

Agreement No. CE 46/2020 (CE) Term Consultancy for Site Formation and Infrastructure Works for Proposed Housing Developments in Zone 1 (2021-2024) - Feasibility Study (Task Order 4 – Shap Pat Heung Road)

Final Preliminary Traffic and Transport Impact Assessment for Shap Pat Heung Road (Rev.2)

(5210095-OR009-03)

March 2023

Table of contents

Cha	Chapter	
1.	Introduction	5
1.1.	General	5
1.2.	Background	5
1.3.	Project Scope	5
1.4.	Purpose of the Report	6
1.5.	Structure of this Working Paper	6
2.	Proposed Development	7
2.1.	Site Location	7
2.2.	Development Schedule	7
2.3.	Design Year	7
2.4.	Parking and Servicing Facilities Provision	8
2.5.	Provision of Vehicular Access Arrangement	9
2.6.	Provision of Public Transport Facilities	9
3.	Existing Traffic Condition	10
3.1.	Area of Influence (AOI)	10
3.2.	Key Junctions	10
3.3.	Traffic Count Survey	11
3.4.	Queue Length Survey	11
3.5.	Existing Public Transport Services	11
4.	Transport Modelling and Forecast	13
4.1.	Traffic Model Development Approach	13
4.2.	Strategic Transport Model (STM)	13
4.3.	Local Area Traffic Model (LATM)	14
4.4.	Modelling Assumptions	16
4.5.	Rail and Road Network Assumptions	19
4.6.	Toll Assumption	20
4.7.	Trip Generation	21
4.8.	Assessment Scenarios	22
5 .	Traffic and Transport Impact Assessment	23
5.1.	Methodology	23
5.2.	Road Link Assessment	23
5.3.	Junction Assessments	25

5.4.	Queu	e Length Assessments	27
5.5.	Const	ruction Traffic Impact Assessment	29
5.6.	Propo	sed Traffic and Transport Arrangement	29
5.7.	Pedes	strian Walkway Analysis	32
6.	Sumr	nary and Conclusions	35
6.1.	Sumn	nary	35
6.2.	Concl	usions	36
Tabl	es		
Table	2.1	Adopted Development Parameters	7
Table	2.2	Proposed Parking and Loading / Unloading Facilities Provision	8
Table	3.1	Identified Key Road Links	10
Table	3.2	Identified Key Junctions	10
Table	3.3	Existing Public Transport Services	11
Table	4.1	Validation Target for the Road-based Strategic Transport Model	13
Table	4.2	Summary of Strategic Transport Model Validation	14
Table	4.3	Validation Guidelines for LATM	15
Table	4.4	Summary of Local Area Traffic Model Validation	16
Table	4.5	Planned and Committed Developments	16
Table	4.6	Gross Domestic Product Growth	17
Table	4.7	Projected Vehicle Fleet Size at Mid-Year Private Vehicles	18
Table	4.8	Airport Usage Forecast	18
Table	4.9	Container Throughput Assumptions in Hong Kong Port	19
Table	4.10	Railway Network Assumptions	19
Table	4.11	Major Road Network Assumptions	19
Table	4.12	Toll Assumptions for Design Year	20
Table	4.13	Traffic Generation of the Proposed Development	21
Table	5.1	Road Link Assessments	24
Table	5.2	Junctions Performance	26
Table	5.3	Summary of Estimated Average Queue Length	28
Table	5.4	Breakdown of Workers, Student and Non-student in the Areas	29
Table	5.5	Pedestrian Generation by Transport Mode	30
Table	5.6	Estimated Additional Demand on Tuen Ma Line	31
Table	5.7	Required Public Transport Provision during Morning Peak Hour	31

Table 5.8	Definition of Level-of-service (LOS)	. 32
Table 5.9	LOS Analysis in Year 2021	. 33
Table 5.10	LOS Analysis of Year 2032 Reference Case	. 33
Table 5.11	LOS Analysis of Year 2032 Design Case	. 34

