By Hand
Our Ref：S3088／LTTM／23／005Lg

27 February 2024

Secretary，Town Planning Board 15／F，North Point Government Offices
333 Java Road
North Point
Hong Kong

PLANNING LIMITED摬 憲 䫋 問 有 限 公 司

WIT K 16F MO TOWER 133 HOIBUN ROAD，KWUPITONG KOWLOON，HD HG KONG
蓠兆豐中心16樓に室䨔話TEL（852） 34268457㯖真FAX（852） 34269737電郵EMALL kta＠kaplanning．com

Dear Sir／Madam，

Proposed Rezoning from＂Residential（Group B）1＂Zone to＂Residential（Group B）4＂Zone for Medium－Density Housing Development to Include a Footpath for Public Use at Various

Lots and Adjacent Government Land in DD130，Lam Tei，Then Mun
－S12A Amendment of Plan Application－
TPB Ref．：Y／TM－LTYY／11
Further Information No． 1

Reference is made to the captioned S12A Application submitted to the Town Planning Board （＂TPB＂）on 22 January 2024.

The Permanent Secretary for Transport and Logistics gazetted the PWP Item Nos．B764CL and B861CL Site Formation and Infrastructure Works for Public Housing Developments at San Hing Road and Hong Po Road，Tuen Mun（Road Works）on 26 January 2024．The Applicant has reviewed the gazette plan and noticed that there are changes in some of the road layout and traffic improvement measures near the Site．In order to reflect the latest road layout and traffic arrangement in the vicinity，we hereby submit a revised Traffic Impact Assessment（enclosed in Annex A）for consideration by the Transport Department and TPB．

Should you have any queries in relation to the attached，please do not hesitate to contact the undersigned at \quad or our Ms Anson YING at

Thank you for your kind attention．
Yours faithfully
For and on behalf of
KTA PLANNING LIMITED

Encl．（4 hard copies）
cc．the Applicant \＆Team
KT／GN／AY／vy

Annex A

Revised Traffic Impact Assessment

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)
Traffic Impact Assessment
Final Report
February 2024

Prepared by: CKM Asia Limited
Prepared for: Wing Mau Tea House Limited
Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)
CONTENTS
CHAPTER PAGE
1.0 INTRODUCTION 1
Background 1
Structure of Report 1
2.0 EXISTING SITUATION 2
The Subject Site 2
The Road Network 2
Existing Traffic Flows 2
Existing Junction Performance 2
Link Operational Performance 3
Public Transport Facilities 4
Survey on Road-based Public Transport Services Located in the Vicinity 5
Existing Footpath Level-Of-Service 5
3.0 THE PROPOSED DEVELOPMENT 7
Key Parameters 7
Provision of Internal Transport Facilities 7
Planned Road Works near the Proposed Development 8
Swept Path Analysis 8
4.0 TRAFFIC IMPACT 9
Design Year 9
Traffic Forecasting 9
Modelling and Validation 9
Estimated Traffic Growth Rate from 2031 to 2033 10
Additional Planned/ Committed Developments near the Subject Site 10
Planned Road Improvement Works Nearby 11
Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development 12
Year 2033 Traffic Flows 13
Year 2033 Junction Capacity Analysis 13
Year 2033 Link Performance 14
Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)
CONTENTS (CONT'D)
CHAPTER PAGE
5.0 IMPACT TO PUBLIC TRANSPORT SERVICES 15
2033 Public Transport Occupancy Forecasting 15
Annual Public Transport Demand Growth Rate between 2024-2033 15
Estimated Peak Hour Mechanised Trip Generation of Subject Site 16
Estimated Public Transport Demand Generated by the Subject Site 16
Public Transport Demand Generated by Planned / Committed Developments in the Vicinity 17
2033 Road-based Public Transport Occupancies 17
2033 Rail-Based Public Transport Occupancies 18
6.0 PEDESTRIAN IMPACT 19
2033 Pedestrian Flow Forecasting 19
Annual Pedestrian Growth Rate between 2024-2033 19
Peak 15-minute Pedestrian Generated by Planned / Committed Developments in the Vicinity 19
Peak 15-minute Pedestrian Generation of by the Proposed Development 19
Year 2033 Pedestrian Flows 19
Year 2033 LOS Analysis 20
7.0 SUMMARY 21
Appendix A - Junction Capacity AnalysisAppendix B - Public Transport Survey ResultAppendix C - Planned Road Works to be implemented by the OwnerAppendix D - Swept Path AnalysisAppendix E - Extract of Planned Road Works under Agreement No. CE 39/2021 (CE)by CEDD
Appendix F - Extract of Planned Road Works under Agreement No. CE 01/2020 (CE) by CEDD

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)

TABLES

NUMBER

2.1 Existing Junction Performance
2.2 Existing Link Capacity Assessment
2.3 Road-Based Public Transport Services Operating close to the Subject Site
2.4 Occupancy of Existing Road-Based Public Transport Services Operating near the Subject Site
2.5 Operational Performance of MTR Tuen Ma Line
2.6 Description of Pedestrian Footpath LOS
2.7 Existing LOS Assessment
3.1 Key Parameters
3.2 Provision of Internal Transport Facilities for Proposed Development
4.1 Validation Criteria
4.2 Hong Kong Population Projections from Census and Statistics Department
4.3 The Additional Planned / Committed Developments near the Subject Site
4.4 Planned Road Improvement Works Under Agreement No. CE 39/2021 (CE) by CEDD
4.5 Adopted Trip Rates and Traffic Generation for Proposed Development
4.6 Adopted Traffic Generation for Approved Scheme
4.7 Net Increase in Traffic Generation
4.8 Year 2033 Junction Performance
4.9 Year 2033 Link Capacity Assessment
5.1 Population Projections of the 5 TPUs
5.2 Tuen Mun New Town Population Projections
5.3 Hong Kong Population Projection from Census and Statistics Department
5.4 Estimated Peak Hour Mechanised Trip Generation of the Subject Site
5.5 Transport Mode of the Subject Site
5.6 Estimated Road-Based Public Transport Demand Generated by the Subject Site
5.7 Year 2033 Road-Based Public Transport Occupancy Operating nearby During Peak Hours
6.1 Pedestrian Generations of the Subject Site
6.2 Year 2033 LOS Assessment

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun (Application no. Y/TM-LTYY/11)

FIGURES

NUMBER

1.1 Location of the Subject Site
2.1 Location of Surveyed Junctions
2.2 Layout of Junction of Unnamed Road/ Access Road
2.3 Layout of Junction of Ng Lau Road/ Unnamed Road
2.4 Layout of Junction of Ng Lau Road/ Lam Tei Interchange
2.5 Layout of Junction of Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange
2.6 Layout of Lam Tei Interchange
2.7 Layout of Junction of Lam Tei Interchange/ Castle Peak Road - Lam Tei
2.8 Layout of Junction of Tsing Lun Road/ Tsz Tin Road
2.9 Layout of Junction of San Hing Road/ Ng Lau Road (Southern)
2.10 Layout of Junction of San Hing Road/ Ng Lau Road (Northern)
2.11 Layout of San Hing Road T-junction
2.12 Layout of Junction of Ng Lau Road / Castle Peak Road - Lam Tei
2.13 Layout of Junction of Hong Po Road / Yan Tin Estate Access Road
2.14 Existing Peak Hour Traffic Flows
2.15 Road-Based Public Transport Services Operating Close to the Subject Site
2.16 Existing Peak 15-minute Pedestrian Flows
3.1 Master Layout Plan
4.1 The Major Additional Planned / Committed Developments near the Subject Site
4.2 Year 2033 Peak Hour Traffic Flows without Proposed Development
4.3 Year 2033 Peak Hour Traffic Flows with Approved Scheme
4.4 Year 2033 Peak Hour Traffic Flows with Proposed Development
6.1 Year 2033 Peak 15-minute Pedestrian Flows

1.0 INTRODUCTION

Background

1.1 The subject site is located in D.D.130, Lam Tei, Tuen Mun (the "Subject Site"). At present, the Subject Site is unoccupied, and access to the Subject Site via an existing unnamed road which is connected to Ng Lau Road. The location of the Subject Site is shown in Figure 1.1.
1.2 A Section 12A planning application for the minor relaxation of the maximum plot ratio restriction to 2.5 for residential use at the Subject Site was approved by the Town Planning Board (TPB ref: Y/TM-LTYY/9) on $24^{\text {th }}$ September 2021 (the "Approved Scheme"). This Section 12A planning application is for minor relaxation of the maximum plot ratio restriction for residential use at the Subject Site from the approved 2.5 to 5.0 (the "Proposed Development").
1.3 Against this background, CKM Asia Limited, a traffic and transportation planning consultancy firm, was commissioned by the Owner to conduct a traffic impact assessment in support of the Proposed Development. This report presents the findings and recommendations of the traffic impact assessment for the Proposed Development.

Structure of Report

1.4 The report is structured as follows:

Chapter One - Gives the background of the project;
Chapter Two - Describes the existing situation;
Chapter Three - Presents the Proposed Development;
Chapter Four - Describes the traffic impact analysis; and
Chapter Five - Gives the overall conclusion.

2.0 EXISTING SITUATION

The Subject Site

2.1 The Subject Site is bounded by the Light Rail Transit ("LRT") and the Tuen Ma Line to the East, and a nullah to the West. Access to the Subject Site is from the south and is via a bridge over the nullah. The Access Road is connected to Ng Lau Road.

The Road Network

2.2 Ng Lau Road is a single carriageway 2-lane 2-way local distributor which connects with the Lam Tei Interchange to the south and Castle Peak Road - Lam Tei underneath the Kong Sham Western Highway. It provides access to villages, e.g., San Hing Tsuen, Tuen Tsz Wai, and Tsing Chuen Wai.
2.3 Lam Tei Interchange connects Tsing Lun Road, Hong Po Road, Ng Lau Road, Castle Peak Road - Lam Tei, Yuen Long Highway and Tuen Mun Road. It is the main access for traffic accessing the Subject Site and strategic routes.

Existing Traffic Flows

2.4 To quantify the traffic flows in the vicinity of the Subject Site, manual classified counts were conducted on Tuesday, $18^{\text {th }}$ April 2023, Wednesday, $19^{\text {th }}$ April 2023 and Wednesday, $26^{\text {th }}$ April 2023 during the AM and PM peak at the following junctions:

- J1: Unnamed Road/ Access Road;
- J2: Ng Lau Road/ Unnamed Road;
- J3: Ng Lau Road / Lam Tei Interchange;
- J4: Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange;
- J5: Lam Tei Interchange;
- J6: Lam Tei Interchange/ Castle Peak Road - Lam Tei;
- J7: Tsing Lun Road/ Tsz Tin Road;
- J8: San Hing Road / Ng Lau Road (Southern);
- J9: San Hing Road / Ng Lau Road (Northern);
- J10: T-junction at San Hing Road;
- J11: Ng Lau Road / Castle Peak Road - Lam Tei; and
- J12: Hong Po Road / Yan Tin Estate Access Road.
2.5 The locations of these junctions and the area of influence (the "AOI") are shown in Figure 2.1 and the layouts are shown in Figures 2.2-2.13 respectively.
2.6 The traffic counts are classified by vehicle type to enable traffic flows in passenger car units ("pcu") to be calculated. The AM and PM peak hours identified from the surveys are found to be between $0800-0900$ hours and 1700 - 1800 hours respectively. The existing AM and PM peak hour traffic flows in pcu/hour are presented in Figure 2.14.

Existing Junction Performance

2.7 The existing junction performance of the surveyed junctions are calculated based on the existing traffic flows, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM").

The results are summarised in Table 2.1 and the detailed calculations are found in Appendix A.

TABLE 2.1 EXISTING JUNCTION PERFORMANCE

Ref.	Junction	Type of Junction (Parameter)	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.000	0.000
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.033	0.030
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	104%	95%
J4	Tsing Lun Road/ Hong Po Road/ Lam Tei Interchange	RA (DFC)	0.501	0.548
J5	Lam Tei Interchange	RA (DFC)	0.480	0.453
J6	Lam Tei Interchange/ Castle Peak Road - Lam Tei	Signal (RC)	129%	223%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	67%	111%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.057	0.037
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.223	0.496
J10	T-junction at San Hing Road	Priority (DFC)	0.006	0.002
J11	Ng Lau Road / Castle Peak Road - Lam Tei	Signal (RC)	140%	133%
J12	Hong Po Road / Yan Tin Estate Access Road	Priority (DFC)	0.060	0.011

Note: RC - reserve capacity; DFC - design flow/capacity ratio, RA - Roundabout
2.8 The above results indicate that the surveyed junctions currently operate with capacities during the AM and PM peak hours.

Link Operational Performance

2.9 The link operational performance of the surveyed road links are calculated based on the existing traffic flows, and the analysis was undertaken using the methods outlined in Volume 2 of the Transport Planning and Design Manual ("TPDM"). The results are summarised in Table 2.2.

