	1698	438	0.258		100	1698	260	0.153	
		SA+RT	B2	4	3.37	15.0		90	1919	100	0.052	0.052	87	1925	71	0.037	0.037
pedestrian pha	ase		E _(P)	2		min c	rossing	time =	5	sec	GM +	10	sec F	GM =	15	sec	
			F _(P)	3		min c	rossing	time =	5	sec	GM +	6	sec F	GM =	11	sec	
AM Traffic Flow (pcu/hr	r)			DM Troffio	Flow (pcu/hr)										Note:		
	')		N ↑	i wi maine	riow (peu/iii)				N ↑	S = 1940 -	+ 100 (W-3.	25) S :	= 2080 + 10	00 (W-3.25)	14016.		
						170				SM = S / (1 + 1.5 f/r)	SM =	(S - 230) /	(1 + 1.5 f/r)			
438	8 525 •	→ ³⁰	1		260	470	\rightarrow	51	,			Peak		Peak			
↓ 90	0	920 55			62	9	465	45			1+2+3+4		1+2+3+4				
	347	10			02	395	10	1		Sum y	0.585		0.462				
9'	1 + 10				124	$ \rightarrow $	25	ļ		L (s)	24		24				
		20						20		C (s)	118 0.717		118 0.717				
										practical y R.C. (%)	23%		55%				
										14.0. (76)	2070		0070				
1	A2 A1	2				3				4				5			
в1т	↓	-	↑			F _(P)	↑			B1							
	* *	F(P)	+			F _(P)	ŧ	. 1	D1	B2	\rightarrow						
		+	┥┝╸					1	DI	E _(P)	t						
			 C1 C2							└(P)	ŧ						
			-			ـــــــــــــــــــــــــــــــــــــ				۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				7			
AM G =		VG = 6	G =		I/G =	υ	G =		I/G =	3	G =		I/G =		G =		
G = PM G =		I/G = 6	G = G =		I/G =	6	G = G =		I/G =	9	G = G =		I/G =		G = G =		
РМ G = G =		//G =	G =		1/G =	5	G =		I/G =		G =		I/G =		G =		
6 =	-	-01	6 =		#G =		6 =		rG =		5=		1/G =		9 =		