Figures

5210095-TIA-1201	Area of Influence and Location of Development Site
5210095-TIA-1202	Proposed Access Arrangement at Shap Pat Heung Road
5210095-TIA-1301	Locations of Key Junctions and Key Road Links
5210095-TIA-1302	Year 2021 Observed Traffic Flows
5210095-TIA-1303	Existing Nearby Public Transport Facilities
5210095-TIA-1304	Observed Average Queue Length – 2021 AM (Part 1 of 2)
5210095-TIA-1305	Observed Average Queue Length – 2021 AM (Part 2 of 2)
5210095-TIA-1306	Observed Average Queue Length – 2021 PM (Part 1 of 2)
5210095-TIA-1307	Observed Average Queue Length – 2021 PM (Part 2 of 2)
5210095-TIA-1401	Screenlines for Strategic Transport Model
5210095-TIA-1402	Screenlines for Local Area Traffic Model
5210095-TIA-1403	Year 2032 Reference Traffic Flows
5210095-TIA-1404	Distribution of Development Traffic
5210095-TIA-1405	Year 2032 Design Traffic Flows
5210095-TIA-1406	Development Traffic Routes

Appendix

Appendix A	Junction Calculation Sheets
Appendix B	Validation Results
Appendix C	Planned / Committed Road Network and Junction Modification
Appendix D	Queue Length Calculation Sheets
Appendix E	Existing Junction Layout Plan
Appendix F	Sources of Information

1. Introduction

1.1. General

- 1.1.1. The Civil Engineering and Development Department (hereinafter called "CEDD") of the Government of the Hong Kong Special Administrative Region appointed Atkins China Limited (hereinafter called "Atkins"), under Agreement No. CE 46/2020 (CE), to provide professional services in respect of the Term Consultancy for Site Formation and Infrastructure Works for Proposed Housing Developments in Zone 1 (2021 2024) Feasibility Study (hereinafter called "the Assignment").
- 1.1.2. Task Order 4 Shap Pat Heung Road was issued to Atkins on 27^h October 2021.

1.2. Background

- 1.2.1. The Government is committed to facilitating steady and continued land supply, not only for providing people with a place to live and work, but also for the developments of Hong Kong's commerce, industry, innovation and technology and various emerging sectors. In the short to medium term, the Government will continue to optimise the use of built-up land and its surrounding areas to meet the demand of the public for land for housing and other purposes.
- 1.2.2. Potential Sites are/would be identified for housing developments. The respective locations of the Site(s) would be provided by the DR throughout the course of the Assignment. Boundaries of the instructed Site(s) would be subject to review and determination from the findings of study(ies) and assessment(s) under this Assignment.
- 1.2.3. The demarcation of Zone 1 includes Yuen Long district, Tuen Mun district, Tsuen Wan district and Kwai Tsing district, while the study area of Task Order 4 Shap Pat Heung Road is located at the south of the Yuen Long town centre and surrounded by nearby residential buildings including Atrium House, LA Grove and Park Signature.
- 1.2.4. The engineering feasibility study is carried out to determine the scope of the infrastructure works, and provide necessary engineering information to support the Section 16 Application for increasing the domestic plot ratio of the site at Shap Pat Heung Road near Lung Tin Tsuen, Yuen Long for the proposed public housing development.

1.3. Project Scope

- 1.3.1. Carry out necessary study(ies) and/or assessment(s) for the instructed Site(s) under Task Order(s) issued by the CEDD in order to ascertain the feasibility of the intensification of the Development(s) to a maximum domestic plot ratio of 6.5 and define the scope of the Project (Infrastructure) for the relevant parties to put forward the respective detailed designs.
- 1.3.2. This scope of study(ies) and technical assessment(s) of the instructed Site(s) include, but not limited to, the following principal works elements:

- (a) Recommendation of optimum development schemes for the Development(s) and the required supporting facilities for the Development(s);
- (b) Slope cutting and earth filling works as well as geotechnical works/structures (including slope/retaining wall upgrading works if necessary);
- (c) Decontamination works, if any;
- (d) Transport infrastructure works (including new road connecting to the Site(s), diversion/ upgrading of existing roads, flyovers, traffic improvement works, PTI/public transport laybys, pedestrian footpath, cycle track, footbridges/ subways and any other pedestrian and transport facilities etc. if necessary);
- (e) Sewerage infrastructure works (including pumping station(s), treatment plants and reclaimed water (treated sewage effluent, grey water and harvested rainwater as applicable) treatment facilities if necessary);
- (f) Drainage infrastructure works and necessary diversion works;
- (g) Water supply infrastructure works and necessary diversion works;
- (h) Environmental mitigation measures for the Development(s); and
- (i) Other infrastructure works, such as utility works, electricity substation, etc., if any deemed to be necessary to support the Development(s).

1.4. Purpose of the Report

1.4.1. The Preliminary Traffic and Transport Impact Assessment (hereinafter called "the Report") is prepared to present the methodology, assumptions and findings for the traffic impact assessment to justify the intensification of the Proposed Development to the domestic plot ratio of 6.5 in Shap Pat Heung Road, Yuen Long.