TABLE 2.2 EXISTING LINK CAPACITY ASSESSMENT

Ref	Link		Adjusted Design Flow (veh/hr)		Traffic Demand (veh/hr)		V/C Ratio	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
L1	Castle Peak Road - LamTei	NB	2,604	2,520	763	1,314	0.29	0.52
		SB	2,604	2,604	1,444	763	0.55	0.29
L2	Castle Peak Road Lingnan	NB	2,800	2,800	385	419	0.14	0.15
		SB	2,604	2,800	625	450	0.24	0.16
L3	Yuen Long Highway	NB	4,700	4,700	4,462	4,810	0.95	1.02
		SB	4,700	4,371	3,615	3,962	0.77	0.91
L4	Tuen Mun Road	NB	4,700	4,700	4,821	5,833	1.03	1.24
		SB	4,371	4,371	4,360	3,933	1.00	0.90
L5	San Hing Road	2-way	744	800	43	29	0.06	0.04
L6	Ng Lau Road (north of J9)	2-way	744	800	215	344	0.29	0.43
L7	Ng Lau Road (south of J2)	2-way	744	800	249	371	0.33	0.46
L8	Lam Tei Interchange (between J3 and J5)	EB	2,604	2,800	917	638	0.35	0.23
		WB	2,800	2,800	1,011	1,100	0.36	0.39
L9	Tsing Lun Road	NB	1,767	1,767	448	371	0.25	0.21
		SB	1,900	1,900	775	685	0.41	0.36

$N B$ - northbound $\quad S B$ - southbound $\quad E B$ - eastbound $\quad W B$ - westbound
2.10 The above results show that the assessed road links operate with sufficient capacity, except for Tuen Mun Road northbound, which is operating with V/C ratios at 1.24 during PM peak hours.

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun

Public Transport Facilities

2.11 The Subject Site is located close to public transport services, including franchised buses and public light buses and these operate within 400 metres or some 8minutes' walk away. Details of these public transport services are presented in Table 2.3. The location and major pedestrian routes of these public transport services are shown in Figure 2.15.

TABLE 2.3 ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING CLOSE TO THE SUBJECT SITE

Route	Routing	$\begin{aligned} & \text { Frequency } \\ & (\mathrm{min}) \end{aligned}$
CTB 50 ${ }^{(1)}$	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Tsim Sha Tsui (Kowloon Station) ${ }^{(A)}$	4 per day
	Tsim Sha Tsui (Kowloon Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ${ }^{(8)}$	4 per day
CTB 55 ${ }^{(1)}$	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Kwun Tong Ferry Pier ${ }^{\left({ }^{(1)}\right.}$	4 per day
	Kwun Tong Ferry Pier \rightarrow Tuen Mun (Ching Tin and Wo Tin) ${ }^{(8)}$	4 per day
CTB 56 ${ }^{(1)}$	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sheung Shui (Tin Ping Estate) ${ }^{(A)}$	4 per day
	Sheung Shui (Tin Ping Estate) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$	4 per day
CTB 56A ${ }^{(1)}$	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Queen's Hill Fanling (via: Sheung Shui Station)	3 per day
	Queen's Hill Fanling (via: Sheung Shui Station) \rightarrow Tuen Mun (Ching Tin and Wo Tin) ${ }^{(C)}$	2 per day
CTB 950 ${ }^{(1)}$	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Exhibition Centre Station ${ }^{\left({ }^{\text {(}}\right.}$	1 per day
	Exhibition Centre Station \rightarrow Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$	1 per day
CTB 955 ${ }^{(1)}$	Tuen Mun (Ching Tin and Wo Tin) \rightarrow Sai Wan Ho ${ }^{(A)}$	1 per day
	Sai Wan Ho \rightarrow Tuen Mun (Ching Tin and Wo Tin) ${ }^{(B)}$	1 per day
CTB B3A	Shan King Estate - Shenzhen Bay Port	30-60
CTB N969 ${ }^{\text {(D) }}$	Tin Shui Wai Town Centre - Causeway Bay (Moreton Terrace)	20-45
KMB 53	Yoho Mall (Yuen Long) - Tsuen Wan (Nina Tower)	25-35
KMB 63X	Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station)	12-30
KMB 67M	Tuen Mun (Siu Hong Court) - Kwai Fong Station	5-20
KMB 67X	Tuen Mun (Siu Hong Court) - Mong Kok East Station	6-25
KMB 68A	Long Ping Estate - Tsing Yi Station	8-25
KMB 258A ${ }^{(1)}$	Hung Shui Kiu (Hung Fuk Estate) \rightarrow Lam Tin Station	2 per day
KMB 258P ${ }^{(2)}$	Hung Shui Kiu (Hung Fuk Estate) - Lam Tin Station	12-30
KMB 261P	Tuen Mun (Siu Hong Court) \rightarrow Sheung Shui (Tin Ping) ${ }^{(2)(A)}$	2-3 per day
	Sheung Shui (Tin Ping) \rightarrow Tuen Mun (Siu Hong Court) ${ }^{(1)(\text { (3) }}$	1 per day
KMB 267X ${ }^{(1)}$	Tuen Mun (Siu Hong Court) \rightarrow Lam Tin Station ${ }^{\text {(A) }}$	2 per day
	Lam Tin Station \rightarrow Tuen Mun (Siu Hong Court) ${ }^{(B)}$	2 per day
KMB 960A ${ }^{(1)}$	Central \rightarrow Hung Shui Kiu (Hung Fuk Estate) ${ }^{(1)}$	1 per day
KMB 960C ${ }^{(1)}$	Tuen Mun (Fu Tai Estate) \rightarrow Causeway Bay (Victoria Park) ${ }^{(A)}$	2 per day
	Causeway Bay (Victoria Park) \rightarrow Tuen Mun (Fu Tai Estate) ${ }^{(8)}$	1 per day
KMB 960P	Hung Shui Kiu (Hung Yuen Road) \rightarrow Causeway Bay (Victoria Park)	10-35
	Causeway Bay (Victoria Park) \rightarrow Hung Shui Kiu (Hung Yuen Road) ${ }^{(1)(B)}$	1 per day
KMB 960X ${ }^{(1)}$	Hung Shui Kiu (Hung Yuen Road) \rightarrow Quarry Bay (King's Road) ${ }^{(A)}$	8 per day
	Quarry Bay (King's Road) \rightarrow Hung Shui Kiu (Hung Yuen Road) ${ }^{(8)}$	8 per day
KMB N260 ${ }^{\text {(D) }}$	Tuen Mun Pier Head - Mei Foo	20-25
LWB A34	Hung Shui Kiu (Hung Yuen Road) - Airport (Ground Transportation Centre)	20-60
LWB E33P	Siu Hong Station (South) - Airport (Ground Transportation Centre)	12-45
LWB NA33 ${ }^{(\mathrm{D})}$	Tuen Mun (Fu Tai Estate) \rightarrow Cathay Pacific City	3 per day
	Cathay Pacific City \rightarrow Tuen Mun (Fu Tai Estate)	5 per day
LWB NA37 ${ }^{(\mathrm{D})}$	Tin Shui Wai Town Centre \rightarrow Cathay Pacific City	5 per day
	Cathay Pacific City \rightarrow Tin Shui Wai Town Centre	6 per day
NLB B2	Yuen Long MTR Station - Shenzhen Bay Port	25-40
GMB 42	Tsing Chuen Wai - Tuen Mun Town Centre	13-15
GMB 606S ${ }^{(\text {D })}$	Yuen Long (Fung Cheung Rd) - Tsim Sha Tsui East	6-13

KMB - Kowloon Motor Bus \quad LWB - Long Win Bus \quad CTB - CityBus \quad GMB - Green Minibus NLB - New Lantao Bus
Note: ${ }^{(1)}$ Monday to Friday. (Except public holidays)
${ }^{(2)}$ Monday to Saturday (Except public holidays)
${ }^{(A)}$ AM peak only ${ }^{\text {(B) }}$ PM peak only
${ }^{(C)}$ AM and PM peak only ${ }^{\text {(D) }}$ Overnight service

Survey on Road-based Public Transport Services Located in the Vicinity

Road-based Public Transport

2.12 Survey on road-based public transport services listed in Table 2.3 was conducted during the AM and PM peak periods on Thursday, $18^{\text {th }}$ January 2024 at the bus stops near the subject site. The survey locations are shown in Figure 2.15. The survey results are summarized in Table 2.4 and the detailed information are shown in Appendix B.

TABLE 2.4 OCCUPANCY OF EXISTING ROAD-BASED PUBLIC TRANSPORT SERVICES OPERATING NEAR THE SUBJECT SITE

Direction	AM Peak			PM Peak		
	No. of Passenger		Occupancy$[c]=[b] /[a]$	No. of Passenger		Occupancy$[f]=[e] /[d]$
	Capacity [a]	Occupied [b]		Capacity [d]	Occupied [e]	
Outbound - To other districts	5,057	3,588	71\%	2,398	813	34\%
Inbound - From other districts	2,297	823	36\%	2,915	1,823	63\%

2.13 The above results indicate that the surveyed road-based public transport services currently operate with spare capacities during the AM and PM peak hours.

Rail-based Public Transport

2.14 Based on the information obtained from the Legislative Council, the operational performance for MTR Tuen Ma Line in 2022 is summarized in Table 2.5.

TABLE 2.5 OPERATIONAL PERFORMANCE OF MTR TUEN MA LINE

Item	Parameters
Maximum carrying capacity when train frequency maximized [a]	70,000 passengers / hour
Existing carrying capacity [b]	58,800 passengers / hour ${ }^{(1)}$
Current Patronage [c]	34,500 passengers / hour ${ }^{(2)}$
Current Loading [c]/[b] \{Critical Link\}	59% \{Tsuen Wan West to Mei Foo \}
Loading compared with maximum carrying capacity [c]/[a]	50%

Source: Reply Serial No. TLB168 for Question Serial No. 1237, Controlling Officer's Reply, Examination of Estimates of Expenditure 2023-24. Finance Committee. Legislative Council. 14 April 2023. https://www.legco.gov.hk/yr2023/english/fc/fc/w_q/tlb-e.pdf
${ }^{(1)}$ According to the reply, existing train frequency has not yet increased to the maximum level as permitted by the signaling system.
${ }^{(2)}$ According to the reply, in view of the impact of COVID-2019, patronage shown is based on those months in 2022 when the pandemic situation was relatively eased.
2.15 Table 2.5 shows that the MTR Tuen Ma Line operates at 59% of its current capacity, or 50% of its maximum carrying capacity during the peak hour.

Existing Footpath Level-Of-Service

2.16 To quantify the existing pedestrian flows, pedestrian counts were conducted during the AM and PM peak periods on Thursday, $18^{\text {th }}$ January 2024 at footpaths located in the vicinity of Proposed Development, and the observed peak 15minute pedestrian flows are shown in Figure 2.16.

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun
2.17 The Level-Of-Service ("LOS") of a pedestrian footpath depends on its width and number of pedestrians using the facility. Description of the LOS at walkway is obtained from Volume 6 of the TPDM and is presented in Table 2.6.

TABLE 2.6 DESCRIPTION OF PEDESTRIAN FOOTPATH LOS

LOS	Flow Rate (ped/min/m)	Description
A	≤ 16	Pedestrians basically move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
B	$16-23$	Sufficient space is provided for pedestrians to freely select their walking speeds, to bypass other pedestrians and to avoid crossing conflicts with others. At this level, pedestrians begin to be aware of other pedestrians and to respond to their presence in the selection of walking paths.
C	$23-33$	Sufficient space is available to select normal walking speeds and to bypass other pedestrians primarily in unidirectional stream. Where reverse direction or crossing movement exist, minor conflicts will occur, and speed and volume will be somewhat lower.
D	$33-49$	Freedom to select individual walking speeds and bypass other pedestrians is restricted. Where crossing or reverse-flow movements exist, the probability of conflicts is high and its avoidance requires changes of speeds and position. The LOS provides reasonable fluid flow; however considerable friction and interactions between pedestrians are likely to occur.
E	$49-75$	Virtually, all pedestrians would have their normal walking speeds restricted. At the lower range of this LOS, forward movement is possible only by shuffling. Space is insufficient to pass over slower pedestrians. Cross- and reverse-movement are possible only with extreme difficulties. Design volumes approach the limit of walking capacity with resulting stoppages and interruptions to flow.
F	>75	Walking speeds are severely restricted. Forward progress is made only by shuffling. There are frequent and unavoidable conflicts with other pedestrians. Cross- and reverse- movements are virtually impossible. Flow is sporadic and unstable. Space is more man characteristics of queued pedestrians than of moving pedestrian streams.

Source: Volume 6 Chapter 10 of TPDM
2.18 The observed peak 15-minute pedestrian flows LOS assessment is presented in Table 2.7.