Junction:	San Hing F	Road / No	g Lau Roa	ad (South	ern)				
Design Year:	2023		Job Numl		J7265	Da	ate:	14 Sep	2023
Scenario:	Existing Co	ondition						•	P. 22
Ng Lau	Road (Arm (C)					Na L	.au Road	(Arm A)
<u>152</u>	166 -	-,	_						(,,
1	7								
			·+				T	93	214
						ſ		24	18
						· + Γ			
•	◀────		4	21			Γ	AM	PM
	North		<u>0</u>	<u>15</u>			-		
			San Hir	ng Road (A	Arm B)	•			
$E = \begin{bmatrix} 1 + 0.0 \\ F = \begin{bmatrix} 1 + 0.0 \\ 1 + 0.0 \end{bmatrix}$ where $Y = 1 - 0$	+ 14W-CR - Y(0.364q-At 0.364Y(q-At arameters rep 094(w-BA - 3 094(w-BC - 3 094(w-CB - 3 0.0345W	Ý(0.364c C + 0.14 C + q-AB presente .65)][1 + .65)][1 + .65)][1 +	(-AC + 0. 4q-AB)] b)] d by D, E 0.0009(\ 0.0009(\ 0.0009(\	144q-AB - , F are: /-rBA - 12 /-rBC - 12 /-rCB - 12	0)][1 + 0.0 20)] 20)]				
W = ma W-CR = w-BA, e v-rBA, e	tc = the design ajor road widt = central reset etc = lane wid etc = visibility etc = visibility	h erve widtl Ith to veh to the rig	h iicle ght for wa	aiting vehi	cles in str		с		
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e	ajor road widt = central rese etc = lane wid etc = visibility	h erve widtl Ith to veh to the rig to the lei	h iicle ght for wa ft for wait	aiting vehi	cles in str es in strea			Calcu	lated
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the riq to the le Inpo W	h nicle ght for wa ft for wait ut 6.65	aiting vehio ing vehicl Inp V-rBA	cles in str es in strea ut 23	am BA, etc Input w-BA	2.40	D	0.7441
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl Ith to veh to the rig to the lei	h iicle ght for wa ft for wait ut	aiting vehic ing vehicl Inp V-rBA V-IBA	cles in str es in strea ut 23 23	am BA, etc Input w-BA w-BC	2.40 2.40	D E	0.7441 0.8078
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the riq to the le Inpo W	h nicle ght for wa ft for wait ut 6.65	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in str es in strea ut 23 23 26	am BA, etc Input w-BA	2.40	D E F	0.7441 0.8078 0.8857
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the riq to the le Inpo W	h nicle ght for wa ft for wait ut 6.65	aiting vehic ing vehicl Inp V-rBA V-IBA	cles in str es in strea ut 23 23	am BA, etc Input w-BA w-BC	2.40 2.40	D E	0.7441 0.8078
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry :	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the let Inpl W W-CR	h iicle ght for wa ft for wait ut 6.65 0.00	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in stres es in stres ut 23 26 57	am BA, etc Input w-BA w-BC w-CB	2.40 2.40 3.00	D E F Y	0.7441 0.8078 0.8857 0.7706
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Analysis : Traffic Flows,	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the let W W-CR	h iicle ght for wa ft for wait ut 6.65 0.00 PM	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea es in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h	2.40 2.40 3.00	D E F Y	0.7441 0.8078 0.8857 0.7706 PM
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Analysis : Traffic Flows, q-CA	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lef W W-CR AM 166	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea es in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/h Q-BA	2.40 2.40 3.00	D E F Y AM 421	0.7441 0.8078 0.8857 0.7706 PM 400
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Analysis : Traffic Flows, q-CA q-CB	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lef W W-CR AM 166 7	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea es in strea ut 23 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC	2.40 2.40 3.00	D E F Y AM 421 579	0.7441 0.8078 0.8857 0.7706 PM 400 552
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the let W W-CR AM 166 7 24	h iicle ght for wait ut 6.65 0.00 PM 152 1 18	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB q-AB q-AC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lei W W-CR AM 166 7 24 93	h ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC	2.40 2.40 3.00	D E F Y AM 421 579	0.7441 0.8078 0.8857 0.7706 PM 400 552
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the let W W-CR AM 166 7 24	h iicle ght for wait ut 6.65 0.00 PM 152 1 18	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB q-AB q-AC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lei W W-CR AM 166 7 24 93	h ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the let W W-CR AM 166 7 24 93 21	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214 15	aiting vehic ing vehicl Inp V-rBA V-IBA V-IBA V-rBC	cles in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lei W W-CR AM 166 7 24 93 21 4 0.160	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214 15 0 0.000	aiting vehic ing vehicle V-rBA V-rBA V-IBA V-rBC V-rCB	cles in strea es in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lef W W-CR AM 166 7 24 93 21 4 0.160 Ratio-of-	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214 15 0 0.000 flow to C	aiting vehic ing vehicle V-rBA V-rBA V-IBA V-rBC V-rCB	cles in strea es in strea ut 23 26 57 Cap	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BA Q-CB Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lef W W-CR AM 166 7 24 93 21 4 0.160 Ratio-of-	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214 15 0 0.000 flow to C 3-A	aiting vehic ing vehicle V-rBA V-rBA V-IBA V-rBC V-rCB	cles in streat ut 23 23 26 57 Cap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lef W W-CR AM 166 7 24 93 21 4 0.160 Ratio-of- E	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214 15 0 0.000 flow to C 3-A 3-C	aiting vehic ing vehicle V-rBA V-rBA V-IBA V-rBC V-rCB	cles in stre es in stre ut 23 26 57 Cap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB Q-BAC PM 0.037 0.000	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602
W = ma W-CR = w-BA, e v-rBA, e v-IBA, e Geometry : Traffic Flows, q-CA q-CB q-AB q-AC q-BA q-BC	ajor road widt = central rese etc = lane wid etc = visibility etc = visibility	h erve widtl th to veh to the rig to the lei W W-CR AM 166 7 24 93 21 4 0.160 Ratio-of- E	h iicle ght for wa ft for wait ut 6.65 0.00 PM 152 1 18 214 15 0 0.000 flow to C 3-A	aiting vehic ing vehicle V-rBA V-rBA V-IBA V-rBC V-rCB	cles in streat ut 23 23 26 57 Cap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	am BA, etc Input w-BA w-BC w-CB acity, pcu/r Q-BA Q-BC Q-CB Q-CB Q-BAC	2.40 2.40 3.00	D E F Y AM 421 579 631	0.7441 0.8078 0.8857 0.7706 PM 400 552 602

Appendix B – Planned Road Works to be implemented by the Owner Pre-submission for Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public Use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun Planned Road Works to be implemented by the Owner

Appendix C – Swept Path Analysis

RevF SP4 ī ŝ 0 L R5A 5 299\J7265\2024 200 VJOB/J7

Appendix D – Junction Improvements Planned near Proposed Development Pre-submission for Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public Use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun Planned Junction Improvements near Proposed Development by CEDD