1.5. Structure of this Working Paper

- 1.5.1. Following this introductory chapter, there are 5 future chapters:
 - **Section 2 Proposed Developments**, describes the detail of the Proposed Development;
 - Section 3 Existing Traffic Condition, describes the road network and transport facilities in the vicinity;
 - Section 4 Transport Modelling and Forecast, describes the methodology of traffic forecasting:
 - Section 5 Traffic and Transport Impact Assessment, presents the results of the TTIA at the adopted design years, and recommends improvement measures to alleviate any foreseeable traffic problems; and
 - Section 6 Summary and Conclusion, summarizes the findings of the study and presents the conclusions accordingly

2. Proposed Development

2.1. Site Location

2.1.1. The Proposed Development at Shap Pat Heung is located about 1.1km at the south of the existing Long Ping MTR Station and about 1.5km at the southwest of. Yuen Long MTR Station. The study area is bounded by Park Signature to the south, Atrium House to the west, LA Grove to the east and Lung Tin Tsuen to the north.

2.2. Development Schedule

2.2.1. The Subject Site consists of about 0.71ha developable area and the current allowable development domestic plot ratio is 5.0. With the proposed increase of domestic plot ratio to 6.5, the site will be developed into public housing providing 910 nos. of flats with some social welfare facilities. The development parameters of the Proposed Development are presented in **Table 2.1**.

Table 2.1 Adopted Development Parameters

Development Type	Parameters	Target Intake Year
Public Housing Development ⁽¹⁾⁽²⁾	910 Flats / 2,457 Persons	2028/2029
Social Welfare Facilities ⁽³⁾⁽⁴⁾	Centre of Home Care Services (HCS) for Frail Elderly Persons	2028/2029
	96-place Residential Child Care Centre (RCCC)	

Remarks:

- (1) Flexibility would be allowed to change the housing type to cater for demand change between Public Rental Housing (PRH)/ Green Form Subsidised Home Ownership Scheme (GSH) and Other Subsidised Sale Flats (SSFs) subject to pro-rata adjustments of provision of ancillary facilities in accordance with the HKPSG.
- (2) Subsidised Sale Flats (SSFs) is considered in this technical assessment as the worst case scenario.
- (3) About 5% of domestic GFA had been set aside for the provision of social welfare facilities under the proposed housing development.
- (4) The final list of social welfare facilities shall be subject to confirmation by user departments at later stage.

2.3. Design Year

2.3.1. In view of the population intake year of the housing site is 2028/2029, the proposed assessment year is adopted as year 2032 (i.e. population intake year plus four/three years).

2.4. Parking and Servicing Facilities Provision

2.4.1. Based on the scheme for 910 flats, the provision of parking and loading / unloading (L/UL) facilities of the Proposed Development will be made reference to the Hong Kong Planning Standard and Guideline (HKPSG) and the requirements by operational needs by end users. The proposed parking and L/UL facilities provision are summarized in **Table 2.2**. If there are any further updates in the flat number, the parking requirements will be further reviewed according to the HKPSG and agreed with Transport Department in the later stage.

Table 2.2	Proposed Parking and Loading	/ Unloading Facilitie	s Provision	
Parking and L/UL Facilities	HKPSG Standard	Required Provision (nos.)	Adopted Provision (nos.)	
Public Housing (1)				
Car Parking	0.52 spaces per 4 - 7 flats excluding 1 person / 2 persons flats (Accessibility Adjustment Ratio: 1 outside 500m-radius of rail station)	68 – 119 (include 2 accessible parking spaces)	119 (include 2 accessible parking spaces)	
Motorcycle Parking	1 space per 110 - 250 flats excluding 1 person / 2 persons flats	4 – 9	9	
LGV & LB Parking	1 space per 260 flats excluding 1 person / 2 persons flats	4	4	
Loading/Unloading (Domestic)(3)	2 " shared-use" L/UL bays per block and will be allowed for overnight parking	4	4	
Visitor Car Parking	Up to 5 visitor spaces per block	0 – 10(include 1 - 2 accessible parking spaces)	10 (include 2 accessible parking spaces)	
Bicycle Parking	bicycle parking space for every flats with flat size smaller than 70m² where proper cycle tracks with direct connection to rail stations are accessible.	61	61	
Social Welfare Facilities (2)				
LGV & Light Bus	Nil	Nil	1(2)	
Parking (HCS)	Nil	Nil		
LGV & Light Bus Parking (RCCC)	Nil	Nil	1(2)	

Remarks:

- (1) The estimate of parking provisions is assumed no "One person/two persons" flats for the calculation of the overall parking provision of private car, motorcycle parking spaces and shared-use spaces for LGV and light bus (LB).
- (2) The final list of social welfare facilities and the provision of parking spaces shall be subject to confirmation by user departments at later stage.
- (3) The Loading/Unloading Bays could be used for overnight parking of Medium/Goods Vehicle and Coach.
- 2.4.2. HD had advised that the high-end of parking provision pursuant to the Hong Kong Planned Standard and Guideline (HKPSG) requirements will be adopted for the Subject Site.