TABLE 2.7 EXISTING LOS ASSESSMENT

Location	Clear Width ${ }^{(1)}$ [Effective Width] (m)	Peak Period	$\begin{array}{\|c\|} \hline \text { Flow (ped/ } \\ 15 \mathrm{~min}) \\ \hline \end{array}$	Flow rate (ped/min/m)	LOS
P1. Footpath on the footbridge connected to Ng Lau Road	2.0[1.5]	AM	50	2.2	A
		PM	33	1.5	A
P2. Footpath between Lam Tei LRT stop and bus stop at Castle Peak Road - Lam Tei	2.5[1.5]	AM	105	4.7	A
		PM	70	3.1	A
P3. Footbridge over Castle Peak Road - Lam Tei	2.5[1.5]	AM	72	3.2	A
		PM	35	1.6	A

${ }^{(1)}$ The width excludes railing and obstructions.
2.19 The above results indicate that the surveyed footpaths currently operate with LOS A during the AM and PM peak. As stated in the TPDM, LOS A to C is considered as an acceptable level of service: "In general, LOS C is desirable for most design at streets with dominant 'living' pedestrian activities".

3.0 THE PROPOSED DEVELOPMENT

Key Parameters

3.1 The Proposed Development key parameters are presented in Table 3.1.

TABLE 3.1 KEY PARAMETERS

Item	Proposed Development
Development Site Area	About 8,896 m^{2}
Domestic Plot Ratio	5.0
Domestic GFA	$44,480 \mathrm{~m}^{2}$
Flat Mix (GFA)	Flat Size $\leq 40 \mathrm{~m}^{2}$
	$40 \mathrm{~m}^{2}<$ Flat Size $\leq 70 \mathrm{~m}^{2}$
Total number of Flats	

Provision of Internal Transport Facilities

3.2 The internal transport facilities for the Proposed Development are provided in accordance with the recommendations of the Hong Kong Planning Standards and Guidelines ("HKPSG") and are presented in Table 3.2.

TABLE 3.2 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR

 PROPOSED DEVELOPMENT| Facility | HKPSG Recommendation | Provision |
| :---: | :---: | :---: |
| Car Parking Space | For Residents:
 Parking Requirement $=$ GPS \times R1 \times R2 \times R3
 Global Parking Standard (GPS): 1 car parking space per 4-7
 flats
 Demand Adjustment Ratio (R1): $\quad 0.5$ for flat size $\leq 40 \mathrm{~m}^{2}$ GFA 1.2 for flat size $40-70 \mathrm{~m}^{2}$
 GFA
 Accessibility Adjustment Ratio(R2): 1.0 outside 500m-radius of rail station
 Development Intensity Adjustment Ratio (R3): 1.0 for Plot Ratio 2.0-5.0
 For 1,100 flats with flat size less than $40 \mathrm{~m}^{2}$ GFA
 Minimum: $(1,110 / 7 \times 0.5 \times 1.0 \times 1.0)=79.3$, say 80 nos.
 Maximum: $(1,110 / 4 \times 0.5 \times 1.0 \times 1.0)=138.8$, say 139 nos.
 For 275 flats with flat size $40-70 \mathrm{~m}^{2}$ GFA
 Minimum: $(275 / 7 \times 1.2 \times 1.0 \times 1.0)=47.2$, say 48 nos.
 Maximum: $(275 / 4 \times 1.2 \times 1.0 \times 1.0)=82.5$, say 83 nos.
 Total $\begin{aligned} & \text { Minimum }=80+48=128 \text { nos. } \\ & \text { Maximum }=139+83=222 \text { nos. } \end{aligned}$ | $\begin{aligned} & 222 \text { nos. @ } 5.0 \mathrm{~m}(\mathrm{~L}) \times \\ & 2.5 \mathrm{~m}(\mathrm{~W}) \times 2.4 \mathrm{~m}(\mathrm{H}) \\ & =\text { HKPSG maximum } \end{aligned}$ |
| | For Visitors:
 Visitor car parking for private residential developments with more than 75 units per block should be provided at 5 visitor spaces per block in addition to the recommendations, or as determined by the Authority.
 For 5 blocks: 5×5 nos. $=25$ nos. | 25 nos. (22 nos. @
 $5.0 \mathrm{~m}(\mathrm{~L}) \times 2.5 \mathrm{~m}(\mathrm{~W}) \mathrm{x}$
 $2.4 \mathrm{~m}(\mathrm{H})+3$ nos. @
 $5.0 \mathrm{~m}(\mathrm{~L}) \times 3.5 \mathrm{~m}(\mathrm{~W}) \times$
 $2.4 \mathrm{~m}(\mathrm{H})$ for person with disabilities)
 = HKPSG maximum |
| | Total Car Parking Space:
 Minimum $=128+25=153$ nos.
 Maximum $=222+25=\mathbf{2 4 7}$ nos.
 Note: For total no. of car parking space in lot $=151-250$ nos., the Building (planning) regulation 72 require provision of 3 accessible car parking spaces | 247 nos. (including 3 accessible car parking spaces) |

TABLE 3.2 PROVISION OF INTERNAL TRANSPORT FACILITIES FOR

 PROPOSED DEVELOPMENT (CONT'D)| Facility | HKPSG Recommendation | Provision |
| :---: | :---: | :---: |
| Motorcycle
 Parking
 Space | For Residential Uses:
 TD Comment: \quad1 motorcycle parking space shall be
 provided for every 81 flats
 $\frac{\text { For } 1,385 \text { flats: }}{1,385 / 81} \quad=17.1$, say 18 nos. | ```18 nos.@ 2.4m (L) x 1.0m (W) x Min. 2.4m (H) = fulfil TD comment, OK``` |
| Goods
 Vehicle
 Loading/
 Unloading
 Bay | For Residential Uses:
 Minimum of 1 loading / unloading bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority.
 For 5 blocks, each block less than 800 flats: $\mathbf{5}$ no. | ```5 nos.@ 11.0m (L) x 3.5m (W) x Min. 4.7m (H) = HKPSG minimum, OK``` |
| Bicycle
 Parking
 Spaces | For Residential Uses:
 Within $0.5-2 \mathrm{~km}$ to rail station, 1 space per 15 flats with flat size $<70 \mathrm{~m}^{2}$ $=1,385 \div 15$ $=93 \text { nos. }$ | ```93 no.@ 1.8m (L) x 0.8m (W) x Min. 2.4m (H) = comply HKPSG, OK``` |

3.3 Table 3.2 shows that the internal transport facilities provided comply with the recommendations of the HKPSG. The master layout plan of the Proposed Development is shown in Figure 3.1.

Planned Road Works near the Proposed Development

3.4 The existing access road and unnamed road connecting the Proposed Development with Ng Lau Road is planned to be improved, to provide a $7.3 \mathrm{~m}-$ wide road carriageway, a 2 m -wide footpath and a 2 m -wide cycle track (the "Planned Road Works"). The Planned Road Works to be implemented by the Owner as part of the Approved Scheme and is found in Appendix C.

Swept Path Analysis

3.5 The CAD-based swept path analysis programme, Autodesk Vehicle Tracking, was used to check the ease of manoeuvring of vehicles within the Proposed Development, and the swept path analysis drawings are found in Appendix D. Vehicles are found to have no manoeuvring problems.

4.0 TRAFFIC IMPACT

Design Year

4.1 The Proposed Development is expected to be completed in 2030, and the design year adopted for the traffic assessment is, whichever later of the 2: (i) at least 3 years after the planned completion of the development, i.e., 2033, or (ii) 5 years from the date of this application, i.e., 2028. Therefore, Year 2033 is adopted for junction capacity analysis.

Traffic Forecasting

4.2 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the 2019-based BDTM NTW1 (the "BDTM"); (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.

Modelling and Validation

4.3 The BDTM provides traffic forecasts for the years 2026 and 2031 and these have taken into account the planned developments, changes to the strategic road network, population growth, etc. Therefore, The BDTM is used as the basis to produce the traffic flow for this TIA.
4.4 The BDTM is validated, and the validation meets criteria found in the "BDTM Study". Nevertheless, the traffic network and zone in the vicinity of the Proposed Development were further reviewed to ensure the traffic model is up-to-date and the modelled flow can be adopted. The modelling and validation methodology include, but not limited to, the following:

- The road links and junctions were checked and updated to ensure that any recent change in the existing road network is considered and missing road links or junction does not exist.
- The schedules of public transport services such as franchised bus and green/ red minibus were also checked to ensure that the updated routings and headway information are adopted.
- The zone and centroid connectors were reviewed to ensure that the traffic zones generate/ attract traffic at appropriate locations.
- The traffic flows produced by BDTM at the surveyed junctions were reviewed with reference to the observed traffic flows.
- The validation methodology is same as that adopted in the BDTM. All count locations were reviewed and checked using the GEH statistic (a modified chi squared test to provide a statistic for both the magnitude of the difference and the percentage difference between modelled and observed flows). The GEH statistic is defined by:

$$
\sqrt{\frac{\left(V_{2}-V_{1}\right)^{2}}{\frac{1}{2}\left(V_{2}+V_{1}\right)}}
$$

where V_{1} and V_{2} are the observed and modelled flows.

4.5 The validation criteria adopted are found in Table 4.1.

TABLE 4.1 VALIDATION CRITERIA

Locations	Target
Traffic flows at all count locations	85% return a GEH statistic of 5 or less 100%

Estimated Traffic Growth Rate from 2031 to 2033

4.6 Reference is made to the "Hong Kong Population Projections 2022 - 2046" published by Census and Statistics Department, and the information is presented in Table 4.2.

TABLE 4.2 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

Year	Population in Hong Kong (thousands)
2031	$7,820.2$
2033	$7,903.6$
Average Annual Growth $(\mathbf{2 0 3 1} \mathbf{~ 2 0 3 3)}$	$\mathbf{0 . 5 3 \%}$

4.7 Table 4.2 shows that the annual population growth between 2031 and 2033 is 0.53%, and is adopted for estimated traffic growth rate from 2031 to 2033.

Additional Planned/ Committed Developments near the Subject Site

4.8 The planned/ committed developments near the Subject Site not included in the BDTM but have been incorporated to produce the future year traffic flows are listed in Table 4.3 and the locations are presented in Figure 4.1.

TABLE 4.3 THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS NEAR THE SUBJECT SITE

Ref. No.	Development	Intake Year	Land Use	$\begin{aligned} & \text { GFA } \\ & \left(\mathbf{m}^{2}\right) \end{aligned}$	No. of Flat (no.)	Average Flat Size (m^{2})	No.
Tuen Mun Area $54{ }^{(1)}$							
A	Site $1 \& 1 \mathrm{~A}$ Wo Tin Estate	2022	PRH	--	4,232	--	--
			Retail	2,420	--	--	--
			SWF	1,060	--	--	--
			Kindergarten	-	--	--	1 no.
B	Site 2 Yan Tin Estate	2017	PRH	--	4,688	--	--
			Retail	4,250	--	--	--
			SWF	3,600	--	--	--
C	Site $3 \& 4$ (East) Ching Tin Estate	2022	PRH	--	5,183	--	--
			Retail	3,130	--	--	--
			SWF	1,810	--	--	--
			Kindergarten	--	--	--	1 no.
D	Site $3 \& 4$ (West) Novo Land	2025	Private Housing	--	4,600	--	--
			Retail	5,000	--	--	--
E	Site 4A (East and West) ${ }^{(2)}$	2026	Light Public Housing	--	5,620	--	--
G	Site 4A (South)	2028	PRH	--	1,475	--	--
			Kindergarten	--	--	--	1 no.
H	Site 5	2028	SSF	--	1,020	--	--
			SWF	1,300	--	--	--

TABLE 4.3 THE ADDITIONAL PLANNED / COMMITTED DEVELOPMENTS NEAR THE SUBJECT SITE (CONT’D)

Ref. No.	Development	Intake Year	Land Use	GFA (m^{2})	No. of Flat (no.)	Average Flat Size (m^{2})	No.
Development at San Hing Road and Hong Po Road, Tuen Mun ${ }^{(3)}$							
1	San Hing Road Site	$\begin{gathered} 2030 \\ - \\ 2033 \end{gathered}$	PRH / SSF	--	9,400	--	--
			Primary School	--	--	--	1 nos.
			Kindergarten	--	--	--	2 nos.
			SWF	N/A	--	--	--
J	San Hing Road Site Extension	$\begin{gathered} 2030 \\ - \\ 2033 \\ \hline \end{gathered}$	PRH / SSF	--	1,500	--	--
			Retail	5,000 ${ }^{(4)}$	---	--	--
			Sport Centre	--	--	--	1 no.
K	Ho Pong Road Site	$\begin{gathered} \hline 2030 \\ - \\ 2033 \end{gathered}$	PRH / SSF	--	9,500	--	--
			Retail	5,000 ${ }^{(4)}$	--	--	--
			Kindergarten	--	--	--	2 no.
			SWF	N/A	--	--	--
Other Planning Applications Nearby ${ }^{(5)}$							
L	A/TM-LTYY/ 426	2026	Private Housing	--	184	31	--
M	Y/TM-LTYY/ 10	--	Private Housing	--	288	40	--
N	A/TM-LTYY/ 301	--	NTEH ${ }^{(3)}$	--	1	195	--
O	A/TM-LTYY/ 335	--	NTEH ${ }^{(3)}$	--	1	195	--
P	A/TM-LTYY/ 336	--	NTEH ${ }^{(3)}$	--	1	195	--
Q	A/TM-LTYY/ 370	--	NTEH ${ }^{(3)}$	--	1	195	--
R	A/TM-LTYY/ 371	--	NTEH ${ }^{(3)}$	--	1	195	--
S	A/TM-LTYY/ 372	--	NTEH ${ }^{(3)}$	--	1	195	--

PRH - Public Rental Housing SSF - Subsidised Sale Flats NTEH - New Territories Exempted House SWF - Social Welfare Facilities
(1) extracted from TIA of Approved Planning Applications A/TM/500 and A/TM/583
(2) extracted from Legislative Council Panel on Housing discussion paper $C B(1) 1123 / 2023(02)$ on December 2023
(3) extracted from Tuen Mun District Council discussion paper TMDC 19/2023 on September 2023
(4) No information on area for retail uses is found in public domain, assumed 5,000 m^{2} GFA of retail
(5) extracted from Planning Statement of Approved Planning Applications

Planned Road Improvement Works Nearby

4.9 The planned road improvement works at assessed junctions are presented below.

Development at San Hing Road and Hong Po Road

4.10 Some road improvement works are planned under the "Site Formation and Infrastructure Works for Public Housing Developments at San Hing Road and Hong Po Road, Tuen Mun and Choi Shun Street, Sheung Shui - Investigation, Design and Construction" (Agreement No. CE 39/2021 (CE)) by Civil Engineering and Development Department ("CEDD"), and these are summarized in Table 4.4. The road improvement works are found in Appendix E.

TABLE 4.4 PLANNED ROAD IMPROVEMENT WORKS UNDER AGREEMENT NO. CE 39/2021 (CE) BY CEDD

Ref	Brief Description of the Improvement
	Provide 2 left-turn lanes at Ng Lau Road southbound
J4	Provide 1 left-turn lane at Lam Tei Interchange eastbound
	Provide exclusive left-turn lane from Hong Po Road southbound
$\mathrm{J6}$	Modify the entry lanes from Lam Tei Interchange westbound Jrovide 2 right-turn lanes and 1 shared lane for right turn and straight ahead at Castle Peak $\mathrm{J7}$
Jrovide a channelized island at Tsz Tin Road eastbound*	
J 12	Widened to provide 2lane 2-way single carriageway at minor road

4.11 The improvement work described in Table 4.4 will be completed gradually before 2030 - 2033, i.e., the intake of public housing of San Hing Road site, and San Hing Road site extension and Hong Po Road site (Note: These are items I, J and K in Table 4.3). These improvement works are adopted for the Year 2033 junction capacity analysis.

Hung Shiu Kiu New Development Area

4.12 Road improvement work is planned at Ng Lau Road / Castle Peak Road - Lam Tei (J11) under the "Hung Shui Kiu/Ha Tsuen New Development Area Package A Works for Second Phase Development - Design and Construction" (Agreement No. CE 01/2020 (CE)) by Civil Engineering and Development Department ("CEDD"). The layout of road improvement at J11 is presented in Appendix E.

Net Increase in Traffic Generation between the Approved Scheme and the Proposed Development

4.13 To estimate the traffic generation of the Proposed Development, reference is made to the TPDM. However, the smallest flat size in the TPDM is $60 \mathrm{~m}^{2}$ GFA, which is substantially larger than the Proposed Development average flat size of only $32 \mathrm{~m}^{2}$ GFA. Hence, the estimated traffic generation is conservative, i.e., on the high-side. The adopted trip generation rates and the estimated AM and PM peak hour traffic generation are presented in Table 4.5.

TABLE 4.5 ADOPTED TRIP RATES AND TRAFFIC GENERATION FOR PROPOSED DEVELOPMENT

Proposed Development	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
Trip Rates(pcu/ flat/ hr)	0.0718	0.0425	0.0286	0.0370
Residential Use with average $60 \mathrm{~m}^{2}$ GFA				
Traffic Generations (pcu/ hr)	$\mathbf{1 0 0}$	$\mathbf{5 9}$	$\mathbf{4 0}$	$\mathbf{5 2}$
$\mathbf{1 , 3 8 5}$ flats with average flat about $\mathbf{3 2 m}^{\mathbf{2}} \mathbf{~ G F A}$	$\mathbf{1 5 9}$	$\mathbf{9 2}$		

4.14 The traffic generation of Approved Scheme found in the approved traffic impact assessment is presented in Table 4.6.

TABLE 4.6 ADOPTED TRAFFIC GENERATION FOR APPROVED SCHEME

Scheme			AM Peak		PM Peak	
	Generation	Attraction	Generation Attraction			
Approved Scheme	$\underline{37}$	$\underline{22}$	18			
	23					

4.15 The net increase in traffic generation between the Approved Scheme and the Proposed Development is presented in Table 4.7.

TABLE 4.7 NET INCREASE IN TRAFFIC GENERATION

Scheme	Traffic Generation (pcu/ hr)			
	AM Peak		PM Peak	
	Generation	Attraction	Generation	Attraction
Proposed Development (from Table 4.4) [a]	100	59	40	52
Approved Scheme (from Table 4.5) [b]	37	22	18	23
Net Increase [a] - [b]:	+63	+37	+22	+29
	+100		+51	

4.16 Table 4.7 shows that the Proposed Development is expected to generate 100 and 51 additional pcu (2-way) in AM and PM peak respectively.

Year 2033 Traffic Flows

4.17 Year 2033 traffic flows for the following cases are derived:

Year 2033 Without = Traffic flows derived with reference to 2031 NTW1 BDTM

Proposed Development
[A]

+ estimated traffic growth between 2031 and 2033 + estimated traffic generation of the planned / committed developments after 2019

Year 2033 With Approved = [A]+ estimated traffic generation for Approved Scheme Scheme [B]

Year 2033 With Proposed $=[B]+$ net increase in traffic generation by Proposed Development [C] Development
4.18 Year 2033 peak hour traffic flows for the above three cases are shown in Figures 4.2 - 4.4 respectively.

Year 2033 Junction Capacity Analysis

4.19 Year 2033 junction capacity analysis for the three cases are summarised in Table 4.7 and detailed calculations are found in the Appendix A.

TABLE 4.8 YEAR 2033 JUNCTION PERFORMANCE

Ref	Junction	Type of Junction (Parameter)	2033 Without Proposed Development		2033 With Approved Scheme		2033 With Proposed Development	
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
J1	Unnamed Road/ Access Road	Priority (DFC)	0.055	0.049	0.056	0.050	0.059	0.051
J2	Ng Lau Road/ Unnamed Road	Priority (DFC)	0.052	0.046	0.128	0.079	0.266	0.125
J3	Ng Lau Road/ Lam Tei Interchange	Signal (RC)	42\%	48\%	39\%	46\%	35\%	44\%
J4	Tsing Lun Road/ Hong Po Road/Lam Tei Interchange	RA (DFC)	0.694	0.659	0.703	0.666	0.719	0.675
J5	Lam Tei Interchange	RA (DFC)	0.797	0.668	0.806	0.677	0.822	0.691
J6	Lam Tei Interchange/ Castle Peak Road Lam Tei	Signal (RC)	26\%	49\%	26\%	49\%	26\%	49\%
J7	Tsing Lun Road/ Tsz Tin Road	Signal (RC)	23\%	61\%	22\%	60\%	21\%	59\%
J8	San Hing Road/ Ng Lau Road (Southern)	Priority (DFC)	0.091	0.055	0.094	0.060	0.100	0.065
J9	San Hing Road/ Ng Lau Road (Northern)	Priority (DFC)	0.198	0.448	0.198	0.448	0.198	0.448
J10	T-junction at San Hing Road	Priority (DFC)	0.058	0.071	0.059	0.074	0.063	0.078
J11	Ng Lau Road / Castle Peak Road - Lam Tei	Signal (RC)	16\%	15\%	16\%	15\%	16\%	15\%
J12	San Hing Road / Hong Po Road	Signal (RC)	55\%	96\%	121\%	197\%	116\%	195\%

Note: RC - reserve capacity; RA - Roundabout, DFC - design flow/capacity ratio
4.20 Table 4.8 shows that the Proposed Development has negligible traffic impact to the road junctions analysed.

Year 2033 Link Performance

4.21 The 2033 link performances are assessed and the results are shown in Table 4.9.

TABLE 4.9 YEAR 2033 LINK CAPACITY ASSESSMENT

Ref	Link		Adjusted Design Flow (veh /hr)		Year 2033 Traffic Demand (veh/hr)						Year 2033 V/C Ratio							
			Without Proposed Development	With Approved Scheme		With Proposed Development		Without Proposed Development		With Approved Scheme		With Proposed Development						
			AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak		
L1	Castle Pea	NB			2,604	2,604	864	1,434	864	1,434	865	1,434	0.33	0.55	0.33	0.55	0.33	0.55
	Road - Lam Tei	SB	2,604	2,604	1,810	1,238	1,810	1,238	1,812	1,240	0.70	0.48	0.70	0.48	0.70	0.48		
L2	Castle Peak	NB	2,800	2,800	501	581	501	581	502	582	0.18	0.21	0.18	0.21	0.18	0.21		
	Road - Lingnan	SB	2,604	2,800	808	562	810	562	812	563	0.31	0.20	0.31	0.20	0.31	0.20		
L3	Yuen Long	NB	4,700	4,700	5,677	6,373	5,683	6,377	5,694	6,384	1.21	1.36	1.21	1.36	1.21	1.36		
	Highway	SB	4,700	4,700	5,099	5,190	5,104	5,195	5,111	5,198	1.09	1.10	1.09	1.11	1.09	1.11		
L4	Tuen Mun Road	NB	4,700	4,700	6,103	7,445	6,115	7,456	6,131	7,469	1.30	1.59	1.30	1.59	1.30	1.59		
		SB	4,700	4,700	6,135	5,542	6,147	5,548	6,163	5,557	1.31	1.18	1.31	1.18	1.31	1.18		
L5	San Hing Road	2-way	800	800	174	80	187	84	212	91	0.22	0.10	0.23	0.11	0.27	0.11		
L6	Ng Lau Road (north of J9)	2-way	744	800	251	370	251	370	251	370	0.34	0.46	0.34	0.46	0.34	0.46		
L7	Ng Lau Road (south of J2)	2-way	800	800	411	436	467	497	512	508	0.51	0.55	0.58	0.62	0.64	0.64		
L8	Lam Tei Interchange (between J3 and J5)	EB	2,800	2,800	1,731	1,180	1,752	1,191	1,784	1,208	0.62	0.42	0.63	0.43	0.64	0.43		
		WB	2,800	2,800	1,779	1,705	1,798	1,722	1,826	1,742	0.64	0.61	0.64	0.62	0.65	0.62		
L9	Tsing Lun Road	NB	1,900	1,900	823	628	842	657	827	633	0.43	0.33	0.44	0.35	0.44	0.33		
		SB	1,900	1,900	1,275	929	1,282	932	1,296	933	0.67	0.49	0.67	0.49	0.68	0.49		

$N B$ - northbound $\quad S B$ - southbound $\quad E B$ - eastbound $\quad W B$ - westbound
4.22 The above results show that the assessed road links operate with sufficient capacity, except for Yuen Long Highway (L3) and Tuen Mun Road (L4), both which operate with V/C ratios at 1.2 or above during the AM and PM peak hours in Year 2033. In view that there are no changes on the V/C ratios to L3 and L4 for cases without Proposed Development, with Approved Scheme and with Proposed Development, it can be concluded that the traffic generated due to the Proposed Development have negligible impact. With the planned strategic road improvement works, both Yuen Long Highway and Tuen Mun Road are expected to operate with sufficient capacity in Year 2033.

5.0 IMPACT TO PUBLIC TRANSPORT SERVICES

2033 Public Transport Occupancy Forecasting

5.12033 peak hour public transport occupancy is estimated based on (i) public transport demand growth from 2024 to 2033; and (ii) public transport demand generated by the Proposed Development and planned / committed developments in the vicinity.

Annual Public Transport Demand Growth Rate between 2024-2033
5.2 To establish the local public transport demand growth rate from 2024 to 2033, reference is made to several sources of information including:

- 2024 - 2029: "Projections of Population Distribution 2021 - 2029" published by Planning Department
- 2029 - 2033: "Hong Kong Population Projections" from the Census and Statistics Department
5.3 The "Projections of Population Distribution 2021 - 2029" has Tertiary Planning Units ("TPU"), i.e., the local area population projections up to 2025, and reference is made to 5 relevant TPUs, which are presented in Table 5.1.