2.5. Provision of Vehicular Access Arrangement

- 2.5.1. The site is surrounded by existing residential buildings. The only direct frontage is located at Shap Pat Heung Road. Hence, the development vehicular access is proposed at Shap Pat Heung Road.
- 2.5.2. The development traffic will reach Yuen Long Highway via Shap Pat Heung Interchange to the east, or via Yuen Long Tai Yuk Road, Castle Peak Road Ping Shan, Long Tin Road and Tong Yan San Tsuen Interchange to the west.
- 2.5.3. The existing Shap Pat Heung Road is a single carriageway local road with 2 traffic lanes from Lam Hau Tsuen Road to Tai Tong Road, and a dual 2-lane carriageway primary distributor from Tai Tong Road to Shap Pat Heung Interchange. It serves the local developments and connects to Yuen Long Highway at its east end.
- 2.5.4. Castle Peak Road Ping Shan between Long Tin Road and Yuen Long Tai Yuk Road is a dual rural trunk road running in an east-west direction with 2 traffic lanes on the eastbound and 1 traffic lane on the westbound carriageway. It is an east-west corridor operating in parallel with Yuen Long Highway to provide the east-west inter-district traffic movements in North West New Territories (NWNT). Besides, it is also a key public transport corridor in the area with serval franchised bus, green minibus (GMB), public light bus and light rail transit (LRT) routes.
- 2.5.5. Yuen Long Highway (Route 9) between Tong Yan San Tsuen Interchange and Shap Pat Heung Interchange is a dual 3-lane expressway running in an east-west direction servicing strategic traffic. Yuen Long Highway connects with Tsing Long Highway (Route 3) and Fanling Highway at its east and Kong Sham Western Highway (Route 10) and Tuen Mun Road at its west. It is a major strategic east-west traffic corridor to connect the Proposed Development to access urban areas and cross boundary control point to Mainland via Shenzhen Bay Crossing.
- 2.5.6. The proposed vehicular access will be via Shap Pat Heung Road. The existing Shap Pat Heung Road is a single carriageway approximately 10m wide and the existing clear width of the southern and northern footpaths are about 3.0m. The conceptual design of the new access arrangement within the Subject Site is shown in **Figure 5210095-TIA-1202**.

2.6. Provision of Public Transport Facilities

2.6.1. In view of the long walking distance (>1km) from the Subject Site to the Long Ping Station and Yuen Long MTR Stations, the anticipated public transport demand will utilize the existing nearby public transport services. The public transport demand of the Proposed Development will be discussed in **Section 5.4**.

3. Existing Traffic Condition

- 3.1. Area of Influence (AOI)
- 3.1.1. The AOI for this TTIA is shown in **Figure 5210095-TIA-1201**. The AOI covers the road network bounded by Long Tin Road to the West, Shap Pat Heung Interchange to the East, Yuen Long Highway to the South and Castle Peak Road Ping Shan to the North.
- 3.2. Key Junctions
- 3.2.1. The key road links to be assessed are tabulated in **Table 3.1** and shown in **Figure 5210095-TIA-1301**.

Table 3.1 Identified Key Road Links

	Table 5.1 Identified Key Road Links		
Index	Road Link		
L1a	Tong Yan San Tsuen Interchange Slip Road		
LIa	(From Yuen Long Highway EB to Long Tin Road NB)		
L1b	Tong Yan San Tsuen Interchange Slip Road		
LID	(From Yuen Long Highway WB to Long Tin Road NB)		
L1c	Tong Yan San Tsuen Interchange Slip Road		
LIC	(From Long Tin Road SB to Yuen Long Highway EB)		
L1d Tong Yan San Tsuen Interchange Slip Road			
LIU	(From Long Tin Road SB to Yuen Long Highway WB)		
L2	Long Tin Road (section between Castle Peak Road & Tong Yan San Tsuen Int)		
L3	Yuen Long Highway (section between Tin Shui Wai W Int & Tong Yan San Tsuen Int)		
L4	Yuen Long Highway (section between Tong Yan San Tsuen Int & Shap Pat Heung Int)		

3.2.2. The key junctions to be assessed are tabulated in **Table 3.2** and shown in **Figure 5210095-TIA-1301**.

Table 3.2 Identified Key Junctions

Index	Junction	Junction Type
J1	Shap Pat Heung Road / Yuen Long Tai Yuk Road	Priority
J2	Shap Pat Heung Road / Lam Hau Tsuen Road	Roundabout
J3	Town Park Road South / Lam Hau Tsuen Road	Signalised
J4	Shan Ha Road / Town Park Road North	Priority
J5	Shap Pat Heung Road / Kung Um Road & Kiu Hing Road	Signalised
J6	Shap Pat Heung Road / Tai Shu Ha Road West / Tai Shu Ha Road East	Priority
J7	Shap Pat Heung Road / Tai Tong Road	Signalised
J8	Shap Pat Heung Road / Fung Ki Road	Signalised
J9	Shap Pat Heung Road / Tai Kei Leng Road	Signalised
J10	Shap Pat Heung Interchange	Roundabout
J11	Yuen Long Tai Yuk Road / Ma Tin Road	Signalised
J12	Yuen Long Tai Yuk Road / Kau Yuk Road	Signalised
J13	Castle Peak Road – Ping Shan / Ma Miu Road	Signalised
J14	Castle Peak Road – Ping Shan / Long Tin Road	Signalised

Index	Junction	Junction Type
J15	Town Park Road North / Ma Tin Road	Priority
J16	Tong Yan San Tsuen Interchange / Long Hon Road & Shan Ha Road	Priority

3.3. Traffic Count Survey

- 3.3.1. Manual classified traffic count surveys were conducted at all key junctions and road links as tabulated in Table 3.1 and 3.2 and shown in Figure 5210095-TIA-1301 to identify the existing traffic flows during the peak hour periods from 07:30 to 10:00 hours and from 16:30 to 19:45 hours on typical weekdays, 02 and 07 December 2021.
- 3.3.2. The morning and evening peak hours were identified from 07:45 to 08:45 hours and from 17:15 to 18:15 hours respectively. The change of the observed traffic flow pattern is in-line with previous surveys conducted in the vicinity and previous Annual Traffic Census (ATC) data. The observed traffic flows are presented in Figure 5210095-TIA-1302

3 4 Queue Length Survey

- 3.4.1. The recorded average queue lengths at the approach arms of the key junctions from the traffic surveys are presented in Figure 5210095-TIA-1304 to 1307.
- 3.4.2. Basically, the queuing conditions at the key junctions were manageable and were not tailback to upstream junctions at most of the time. There will be junction improvement works proposed by other development projects in Yuen Long area which will increase the junction capacities in future.

3.5. **Existing Public Transport Services**

3.5.1. Currently, there are several bus and green minibus services with servicing points along Shap Pat Heung Road. Moderate public transport routes are available within 400m from the Subject Site. The service details of the existing public transport services within the AOI are tabulated in Table 3.3.

> Table 3.3 **Existing Public Transport Services**

Route No.	Destinations	Peak Headway (mins)
Franchised	Bus	
53	Yuen Long (Yoho Mall) - Tsuen Wan (Nina Tower)	25-35
68A	Yuen Long (Long Ping) - Tsing Yi Station	12-25
68E	Yuen Long Park – Tsing Yi Station	20-30
68F *	Park Yoho – Yuen Long Park	30
68X	Hung Shui Kiu (Hung Fuk Estate) - Mong Kok (Park Avenue)	10-25
264R	Tin Yiu Bus Terminus – Tai Po Market Station	30
268B	Long Ping Station – Hung Hom (Hung Luen Road)	20-30
268C	Yuen Long Park – Kwun Tong Ferry	5-13