TABLE 5.1 POPULATION PROJECTIONS OF THE 5 TPUS

Year	TPU				Total
	$\mathbf{4 2 3 ~ \& ~ 4 2 8}$	$\mathbf{4 2 5}$	$\mathbf{4 4 1}$	$\mathbf{4 4 2}$	
2024	225,800	70,200	16,600	7,100	319,700
2025	227,100	71,300	16,300	7,100	321,800
Average Annual Growth 2024 to $\mathbf{2 0 2 5}$	$\mathbf{0 . 5 8 \%}$	$\mathbf{1 . 5 7 \%}$	$\mathbf{- 1 . 8 1 \%}$	$\mathbf{0 . 0 0 \%}$	$\mathbf{0 . 6 6 \%}$

5.4 Table 5.1 shows that the average annual population growth between 2024 and 2025 is 0.66%.
5.5 Between 2025 and 2029, reference is made to the population growth of Tuen Mun New Town, and population projections are presented in Table 5.2.

TABLE 5.2 TUEN MUN NEW TOWN POPULATION PROJECTIONS

Year	Tuen Mun New Town Population
2025	557,400
2029	575,400
Average Annual Growth 2025 to 2029	$\mathbf{0 . 8 0 \%}$

5.6 Table 5.2 shows that the average annual population growth in the Tuen Mun New Town between 2025 and 2029 is 0.8%.
5.7 Beyond 2029, reference is made to the "Hong Kong Population Projections" from the Census and Statistics Department, which is presented in Table 5.3.

TABLE 5.3 HONG KONG POPULATION PROJECTIONS FROM CENSUS AND STATISTICS DEPARTMENT

Year	Hong Kong Resident Population ('000)
2029	$7,731.1$
2033	$7,903.6$
Average Annual Growth 2029 to 2033	$\mathbf{0 . 5 5 \%}$

5.8 Table 5.3 shows that the average annual population growth in Hong Kong between $2029-2033$ is 0.55%.
5.9 Based on the above, the annual growth factors adopted are 0.66% from 2024 to 2025, 0.8\% between 2025 and 2029, and 0.55\% between 2029 and 2033.

Estimated Peak Hour Mechanised Trip Generation of Subject Site

5.10 The mechanised trip generation of the Subject Site is estimated with reference to Travel Characteristic Survey 2011 and are presented in Table 5.4.

TABLE 5.4 ESTIMATED PEAK HOUR MECHANISED TRIP GENERATION OF THE SUBJECT SITE

Parameter	Calculation	Unit	Approved Scheme	Proposed Development
No. of Flats	A	flats	307	1,385
Average domestic household size in Tuen Mun ${ }^{(1)}$	B	persons/ flat	2.6	2.6
Population	$\mathrm{C}=\mathrm{B} \times \mathrm{A}$	persons	812	966
Average Daily Mechanised Trips ${ }^{(2)}$	D	trips/ persons/ day	1.83	1.83
Peak hour factor of Daily Mechanised Trips ${ }^{(3)}$	E	N / A	12%	12%
Estimated Peak Hour Mechanised Trip Generation	$\mathrm{D}=$ $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$	persons/hr	176	791

${ }^{(1)}$ Extracted from Census and Statistic Department website
${ }^{(2)}$ From Table 3.3, Travel Characteristics Survey 2011 Final Report
${ }^{(3)}$ From Para. 3.3.7, Travel Characteristics Survey 2011 Final Report

Estimated Public Transport Demand Generated by the Subject Site

5.11 The transport mode of the Subject Site in the vicinity is assumed with reference to "Travel Characteristic Survey 2011" and is presented in Table 5.4, and the estimated public transport demand is calculated and shown in Table 5.5.

TABLE 5.5 TRANSPORT MODE OF THE SUBJECT SITE

Transport Mode		Ratio ${ }^{(1)}$	The Subject Site			
			Proposed Development [b]	Net Increase in Passenger Demand $[C]=[b]-[a]$		
Public Transport	Rail-based [a]		44\% ${ }^{(2)}$	77	348	+271
	Road-based $[\mathrm{b}]$	38\% ${ }^{(2)}$	67	301	+234	
	Sub-total $[c]=[a]+[b]$	82\%	144	649	+505	
Private Car/ Taxi [d]		18\%	32	142	+110	
Total	[e$]=[\mathrm{c}]+[\mathrm{d}]$	100\%	176	791	+615	

(1) From Table 3.6, Travel Characteristics Survey 2011 Final Report
${ }^{(2)}$ Adjusted based on local public transport provision near the subject site
5.12 Table 5.5 shows that compared with the Approved Scheme, the Proposed Development is expected to generate additional public transport demand of 505 passengers per hour (2-way) during both AM and PM peak hours. The roadbased public transport demand generated by the subject site is summarised in Table 5.6.

TABLE 5.6 ESTIMATED ROAD-BASED PUBLIC TRANSPORT DEMAND GENERATED BY THE SUBJECT SITE

Development		Road-based Public Transport Demand (persons / hour)			
		AM Peak		PM Peak	
		Generation	Attraction	Generation	Attraction
The Subject Site	Approved Scheme: 307 Flats [a]	61	6	6	61
	Proposed Development: 1,385 Flats [b]	271	30	30	271
	Net increase of road-based Passenger	210	24	24	210
	Demand [b] - [a]	+234 (2-way)		+234 (2-way)	

5.13 Tables 5.6 shows that compared with the Approved Scheme, the Proposed Development is expected to generate additional road-based public transport demand of 234 passengers per hour (2-way) during both AM and PM peak hours.

Public Transport Demand Generated by Planned / Committed Developments in the Vicinity
5.14 The public transport demand generated by planned / committed developments in the vicinity as presented in Table 4.3 is considered in the Year 2033 public transport demand. Public transport interchanges are provided for the 2 planned development areas, i.e., "Tuen Mun Area 54" and "Development at San Hing Road and Hong Po Road, Tuen Mun". It is assumed that the public transport services provided would be sufficient to serve the demand generated by these development areas.

2033 Road-based Public Transport Occupancies

5.15 Year 2033 road-based public transport occupancies were derived with reference to the (i) observed road-based public transport occupancies in Table 2.4; (ii) annual public transport demand growth rate; and (iii) expected road-based public transport demand due to the planned / committed developments between 2024 - 2033 and the subject site.
5.16 Year 2033 road-based public transport occupancies were derived as follows:

2033 without the $=2024$ observed occupancy + adopted road-based public

Proposed Development
[A] Scheme [B] Development [C]

2033 with the Approved $=[A]+$ estimated road-based public transport demand

2033 with the Proposed $=[B]+$ net increase in estimated road-based public transport demand growth from 2024 to 2033 + estimated road-based public transport demand due to the planned / committed developments due to Approved Scheme transport demand by Proposed Development
5.17 The Year 2033 road-based public transport occupancies for the three cases are summarised in Table 5.7.

TABLE 5.7 YEAR 2033 ROAD-BASED PUBLIC TRANSPORT OCCUPANCY OPERATING NEARBY DURING PEAK HOURS

Direction	Case	AM Peak			PM Peak		
		No. of Passenger		Occupancy$[c]=[b] /[a]$	No. of Passenger		Occupancy$[f]=[e] /[d]$
		Capacity [a]	Occupied [b]		Capacity [d]	Occupied [e]	
To other districts	Without Proposed Development	11,821	4,621	39\%	2,776	846	30\%
	With Approved Scheme	11,821	4,682	40\%	2,776	852	31\%
	With Proposed Development	11,821	4,892	41\%	2,776	876	32\%
From other districts	Without Proposed Development	3,181	1,049	33\%	9,121	2,031	22\%
	With Approved Scheme	3,181	1,055	33\%	9,121	2,092	23\%
	With Proposed Development	3,181	1,079	34\%	9,121	2,302	25\%

5.18 Table 5.7 shows that the road-based public transport demand associated with the Proposed Development has negligible impact.

2033 Rail-Based Public Transport Occupancies

5.19 Table 5.5 shows that the demand on rail-based public transport services, i.e. MTR Tuen Ma Line, associated with the Proposed Development is no more than 348 passengers during the peak hours. As shown in Table 2.5, the MTR Tuen Ma Line has a maximum carrying capacity of 70,000 passenger / hour. Hence, the additional passenger demand is only 0.5% of the maximum carrying capacity [Calculation: $348 \div 70,000=0.5 \%$], which is negligible on the MTR Tuen Ma Line.

6.0 PEDESTRIAN IMPACT

2033 Pedestrian Flow Forecasting

6.1 2033 peak 15-minute pedestrian flows are produced by estimating (i) the pedestrian growth from 2024 to 2033; and (ii) expected pedestrian generated by the Proposed Development and planned / committed developments in the vicinity.

Annual Pedestrian Growth Rate between 2024-2033
6.2 Growth rates of 0.66% per annum from 2024 to $2025,0.8 \%$ per annum for the period between 2025 and 2029, and 0.55% per annum for the period between 2029 and 2033, are adopted, and reference to these are found in Paragraphs 5.2 - 5.9.

Peak 15-minute Pedestrian Generated by Planned / Committed Developments in the Vicinity

6.3 Peak 15-minute pedestrian generated by planned / committed developments in the vicinity as presented in Table 4.3 is included in the Year 2033 pedestrian flow.

Peak 15-minute Pedestrian Generation of by the Proposed Development
6.4 Based on public transport demand presented in Table 5.5, the peak 15-minute pedestrian generations of the Subject Site are shown in Table 6.1.

TABLE 6.1 PEDESTRIAN GENERATIONS OF THE SUBJECT SITE

Developments		Pedestrian Generations (ped / 15-minute)			
		AM Peak		PM Peak	
		GEN	ATT	GEN	ATT
The	Approved Scheme: 307 Flats [a]	21	2	2	21
Subject	Proposed Development: 1385 Flats [b]	91	10	10	91
Site	Net Increase of Pedestrian Generation[b] - [a]	+70	+8	+8	+70
		+ 78 (2-way)		+78 (2-way)	

6.5 Tables 6.1 shows that compared with the Approved Scheme, the additional pedestrian generated by the Proposed Development is 78 persons (2-way) during both AM and PM peak 15 minutes.

Year 2033 Pedestrian Flows

6.6 Year 2033 pedestrian flows are produced with reference to (i) the observed 2024 pedestrian flows, (ii) annual pedestrian growth rate between 2024 - 2033, (iii) expected pedestrian generation due to the planned / committed developments between 2024-2033 and the Subject Site.
6.7 Year 2033 pedestrian flows for the footpath analysis were derived as follows:

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4"

2033 without Proposed $=2024$ observed pedestrian flows + Adopted pedestrian

Development [A]

2033 with Approved $=[A]+$ pedestrian generation due to Approved Scheme Scheme [B]

2033 with Proposed $=[B]+$ net increase in pedestrian generation due to Development [C] growth from 2024 to 2033 + estimated pedestrian due to the planned / committed developments

Year 2033 LOS Analysis

6.8 Year 2033 peak 15-minute pedestrian flows for the three cases are estimated and presented in Figure 6.1 and the corresponding LOS assessment is presented in Table 6.2.

TABLE 6.2 YEAR 2033 LOS ASSESSMENT

Location	Clear Width ${ }^{(1)}$ [Effective Width] (m)	Peak Period	2033 without Proposed Development			2033 with Approved Scheme			2033 with Proposed Development		
			Flow	Flow rate	LOS	Flow	Flow rate	LOS	Flow	Flow rate	LOS
P1. Footpath on $\begin{aligned} & \text { footbridge } \\ & \\ & \\ & \text { Ng Lau Road }\end{aligned}$	2.0[1.5]	AM	80	3.6	A	92	4.1	A	131	5.8	A
		PM	62	2.8	A	74	3.3	A	113	5.0	A
P2. Footpath between Lam Tei LRT stop and bus stop at Castle Peak Road - Lam Tei	2.5[1.5]	AM	130	5.8	A	136	6.0	A	156	6.9	A
		PM	93	4.1	A	99	4.4	A	119	5.3	A
P3. Footbridge over Castle Peak Road - Lam Tei	2.5[1.5]	AM	79	3.5	A	85	3.8	A	105	4.7	A
		PM	40	1.8	A	46	2.0	A	66	2.9	A

Note: Flows in pedestrian / 15 minutes flow rates in pedestrian / 15 minutes / meter
${ }^{(1)}$ The width excludes railing and obstructions.
6.9 The results in Table $\mathbf{6 . 2}$ show that the assessed footpaths operate with LOS A, i.e., have sufficient capacity to accommodate the expected pedestrian growth and additional pedestrian generated due to Proposed Development.

7.0 SUMMARY

7.1 The Subject Site is located in D.D.130, Lam Tei, Tuen Mun. At present, the Subject Site is unoccupied, and access to the Subject Site is via an existing unnamed road which is connected to Ng Lau Road.
7.2 Manual classified counts were conducted at junctions which are located in the vicinity in order to establish the existing traffic flows during AM Peak and PM peak hours.
7.3 The internal transport facilities provided comply with recommendations of the HKPSG and comments from Transport Department.
7.4 Year 2033 peak hour traffic flows for the junction capacity analysis is produced (i) with reference to the BDTM; (ii) estimated growth from 2031 to 2033; (iii) expected traffic generation by the planned / committed developments in the vicinity; and (iv) expected traffic generation by the 2 cases, i.e., Approved Scheme and Proposed Development.
7.5 Compared to the Approved Scheme, the Proposed Development will generate only 100 and 51 additional pcu (2-way) in AM peak and PM peak respectively.
7.6 The assessment of the nearby public transport services found that the Proposed Development has negligible impact. The assessment of footpaths found that the Proposed Development has negligible impact.
7.7 This TIA concluded that compared with the Approved Scheme, the traffic generated by the Proposed Development is negligible. The Proposed Development is acceptable from traffic engineering terms.

Figures

Priority Junction Analysis

Junction:	Unnamed Road / Access Road			
Design Year:	2023 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	Existing Condition			P. 1

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	5.70	V-rBA	100	w-BA	2.05	D	0.8093	
W-CR	0.00	V-IBA	100	w-BC	2.05	E	0.8343	
		V-rBC	100	w-CB	2.70	F	0.8943	
		V-rCB	100			Y	0.8034	

Analysis :

Traffic Flows, pcu/hr	AM		PM Capacity, pcı	AM	PM
q-CA	9	16	Q-BA	502	501
q-CB	0	0	Q-BC	617	618
q-AB	0	0	Q-CB	662	662
q-AC	18	16	Q-BAC	502	501
q-BA	0	0			
q-BC	0	0			
f	0.000	0.000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.000	0.000
B-C	0.000	0.000
C-B	0.000	0.000
B-AC	0.000	0.000

Priority Junction Analysis

Junction:	Unnamed Road / Access Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	Without Development			P. 2

Access Road (Arm C)
 Unnamed Road (Arm A)

$\underline{0}$	0	\longrightarrow

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.90	V-rBA	60	w-BA	4.70	D	0.8093	
W-CR	0.00	V-IBA	90	w-BC	0.00	E	0.8343	
		V-rBC	0.00	W-CB	0.00	F	0.8943	
		V-rCB	55			Y	0.8034	

Analysis :

Traffic Flows, pcu/hr	AM		PM Capacity, pcu/hr	AM	PM
q-CA	0	0	Q-BA	506	506
q-CB	0	0	Q-BC	620	620
q-AB	15	20	Q-CB	662	661
q-AC	0	0	Q-BAC	506	506
q-BA	28	25			
q-BC	0	0			
f	0.000	0.000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.055	0.049
B-C	0.000	0.000
C-B	0.000	0.000
B-AC	0.055	0.049

Priority Junction Analysis

Junction:	Unnamed Road / Access Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Approved Scheme			P. 3

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.90	V-rBA	60	W-BA	4.70	D	0.8093	
W-CR	0.00	V-IBA	90	W-BC	0.00	E	0.8343	
		V-rBC	0.00	W-CB	0.00	F	0.8943	
		V-rCB	55			Y	0.8034	

Analysis :

Traffic Flows, pcu/hr	AM		PM	Capacity, pcu/hr	AM
q-CA	36	17	Q-BA	496	498
q-CB	0	0	Q-BC	615	615
q-AB	15	20	Q-CB	657	656
q-AC	21	21	Q-BAC	496	498
q-BA	28	25			
q-BC	0	0			
f	0.000	0.000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.056	0.050
B-C	0.000	0.000
C-B	0.000	0.000
B-AC	0.056	0.050

Priority Junction Analysis

Junction:	Unnamed Road / Access Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Proposed Scheme			P. 4

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-$ rBA -120$)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.90	V-rBA	60	w-BA	4.70	D	0.8093	
W-CR	0.00	V-IBA	90	W-BC	0.00	E	0.8343	
		V-rBC	0.00	W-CB	0.00	F	0.8943	
		V-rCB	55			Y	0.8034	

Analysis :

Traffic Flows, pcu/hr	AM	PM	Capacity, pcu/hr	AM	PM
q-CA	100	40	Q-BA	477	487
q-CB	0	0	Q-BC	606	607
q-AB	15	20	Q-CB	647	647
q-AC	59	52	Q-BAC	477	487
q-BA	28	25			
q-BC	0	0			
f	0.000	0.000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.059	0.051
B-C	0.000	0.000
C-B	0.000	0.000
B-AC	0.059	0.051

Priority Junction Analysis

Junction:	Ng Lau Road / Unnamed Road			
Design Year:	2023 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	Existing Condition			P. 5

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	8.65	V-rBA	30	W-BA	2.05	D	0.7574	
W-CR	0.00	V-IBA	100	W-BC	2.05	E	0.7808	
		V-rBC	30	W-CB	4.70	F	1.0394	
		V-rCB	60			Y	0.7016	

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM	Capacity, pcu/hr	AM	PM
116	231	Q-BA	422	411
8	14	Q-BC	545	549
1	2	Q-CB	725	730
186	165	Q-BAC	545	537
0	1			
18	15			
1.000	0.938			

Ratio-of-flow to Capacity	AM	PM
B-A	0.000	0.002
B-C	0.033	0.027
C-B	0.011	0.019
B-AC	0.033	0.030

Priority Junction Analysis

Junction:	Ng Lau Road / Unnamed Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	Without Development			P. 6

The predictive equations of capacity of movement are:
$\mathrm{Q}-\mathrm{BA}=\mathrm{D}[627+14 \mathrm{~W}-\mathrm{CR}-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB}+0.229 \mathrm{q}-\mathrm{CA}+0.52 \mathrm{q}-\mathrm{CB})]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	7.50	V-rBA	20	w-BA	2.05	D	0.7574	
W-CR	0.00	V-IBA	90	w-BC	2.05	E	0.7808	
		V-rBC	20	w-CB	4.70	F	1.0394	
		V-rCB	25			Y	0.7016	

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
219	252
15	20
0	0
219	187
0	0
28	25
1.000	1.000

Ratio-of-flow to Capacity	AM	PM
B-A	0.000	0.000
B-C	0.052	0.046
C-B	0.021	0.028
B-AC	0.052	0.046

Priority Junction Analysis

Junction:	Ng Lau Road / Unnamed Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Approved Scheme			P. 7

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	7.50	V-rBA	20	w-BA	2.05	D	0.7574	
W-CR	0.00	V-IBA	90	w-BC	2.05	E	0.7808	
		V-rBC	20	w-CB	4.70	F	1.0394	
		V-rCB	25			Y	0.7016	

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
219	252
35	39
1	2
219	187
14	3
50	39
0.781	0.929

Ratio-of-flow to Capacity	AM	PM
B-A	0.035	0.008
B-C	0.093	0.072
C-B	0.049	0.054
B-AC	0.128	0.079

Priority Junction Analysis

Junction:	Ng Lau Road / Unnamed Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Proposed Scheme			P. 8

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	7.50	V-rBA	20	w-BA	2.05	D	0.7574	
W-CR	0.00	V-IBA	90	W-BC	2.05	E	0.7808	
		V-rBC	20	w-CB	4.70	F	1.0394	
		V-rCB	25			Y	0.7016	

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
219	252
71	68
3	4
219	187
38	8
90	57
0.703	0.877

Capacity, pcu/hr	AM	PM
Q-BA	386	389
Q-BC	538	544
Q-CB	715	724
Q-BAC	482	519

Ratio-of-flow to Capacity	AM	PM
B-A	0.098	0.021
B-C	0.167	0.105
C-B	0.099	0.094
B-AC	0.266	0.125

Signal Junction Analysis

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c} *
From A	101	109	760	197					1167	253
From B	181	0	76	21					278	1231
From C	504	41	10	29					584	610
From D	328	39	53	1					421	946
From E										
From F										
From G										
From H										
Total	1114	189	899	248					2450	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c} *
From A	204	90	692	311					1297	201
From B	91	0	67	22					180	1350
From C	404	32	18	37					491	720
From D	160	26	33	2					221	839
From E										
From F										
From G										
From H										
Total	859	148	810	372					2189	

Legend		Geometric Parameters							
Arm	Road (in clockwise order)	Arm	e (m)	v (m)	r (m)	L (m)	D (m)	$\varnothing\left({ }^{\circ}\right)$	S
A	Slip Road from Lam Tei Interchange	From A	10.0	7.3	20.0	10.0	55	45	0.4
B	Access Road from Siu Hong Station	From B	9.0	6.8	28.0	4.0	55	19	0.9
C	Tsing Lun Road	From C	11.5	7.8	100.0	9.0	55	23	0.7
D	Hong Po Road	From D*	6.0	4.5	27.0	6.0	55	10	0.4
E		From E							
F		From F							
G		From G							
H		From H							

Geometric Parameters
Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / r)-0.05]$
F	$=303 x_{2}$
f_{c}	$=0.210 t_{D}\left(1+0.2 x_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(D-60) / 10]$
x_{2}	$=v+(e-v) /(1+2 S)$
S	$=1.6(e-v) / L$

* Parameter in existing condition is adjusted for TTA

Limitation
e
Entry Width
v
r
Approach Half Width
L Entry Radius
D
Effective Length of Flare
\varnothing Inscribed Circle Diameter
S
Entry Angle
Sharpness of Flare

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | PM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 8.748 | 0.607 | 1.311 | 0.948 | 2651 | 0.757 | 2331 | 2369 | 1167 | 1297 | 0.501 | 0.548 |
| From B | 7.597 | 0.607 | 1.311 | 1.051 | 2302 | 0.694 | 1522 | 1435 | 278 | 180 | 0.183 | 0.125 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2514 | 2421 | 584 | 491 | 0.232 | 0.203 |
| From D | 5.333 | 0.607 | 1.311 | 1.082 | 1616 | 0.569 | 1166 | 1232 | 421 | 221 | 0.361 | 0.179 |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Without Development			Page		14
Design Year 2033	Job Number	J7265	Date	21 Feb	2024

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	329	0	995	503					1827	427
From B	196	0	86	20					302	2148
From C	796	50	11	121					978	1048
From D	699	56	310	0					1065	1382
From E										
From F										
From G										
From H										
Total	2020	106	1402	644					4172	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	418	0	801	604					1823
From B	107	0	76	25					267
From C	539	41	20	146					746
From D	431	40	166	0					1154
From E									
From F									
From G									
From H									
Total	1495	81	1063	775					

Legend

Arm	Road (in clockwise order)
A	Slip Road to Lam Tei Interchange
B	Access Road to Siu Hong Station
C	Tsing Lun Road
D	Hong Po Road
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	6.0	55	19	0.6
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | PM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 9.381 | 0.607 | 1.311 | 1.051 | 2842 | 0.792 | 2632 | 2765 | 1827 | 1823 | 0.694 | 0.659 |
| From B | 7.812 | 0.607 | 1.311 | 1.051 | 2367 | 0.706 | 895 | 998 | 302 | 208 | 0.337 | 0.208 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2144 | 2055 | 978 | 746 | 0.456 | 0.363 |
| From D | 10.493 | 0.607 | 1.311 | 1.094 | 3179 | 0.853 | 2188 | 2428 | 1065 | 637 | 0.487 | 0.262 |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Location	Tsing Lun Road / Hong Po Road / Lam Tei Interchange							
Scenario	With Approved Scheme		Page					
Design Year	2033	Job Number	J7265		Date			

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	347	0	995	503					1845
From B	196	0	86	20					435
From C	798	50	11	121				980	2174
From D	699	56	318	0			1073	1402	
From E									
From F									
From G									
From H									
Total	2040	106	1410	644					

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	435	0	801	604					1840
From B	107	0	76	25					269
From C	541	41	20	146					208
From D	0	40	168	0					748
From E									
From F									
From G									
From H									
Total	1083	81	1065	775		3004			

Legend

Arm	Road (in clockwise order)
A	Slip Road to Lam Tei Interchange
B	Access Road to Siu Hong Station
C	Tsing Lun Road
D	Hong Po Road
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | PM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 9.381 | 0.607 | 1.311 | 1.051 | 2842 | 0.792 | 2625 | 2764 | 1845 | 1840 | 0.703 | 0.666 |
| From B | 7.597 | 0.607 | 1.311 | 1.051 | 2302 | 0.694 | 834 | 941 | 302 | 208 | 0.362 | 0.221 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2129 | 2041 | 980 | 748 | 0.460 | 0.367 |
| From D | 10.493 | 0.607 | 1.311 | 1.094 | 3179 | 0.853 | 2169 | 2410 | 1073 | 208 | 0.495 | 0.086 |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Roundabout Analysis

Location	Tsing Lun Road / Hong Po Road / Lam Tei Interchange				
Scenario					
With Proposed Scheme		Page	16		
Design Year	$\underline{2033}$	Job Number	$\underline{J 7265}$	Date	$\underline{21 \text { February } 2024}$

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	380	0	995	503					1878
From B	196	0	86	20					450
From C	801	50	11	121					902
From D	699	56	333	0				1088	1438
From E									
From F									
From G									
From H									
Total	2076	106	1425	644					