Route No.	Destinations	Peak Headway (mins)
268P#	Long Ping Station – Kwun Tong Ferry	-
268X	Hung Shui Kiu (Hung Fuk Estate) - Jordan (West Kowloon Station)	10-35
269D	Tin Shui Wai Station - Lek Yuen	5-15
276	Tin Tsz - Sheung Shui	15-25
276P	Tin Shui Wai Station - Sheung Shui	7-25
968	Yuen Long Park – Causeway Bay (Tin Hau)	-
B1	Tin Tsz – Lok Ma Chau Station	-
B2	Yuen Long Station - Shenzhen Bay Port	60
E36	Pat Heung Road – Airport (Ground Transportation Centre)	15-20
E36S	Ma Wang Road – Airport (Ground Transportation Centre)	-
K66	Long Ping – Tai Tong Wong Nai Tun Tsuen	9-12
K68 *	Yuen Long Industrial Estate – Yuen Long Park	12-13
N269 ^	Tin Tsz – Mei Foo	-
N30 ^	Yuen Long Station – Airport (Cheong Tat Road)	-
NA36 ^	Cathay Pacific City – Kam Sheung Road Station	-
GMB		
NT-31 *	Yuen Long (Hong King Street) - Tong Yan San Tsuen	6-10
NT-31A *	Tong Yan San Tsuen - Yeun Long Plaza	16
NT-32	Yuen Long Station (North) Public Transport Interchange - Tan Kwai Tsuen	10-15
NT-33	Yuen Long (Tai Fung Street) - Ha Pak Nai	20-30
NT-35	Yuen Long (Tai Fung Street) - Sha Kiu (Tsim Bei Tsui)	18-23
NT-39	Yuen Long (Fung Cheung Road) – Kung Um	5-8
NT-39A *	Yuen Long (Kau Yuk Road) – Kung Um Road	7-20
NT-604 *	Yuen Long (Fau Tsoi Street) – Shan Ha Tsuen	20
NT-609 *	Yuen Long Stadium – Pok Oi Hospital	6-15
NT-622 * Remarks:	Hung Shui Kiu (Hung Yuen Road) - Long Ping Station * Circular routes # Peak period services	15-30

^ Overnight services

- 3.5.2. Apart from the above bus and green minibus services, light rail services of routes 610, 614, 615, 761P are available at both Fung Nin Road LRT Station and Shui Pin Wai LRT Station for the residents of the Proposed Development. The routes serve the passengers to/from Yuen Long, Tin Shui Wai and Tuen Mun areas while Yuen Long Station is the design interchange MTR station of Fung Nin Road LRT Station and Shui Pin Wai LRT Station.
- 3.5.3. The existing public transport services in the vicinity of the Proposed Development are shown in **Figure 5210095-TIA-1303**.

4. Transport Modelling and Forecast

4.1. Traffic Model Development Approach

4.1.1. A two-tier transport modelling approach will be adopted for the traffic impact assessment. The upper tier Strategic Transport Model (STM) using the in-house model would support the strategic transport planning analysis which provide the boundary conditions and zonal traffic growth information for the lower tier Local Area Traffic Model (LATM) using the Base District Traffic Model (BDTM). The LATM would evaluate the traffic implication and assist for formulating traffic improvement proposals to meet local transport demands.

4.2. Strategic Transport Model (STM)

- 4.2.1. The Consultant's In-house STM, in EMME platform, has the architecture of a conventional 4-stage transport model that involves the four stages of Income-Vehicle-Trip Generation stage, Integrated Trip Distribution stage / Modal Split stage and Assignment stage.
- 4.2.2. The In-house STM will be developed based on the travel characteristics data presented in Travel Characteristics Survey 2011 (TCS2011) and Survey on Goods Vehicle Trip Characteristics 2011 (GVTCS2011), in particular on the trip generation / attraction rates, modal split / distribution characteristics, Value of Time (VOT) and Vehicle Operating Costs (VOC). It is then the STM will be validated to the traffic and transport conditions as reported in relevant Monthly Traffic and Transport Digests 2021. With the validated STM with reference to year 2021 traffic survey, this model can be adopted for future traffic forecast with respect to the latest planning data of the 2019-based Territorial Population and Employment Data Matrix (TPEDM).
- 4.2.3. The STM will be adopted the modelling assumptions for future traffic and transport forecast such as the Gross Domestic Product (GDP) growth, vehicle fleet size, cross-boundary traffic and planning data in the future planning horizon years (i.e. 2032). The detailed modelling assumptions will be discussed in **Section 4.4**.
- 4.2.4. The base year STM was validated to year 2021 base year traffic flows across the relevant ATC screenlines for the daily, morning (AM) and evening (PM) peak periods. The validation targets for the road based STM are shown in **Table 4.1**. The screenlines relevant to the AOI of this TTIA are shown in **Figure 5210095-TIA-1401**.