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	460	0	801	604					1865
From B	107	0	76	25					272
From C	545	41	20	146					
From D	0	40	171	0					752
From E									
From F									
From G									
From H									
Total	1112	81	1068	775					

Legend

Arm	Road (in clockwise order)
A	Slip Road to Lam Tei Interchange
B	Access Road to Siu Hong Station
C	Tsing Lun Road
D	Hong Po Road
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	11.0	7.8	30.0	10.0	55	20	0.5
From B	9.0	6.8	28.0	4.0	55	19	0.9
From C	11.5	7.8	100.0	9.0	55	23	0.7
From D	14.0	8.5	40.0	10.0	55	10	0.9
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | PM |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 9.381 | 0.607 | 1.311 | 1.051 | 2842 | 0.792 | 2613 | 2761 | 1878 | 1865 | 0.719 | 0.675 |
| From B | 7.597 | 0.607 | 1.311 | 1.051 | 2302 | 0.694 | 799 | 920 | 302 | 208 | 0.378 | 0.226 |
| From C | 9.398 | 0.607 | 1.311 | 1.063 | 2848 | 0.793 | 2101 | 2020 | 983 | 752 | 0.468 | 0.372 |
| From D | 10.493 | 0.607 | 1.311 | 1.094 | 3179 | 0.853 | 2136 | 2383 | 1088 | 211 | 0.509 | 0.089 |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Roundabout Analysis

Location					
Scenario				Page	
	Existing Condition			17	
Design Year	$\underline{2023}$		Job Number	$\underline{J 7265}$	Date

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	16	0	878						894
From B	292	3	275						605
From C	317	589	13						
From D									
From E									
From F									
From G									
Total	625	592	1166						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	7	0	891						898
From B	266	0	380						448
From C	175	422	26						646
From D									
From E									
From F									
From G									
From H									
Total	448	422	1297						

Legend

Arm	Road (in clockwise order)
A	Slip Road to Castle Peak Road
B	Slip Road to Tuen Mun Road
C	Slip Road to Tsing Lun Road
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1864 | 1984 | 894 | 898 | 0.480 | 0.453 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1777 | 1763 | 570 | 646 | 0.321 | 0.366 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2064 | 2093 | 919 | 623 | 0.445 | 0.298 |
| From D | | | | | | | | | | | | |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Lam Tei Interchange			
Scenario Without Development			Page 18
Design Year 2033	Job Number J7265	Date	21 February 2024

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total	q_{c}
From A	18	0	1162						1180	995
From B	323	0	775						1098	1192
From C	632	983	12						1627	341
From D										
From E										
From F										
From G										
From H										
Total	973	983	1949						3905	

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	15	0	1137						1152
From B	283	0	759						703
From C	379	677	26						1042
From D								1178	
From E									
From F									
From G									
From H									
Total	677	677	1922						

Legend

Arm	Road (in clockwise order)
A	Slip Road to Castle Peak Road
B	Slip Road to Tuen Mun Road
C	Slip Road to Tsing Lun Road
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1565 | 1789 | 1180 | 1152 | 0.754 | 0.644 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1549 | 1560 | 1098 | 1042 | 0.709 | 0.668 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2041 | 2074 | 1627 | 1082 | 0.797 | 0.522 |
| From D | | | | | | | | | | | | |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	18	0	1168						1186
From B	323	0	787						1008
From C	637	996	12						1110
From D									
From E									
From F									
From G									
From H									
Total	978	996	1967						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	15	0	1142						1157
From B	283	0	771						711
From C	382	685	26						1054
From D									1183
From E									
From F									
From G									
From H									
Total	680	685	1939						

Legend

Arm	Road (in clockwise order)
A	Slip Road to Castle Peak Road
B	Slip Road to Tuen Mun Road
C	Slip Road to Tsing Lun Road
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1555 | 1783 | 1186 | 1157 | 0.762 | 0.649 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1544 | 1556 | 1110 | 1054 | 0.719 | 0.677 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2041 | 2074 | 1645 | 1093 | 0.806 | 0.527 |
| From D | | | | | | | | | | | | |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Location L	ntercha					
Scenario W	osed S				Page	20
Design Year	2033	Job Number	J7265	Date	21 Feb	2024

AM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	18	0	1180						1198
From B	323	0	808						1031
From C	647	1019	12						1131
From D									
From E									
From F									
From G									
From H									
Total	988.4237	1019	2000						

PM Peak

Arm	To A	To B	To C	To D	To E	To F	To G	To H	Total
From A	15	0	1150						1165
From B	283	0	788						721
From C	387	695	26						1071
From D								1191	
From E									
From F									
From G									
From H									
Total	685	695	1964						

Legend

Arm	Road (in clockwise order)
A	Slip Road to Castle Peak Road
B	Slip Road to Tuen Mun Road
C	Slip Road to Tsing Lun Road
D	
E	
F	
G	
H	

Predictive Equation $Q_{E}=K\left(F-f_{c} q_{c}\right)$

Q_{E}	Entry Capacity
q_{c}	Circulating Flow across the Entry
K	$=1-0.00347(\varnothing-30)-0.978[(1 / \mathrm{r})-0.05]$
F	$=303 \mathrm{x}_{2}$
f_{c}	$=0.210 \mathrm{t}_{\mathrm{D}}\left(1+0.2 \mathrm{x}_{2}\right)$
t_{D}	$=1+0.5 /(1+\mathrm{M})$
M	$=\exp [(\mathrm{D}-60) / 10]$
x_{2}	$=\mathrm{v}+(\mathrm{e}-\mathrm{v}) /(1+2 \mathrm{~S})$
S	$=1.6(\mathrm{e}-\mathrm{v}) / \mathrm{L}$

Arm	$\mathrm{e}(\mathrm{m})$	$\mathrm{v}(\mathrm{m})$	$\mathrm{r}(\mathrm{m})$	$\mathrm{L}(\mathrm{m})$	$\mathrm{D}(\mathrm{m})$	$\varnothing\left({ }^{\circ}\right)$	S
From A	7.3	7.3	40.0	1.0	45	22	0.0
From B	8.8	7.3	65.0	3.0	45	26	0.8
From C	7.7	6.0	100.0	8.0	45	17	0.3
From D							
From E							
From F							
From G							
From H							

Limitation

e	Entry Width	$4.0-15.0 \mathrm{~m}$
v	Approach Half Width	$2.0-7.3 \mathrm{~m}$
r	Entry Radius	$6.0-100.0 \mathrm{~m}$
L	Effective Length of Flare	$1.0-100.0 \mathrm{~m}$
D	Inscribed Circle Diameter	$15-100 \mathrm{~m}$
\varnothing	Entry Angle	$10^{\circ}-60^{\circ}$
S	Sharpness of Flare	$0.0-3.0$

Ratio-of-Flow to Capacity (RFC)

| Arm | x_{2} | M | t_{D} | K | F | f_{c} | AM | PM | AM | PM | AM | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From A | 7.300 | 0.223 | 1.409 | 1.052 | 2212 | 0.728 | 1538 | 1775 | 1198 | 1165 | 0.779 | 0.656 |
| From B | 7.877 | 0.223 | 1.409 | 1.048 | 2387 | 0.762 | 1535 | 1550 | 1131 | 1071 | 0.737 | 0.691 |
| From C | 7.012 | 0.223 | 1.409 | 1.084 | 2125 | 0.711 | 2041 | 2074 | 1678 | 1108 | 0.822 | 0.534 |
| From D | | | | | | | | | | | | |
| From E | | | | | | | | | | | | |
| From F | | | | | | | | | | | | |
| From G | | | | | | | | | | | | |
| From H | | | | | | | | | | | | |

Signal Junction Analysis

Priority Junction Analysis

Junction:	San Hing Road / Ng Lau Road (Southern)		Date:	
Design Year:	2023 Job Number:	J7265		21 Feb 2024
Scenario:	Existing Condition			P. 29

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.65	V-rBA	23	W-BA	2.40	D	0.7441	
W-CR	0.00	V-IBA	23	W-BC	2.40	E	0.8078	
		V-rBC	26	W-CB	3.00	F	0.8857	
		V-rCB	57			Y	0.7706	

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
166	152
7	1
24	18
93	214
21	15
4	0
0.160	0.000

Ratio-of-flow to Capacity	AM	PM
B-A	0.050	0.037
B-C	0.007	0.000
C-B	0.011	0.002
B-AC	0.057	0.037

Priority Junction Analysis

Junction: Design Year: Scenario:	San Hing Road / Ng Lau Road (Southern)			Date:	21 Feb 2024	
	2033	Job Number:	J7265			
	Without Development					P. 30

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.65	V-rBA	23	w-BA	2.40	D	0.7441	
W-CR	0.00	V-IBA	23	w-BC	2.40	E	0.8078	
		V-rBC	26	w-CB	3.00	F	0.8857	
		V-rCB	57			Y	0.7706	

Analysis :

Traffic Flows, pcu/hr	AM	PM	Capacity, pcu/hr	AM	PM
q-CA	185	165	Q-BA	411	399
q-CB	10	2	Q-BC	571	553
q-AB	139	60	Q-CB	605	597
q-AC	80	192	Q-BAC	426	399
q-BA	34	22			
q-BC	5	0			
f	0.128	0.000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.083	0.055
B-C	0.009	0.000
C-B	0.017	0.003
B-AC	0.091	0.055

Priority Junction Analysis

Junction:	San Hing Road / Ng Lau Road (Southern)			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Approved Scheme			P. 31

The predictive equations of capacity of movement are:
$\mathrm{Q}-\mathrm{BA}=\mathrm{D}[627+14 \mathrm{~W}-\mathrm{CR}-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB}+0.229 \mathrm{q}-\mathrm{CA}+0.52 \mathrm{q}-\mathrm{CB})]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.65	V-rBA	23	W-BA	2.40	D	0.7441	
W-CR	0.00	V-IBA	23	W-BC	2.40	E	0.8078	
		V-rBC	26	W-CB	3.00	F	0.8857	
		V-rCB	57			Y	0.7706	

Analysis :

Traffic Flows, pcu/hr	AM	PM	Capacity, pcu/hr	AM	PM
q-CA	185	165	Q-BA	410	399
q-CB	10	2	Q-BC	570	553
q-AB	153	63	Q-CB	602	596
q-AC	80	192	Q-BAC	425	399
q-BA	35	24			
q-BC	5	0			
f	0.125	0.000			

Ratio-of-flow to Capacity	AM	PM
B-A	0.085	0.060
B-C	0.009	0.000
C-B	0.017	0.003
B-AC	0.094	0.060

Priority Junction Analysis

Junction: Design Year: Scenario:	San Hing Road / Ng Lau Road (Southern)			Date:	21 Feb 2024	
	2033	Job Number:	J7265			
	With	cheme				P.

The predictive equations of capacity of movement are:
$\mathrm{Q}-\mathrm{BA}=\mathrm{D}[627+14 \mathrm{~W}-\mathrm{CR}-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB}+0.229 \mathrm{q}-\mathrm{CA}+0.52 \mathrm{q}-\mathrm{CB})]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.65	V-rBA	23	W-BA	2.40	D	0.7441	
W-CR	0.00	V-IBA	23	W-BC	2.40	E	0.8078	
		V-rBC	26	W-CB	3.00	F	0.8857	
		V-rCB	57			Y	0.7706	

Analysis :
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
185	165
10	2
177	68
80	192
37	26
5	0
0.119	0.000

Ratio-of-flow to Capacity	AM	PM
B-A	0.091	0.065
B-C	0.009	0.000
C-B	0.017	0.003
B-AC	0.100	0.065

Priority Junction Analysis

Junction: Design Year: Scenario:	San Hing Road / Ng Lau Road (Northern)			Date:	21 Feb 2024	
	2023	Job Number:	J7265			
	Existing Condition				P. 33	

San Hing Road (Arm C)
Ng Lau Road (Arm A)

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$\mathrm{Q}-\mathrm{BC}=\mathrm{E}[745-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB})]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $Y=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.63	V-rBA	45	W-BA	1.90	D	0.7207	
W-CR	0.00	V-IBA	25	W-BC	1.90	E	0.7768	
		V-rBC	42	W-CB	3.50	F	0.9344	
		V-rCB	62			Y	0.7714	

Analysis:

Traffic Flows, pcu/hr	AM		PM Capacity, pcu/hr	AM	PM
q-CA	9	15	Q-BA	432	430
q-CB	8	13	Q-BC	561	561
q-AB	165	141	Q-CB	648	652
q-AC	18	26	Q-BAC	436	433
q-BA	93	207			
q-BC	4	8			
f	0.041	0.037			

Ratio-of-flow to Capacity	AM	PM
B-A	0.216	0.482
B-C	0.007	0.014
C-B	0.012	0.020
B-AC	0.223	0.496

Priority Junction Analysis

Junction: Design Year: Scenario:	San Hing Road / Ng Lau Road (Northern)			
	2033 Job Number:	J7265	Date:	21 Feb 2024
	Without Development			P. 34

San Hing Road (Arm C) \quad Ng Lau Road (Arm A)