Table 4.1 Validation Target for the Road-based Strategic Transport Model

Validation Parameter at	Mean Error (1)		80% Error (2)		Max Error (3)	
Screenline	1-way	2-way	1-way	2-way	1-way	2-way
Daily Total Vehicles	-	3%	-	8%	-	15%
Peak Hour Total Vehicles	10%	5%	15%	10%	30%	20%
Peak Hour Car	15%	10%	25%	15%	50%	30%
Peak Hour Taxi	15%	10%	25%	15%	50%	30%
Peak Hour Goods Vehicle (4)	15%	10%	25%	15%	50%	30%

Remarks: (1) "Mean Error" means that the average vehicles of screenlines, the base year and synthesized volume should be within the specified values.

- (2) "80% Error" means that the across 80% of screenlines, the base year and synthesized volume should be within the specified values in bracket ().
- (3) "Max Error" means that the maximum error of screenlines, the base year and synthesized volume should be within the specified values.
- (4) Goods Vehicle include Light Van, Light Goods Vehicle, Medium Goods Vehicle, Heavy Goods Vehicle and Tractor Unit.
- 4.2.5. The results of the validation for the road-based traffic volumes are shown in are shown Table 4.2. Basically, the STM road-based traffic volumes at relevant screenline satisfy the target validation criteria.

Table 4.2 **Summary of Strategic Transport Model Validation**

Validation at Screenline	Mean Error (1)		80% Error (2)		Max Error (3)	
	1-way	2-way	1-way	2-way	1-way	2-way
Daily Total Vehicles	-	3%	-	81%	-	9%
AM Peak Total Vehicles	6%	4%	91%	86%	22%	13%
AM Peak Car	8%	4%	96%	93%	42%	23%
AM Peak Taxi	12%	10%	96%	85%	28%	20%
AM Peak Goods Vehicle (4)	7%	4%	91%	86%	48%	27%
PM Peak Total Vehicle	4%	3%	94%	85%	28%	16%
PM Peak Car	5%	4%	94%	88%	31%	25%
PM Peak Taxi	6%	5%	98%	96%	37%	17%
PM Peak Goods Vehicle (4)	5%	3%	96%	92%	38%	17%

- Remarks: (1) "Mean Error" means that the average vehicles of screenlines, the base year and synthesized volume should be within the specified values stated in STM validation target.
 - (2) "80% Error" means that the across 80% of screenlines, the base year and synthesized volume should be within the specified values stated in STM validation target.
 - (3) "Max Error" means that the maximum error of screenlines, the base year and synthesized volume should be within the specified values stated in STM validation target.
 - (4) Goods Vehicle includes Light Van, Light Goods Vehicle, Medium Goods Vehicle, Heavy Goods Vehicle and Tractor Unit.

4.3. Local Area Traffic Model (LATM)

- 4.3.1. The LATM, in SATURN platform, has been developed based on the network and zoning structure of the 2015-based Base District Traffic Model (BDTM) under the model area of "New Territories West 1" (NTW1) obtained from TD. The LATM is an assignment model capable to consider detailed junction control, traffic queuing and delays for the forecast of the local are traffic demand. Since the LATM is required to simulate the local traffic movements within the AOI, the model network has been further refined and the zoning system has been further disaggregated to better replicate the detailed traffic movements within the AOI for the model validation and future traffic forecast as well as the formulation of the traffic improvement strategy.
- The base year STM cordoned trip matrices will be extracted and further 4.3.2. disaggregated into the LATM zoning system for initial inputs and validation for the base year LATM. The design year LATM matrices are developed by applying the traffic zonal growth and replacement of the strategic traffic movement (i.e. LATM External-to-External trips) obtained from the STM cordoned trip matrices. It is therefore the distribution of trips for the validated base year LATM trip matrices can be retained in the design year LATM and at the same time, generally following the growth trend of STM cordoned trip matrices to reflect the latest planning and

modelling assumptions as well as the pattern of the validated base year LATM Internal-to-Internal trips can be brought forward to the design year LATM to account for the local nature of LATM.

- The planned infrastructure / road improvements have been incorporated to the 4.3.3. LATM. Details of highway infrastructure and local road improvements will be presented in **Section 4.4**.
- 4.3.4. The LATM has served as a prima basis for facilitating traffic forecasts and assessments to be carried out under this Study. Hence, the 2021 base year LATM has to be rigorously validated against the obtained traffic data comprising junction flows and screenlines flows in peak hours. The screenlines for LATM is shown in Figure 5210095-TIA-1402
- 4.3.5. The LATM validation framework is the same as those for the BDTMs listed in Table 4.3. A combination of percentage difference and GEH statistics was adopted for assessing the level of accuracy of the model validation.