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-$ rBA -120$)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.63	V-rBA	45	W-BA	1.90	D	0.7207	
W-CR	0.00	V-IBA	25	W-BC	1.90	E	0.7768	
		V-rBC	42	W-CB	3.50	F	0.9344	
		V-rCB	62			Y	0.7714	

Analysis :

Traffic Flows, pcu/hr	AM	PM Capacity, pcu/hr	AM	PM	
q-CA	48	59	Q-BA	424	423
q-CB	11	14	Q-BC	559	560
q-AB	184	152	Q-CB	643	650
q-AC	19	24	Q-BAC	430	429
q-BA	80	182			
q-BC	5	10			
f	0.059	0.052			

Ratio-of-flow to Capacity	AM	PM
B-A	0.189	0.430
B-C	0.009	0.018
C-B	0.017	0.022
B-AC	0.198	0.448

Priority Junction Analysis

Junction:	San Hing Road / Ng Lau Road (Northern)		Date:	
Design Year:	2033 Job Number:	J7265		21 Feb 2024
Scenario:	With Approved Scheme			P. 35

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
$v-r B A$, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.63	V-rBA	45	w-BA	1.90	D	0.7207	
W-CR	0.00	V-IBA	25	w-BC	1.90	E	0.7768	
		V-rBC	42	w-CB	3.50	F	0.9344	
		V-rCB	62			Y	0.7714	

Analysis :

Traffic Flows, pcu/hr	AM	PM Capacity, pcu/hr	AM	PM	
q-CA	48	59	Q-BA	424	423
q-CB	11	14	Q-BC	559	560
q-AB	184	152	Q-CB	643	650
q-AC	19	24	Q-BAC	430	429
q-BA	80	182			
q-BC	5	10			
f	0.059	0.052			

Ratio-of-flow to Capacity	AM	PM
B-A	0.189	0.430
B-C	0.009	0.018
C-B	0.017	0.022
B-AC	0.198	0.448

Priority Junction Analysis

Junction:	San Hing Road / Ng Lau Road (Northern)		Date:	
Design Year:	2033 Job Number:	J7265		21 Feb 2024
Scenario:	With Proposed Scheme			P. 36

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry :

Input		Input			Input		Calculated	
W	6.63	V-rBA	45	W-BA	1.90	D	0.7207	
W-CR	0.00	V-IBA	25	W-BC	1.90	E	0.7768	
		V-rBC	42	W-CB	3.50	F	0.9344	
		V-rCB	62			Y	0.7714	

Analysis:

Traffic Flows, pcu/hr	AM	PM Capacity, pcu/hr	AM	PM	
q-CA	48	59	Q-BA	424	423
q-CB	11	14	Q-BC	559	560
q-AB	184	152	Q-CB	643	650
q-AC	19	24	Q-BAC	430	429
q-BA	80	182			
q-BC	5	10			
f	0.059	0.052			

Ratio-of-flow to Capacity	AM	PM
B-A	0.189	0.430
B-C	0.009	0.018
C-B	0.017	0.022
B-AC	0.198	0.448

Priority Junction Analysis

Junction:	T-junction of San Hing Road			
Design Year:	2023 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	Existing Condition			P. 37

San Hing Road (Arm C) San Hing Road (Arm A)

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.00	V-rBA	25	W-BA	2.50	D	0.7912	
W-CR	0.00	V-IBA	100	W-BC	2.50	E	0.8156	
		V-rBC	25	W-CB	3.00	F	0.8586	
		V-rCB	25			Y	0.7930	

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
23	15
1	1
8	2
24	17
3	0
0	0
0.000	0.000

Ratio-of-flow to Capacity	AM	PM
B-A	0.006	0.000
B-C	0.000	0.000
C-B	0.002	0.002
B-AC	0.006	0.000

Priority Junction Analysis

The predictive equations of capacity of movement are:
$\mathrm{Q}-\mathrm{BA}=\mathrm{D}[627+14 \mathrm{~W}-\mathrm{CR}-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB}+0.229 \mathrm{q}-\mathrm{CA}+0.52 \mathrm{q}-\mathrm{CB})]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.00	V-rBA	45	w-BA	4.00	D	0.9343	
W-CR	0.00	V-IBA	100	W-BC	4.00	E	0.9632	
		V-rBC	45	w-CB	3.00	F	0.8586	
		V-rCB	25			Y	0.7930	

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
39	22
7	1
113	42
36	20
0	0
40	50
1.000	1.000

Ratio-of-flow to Capacity	AM	PM
B-A	0.000	0.000
B-C	0.058	0.071
C-B	0.012	0.002
B-AC	0.058	0.071

Priority Junction Analysis

Junction:	T-junction of San Hing Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Approved Scheme			P. 39

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.00	V-rBA	45	w-BA	4.00	D	0.9343	
W-CR	0.00	V-IBA	100	W-BC	4.00	E	0.9632	
		V-rBC	45	w-CB	3.00	F	0.8586	
		V-rCB	25			Y	0.7930	

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
39	22
7	1
127	45
36	20
1	2
40	50
0.976	0.962

Ratio-of-flow to Capacity	AM	PM
B-A	0.002	0.003
B-C	0.058	0.071
C-B	0.012	0.002
B-AC	0.059	0.074

Priority Junction Analysis

Junction:	T-junction of San Hing Road			
Design Year:	2033 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	With Proposed Scheme			P. 40

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$Q-B C=E[745-Y(0.364 q-A C+0.144 q-A B)]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where
$\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	6.00	V-rBA	45	W-BA	4.00	D	0.9343	
W-CR	0.00	V-IBA	100	W-BC	4.00	E	0.9632	
		V-rBC	45	W-CB	3.00	F	0.8586	
		V-rCB	25			Y	0.7930	

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
39	22
7	1
151	50
36	20
3	4
40	50
0.930	0.926

Ratio-of-flow to Capacity	AM	PM
B-A	0.005	0.007
B-C	0.058	0.071
C-B	0.012	0.002
B-AC	0.063	0.078

Signal Junction Analysis

Signal Junction Analysis

Signal Junction Analysis

Signal Junction Analysis

Priority Junction Analysis

Junction:	Hong Po Road / Yan Tin Estate Access Road			
Design Year:	2023 Job Number:	J7265	Date:	21 Feb 2024
Scenario:	Existing Condition			P. 45

Unnamed Road (Arm C) Unnamed Road (Arm A)

The predictive equations of capacity of movement are:
$Q-B A=D[627+14 W-C R-Y(0.364 q-A C+0.144 q-A B+0.229 q-C A+0.52 q-C B)]$
$\mathrm{Q}-\mathrm{BC}=\mathrm{E}[745-\mathrm{Y}(0.364 \mathrm{q}-\mathrm{AC}+0.144 \mathrm{q}-\mathrm{AB})]$
$\mathrm{Q}-\mathrm{CB}=\mathrm{F}[745-0.364 \mathrm{Y}(\mathrm{q}-\mathrm{AC}+\mathrm{q}-\mathrm{AB})]$
The geometric parameters represented by D, E, F are:
$D=[1+0.094(w-B A-3.65)][1+0.0009(V-r B A-120)][1+0.0006(V-I B A-150)]$
$E=[1+0.094(w-B C-3.65)][1+0.0009(V-r B C-120)]$
$F=[1+0.094(w-C B-3.65)][1+0.0009(V-r C B-120)]$
where $\mathrm{Y}=1-0.0345 \mathrm{~W}$
$q-A B$, etc = the design flow of movement $A B$, etc
W = major road width
W-CR = central reserve width
w-BA, etc = lane width to vehicle
v-rBA, etc $=$ visibility to the right for waiting vehicles in stream BA, etc
v-IBA, etc $=$ visibility to the left for waiting vehicles in stream $B A$, etc
Geometry

Input		Input			Input		Calculated	
W	9.50	V-rBA	55	w-BA	4.40	D	0.9323	
W-CR	3.00	V-IBA	25	w-BC	4.40	E	1.0079	
		V-rBC	55	w-CB	3.18	F	0.9042	
		V-rCB	60			Y	0.6723	

Analysis:
Traffic Flows, pcu/hr
$q-C A$
$q-C B$
$q-A B$
$q-A C$
$q-B A$
$q-B C$
f

AM	PM
394	215
2	2
31	16
215	355
27	4
5	2
0.156	0.333

Capacity, pcu/hr	AM	PM
Q-BA	515	510
Q-BC	695	662
Q-CB	619	592
Q-BAC	536	552

Ratio-of-flow to Capacity	AM	PM
B-A	0.052	0.008
B-C	0.007	0.003
C-B	0.003	0.003
B-AC	0.060	0.011

Signal Junction Analysis

Signal Junction Analysis

Signal Junction Analysis

Appendix B Public Transport Survey Result

Proposed Rezoning from "Residential (Group B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent Government Land in DD130, Lam Tei, Tuen Mun

Traffic Impact Assessment (Application no. Y/TM-LTYY/11)

TABLE B1 DETAILED INFORMATION OCCUPANCY SURVEY RESULT ON THE PUBLIC TRANSPORT NEAR THE SUBJECT SITE

Direction	Routes	AM				PM			
		No. of Trips	No. of Passenger		Occu-pancy$[c]=[b] /[a]$	No. of Trips	No. of Passenger		Occu-pancy$[c]=[b] /[a]$
			Capacity [a]	Occupied [b]			Capacity [a]	Occupied [b]	
To other districts	СТВ 50	3	405	203	50\%	0	-	-	-
	СТВ 55	3	405	270	67\%	0	-	-	-
	СТВ 56	0	-	-	-	0	-	-	-
	CTB 56A	4	540	378	70\%	0	-	-	-
	СТВ 950	2	270	169	63\%	0	-	-	-
	CTB 955	1	135	68	50\%	0	-	-	-
	CTB B3A	1	135	122	90\%	1	135	68	50\%
	KMB 53	2	270	102	38\%	2	270	135	50\%
	KMB 63X	5	675	380	56\%	2	270	68	25\%
	KMB 67M	12	1620	354	22\%	5	675	68	10\%
	KMB 67X	10	1350	280	21\%	3	405	102	25\%
	KMB 68A	6	810	439	54\%	3	405	152	38\%
	KMB 258P	2	270	135	50\%	0	-	-	-
	KMB 261P	5	675	169	25\%	0	-	-	-
	KMB 267X	3	405	122	30\%	0	-	-	-
	KMB 960A	2	270	27	10\%	0	-	-	-
	KMB 960C	2	270	14	5\%	0	-	-	-
	KMB 960P	6	810	463	57\%	0	-	-	-
	KMB 960X	9	1215	152	13\%	0	-	-	-
	LWB A34	2	270	50	18\%	1	135	11	8\%
	LWB E33P	4	540	115	21\%	0	-	-	-
	NLB B2	3	405	203	50\%	3	405	152	38\%
	GMB42	4	76	46	60\%	4	76	31	40\%
From other districts	CTB 50	0	-	-	-	3	405	102	25\%
	СТВ 55	0	-	-	-	3	405	102	25\%
	СТВ 56	0	-	-	-	0	-	-	-
	СТВ 56A	2	270	135	50\%	3	405	304	75\%
	СТВ 950	0	-	-	-	1	135	68	50\%
	СТВ 955	0	-	-	-	1	135	81	60\%
	CTB B3A	1	135	68	50\%	2	270	203	75\%
	KMB 53	2	270	102	38\%	2	270	203	75\%
	KMB 63X	2	270	102	38\%	3	405	304	75\%
	KMB 67M	6	810	61	8\%	10	1350	422	31\%
	KMB 67X	4	540	75	14\%	7	945	237	25\%
	KMB 68A	3	405	237	58\%	5	675	394	58\%
	KMB 258P	0	-	-	-	3	405	102	25\%
	KMB 261P	0	-	-	-	1	135	54	40\%
	KMB 267X	0	-	-	-	2	270	68	25\%
	KMB 960A	0	-	-	-	1	135	54	40\%
	KMB 960C	0	-	-	-	1	135	68	50\%
	KMB 960P	0	-	-	-	2	270	68	25\%
	KMB 960X	0	-	-	-	9	1215	608	50\%
	LWB A34	0	-	-	-	2	270	27	10\%
	LWB E33P	0	-	-	-	3	405	41	10\%
	NLB B2	3	405	178	44\%	3	405	254	63\%
	GMB42	4	76	20	26\%	4	76	25	33\%

Appendix C - Planned Road Works to be implemented by the Owner

Proposed Rezoning from "Residential (G roup B)1" Zone to "Residential (Group B)4" Zone for Medium-Density Housing Development to Include a Footpath for Public use at Various Lots and Adjacent G overnment Land in D D 130, Lam Tei, Tuen Mun

Traffic Impact Assessment (Application no. Y/TM-LTYY/11)

Appendix E-
Extract of Planned Road Works under Agreement No. CE 39/2021 (CE) by CEDD

Appendix F -
Extract of Planned Road Works under Agreement No. CE 01/2020 (CE) by CEDD