Table 4.3 **Validation Guidelines for LATM**

Validation Criteria	Validation Target
Total Screenline Flows	100% within +10%
All Count Locations	GEH 5 or less on 85% of links GEH 10 or less on 100% of links
Screenline Link Flows	85% within ±10% 100% within ±20%

4.3.6. A generally accepted validation criterion was to achieve ±10% for the screenlines and major links. However, recognising that percentage difference only assess relative error and were often misleading due to numbers of relatively small magnitude, the GEH statistic was primary employed to assess validation. GEH was a modified form of chi-square statistic defined as:

$$GEH = \sqrt{\frac{(V_2 - V_1)^2}{0.5 \times (V_1 + V_2)}}$$

where V1 and V2 were the observed and modelled flows on a specific on a specific link. It was used in order to reflect the difference based on the total volume on a link. If percentages alone were examined then there was a risk of very large percentage differences in small flow volumes appearing important when they were not. Use of the GEH statistic would remove this risk by reducing the significance of relatively large percentage differences between two small numbers.

The validation summary for the LATM screenlines and junctions is shown in Table 4.3.7. **4.4** which shows that the model validation fulfil the target criteria.

Table 4.4 **Summary of Local Area Traffic Model Validation**

Validation Criteria	Validation Target	% of Link / Junction Flows within Criteria		
validation Criteria	Validation Target	AM Peak	PM Peak	
Total Screenline Flows				
% of links within ±10%	100%	100%	100%	
Screenline Link Flows				
% of links within ±10%	85%	90%	87%	
% of links within ±20%	100%	100%	100%	
All Count Locations – Screenline Link Flows				
% of link with GEH 5 or less	85%	97%	93%	
% of link with GEH 10 or less	100%	100%	100%	
All Count Locations – Junction Entry / Exit Flows				
% of link with GEH 5 or less	85%	91%	93%	
% of link with GEH 10 or less	100%	100%	100%	

4.3.8. The above results show that all the link and junction flows were satisfactorily validated in the AM and PM peak hours. It is considered that the validated LATM with the 2021 base year traffic conditions is robust and reliable for conducting future traffic projections and traffic forecast to facilitate this TTIA. The validation results are attached in **Appendix B**.

4 4 Modelling Assumptions

4.4.1. The traffic and transport modelling assumptions are summarized and described in the following sections.

Population and Employment Data

4.4.2. The design year model matrices are developed based on the updated matrices taking into account of the future population and employment data in 2019-based TPEDM.

Planned and Committed Developments

4.4.3. The planned and committed developments with tentative development schedules and implementation programmes in the vicinity of the Proposed Development have been considered for traffic forecasting. The list of the considered developments are summarized in Table 4.5.

Table 4.5 **Planned and Committed Developments**

Developments	Included in TPEDM 2019-based?	Remarks
Hung Shui Kiu (HSK) New Development Area (NDA)	Yes	Adopt TPEDM 2019-based Assumption
Yuen Long South (YLS) Development	Yes	Adopt TPEDM 2019-based Assumption
Tuen Mun Area 54 Development	Yes	Adopt TPEDM 2019-based Assumption
Housing Development at Wang Chau	Yes	Adopt TPEDM 2019-based Assumption

Developments	Included in TPEDM 2019-based?	Remarks
Housing Development at Long Bin	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Ping Shan North	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Sha Kong Wai North	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Ping Kwai Road	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Ping Shan South	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Lam Tei North	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Nai Wai	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Shap Pat Heung	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Tai Kei Leng	Yes	Adopt TPEDM 2019-based Assumption
Brownfield Site Rezoning at Kam Ho Road	Yes	Adopt TPEDM 2019-based Assumption
Proposed Land Exchange Application for Non-industrial Purposes Various Lots in Demarcation District No. 120 and adjoining Government Land off Lam Hi Road	Not Mentioned	Add on-top-of 2019-based TPEDM
Land Exchange Application for Proposed Residential Development at Kung Um Road, Lung Tin Tsuen	Not Mentioned	Add on-top-of 2019-based TPEDM-

Cross-boundary Traffic Forecast

4.4.4. The cross-boundary traffic forecasts provided by Planning Department on 21 May 2021 were adopted for traffic forecasting. As the data are classified as confidential information, the data are not presented in this report.

Gross Domestic Product Growth

4.4.5. The increase in Gross Domestic Product (GDP) were input to the STM for the derive of the future year household income, car availability and the value of time which were used to estimate the future traffic generation and modal split. The GDP growth forecast were adopted based on the information provided by Financial Secretary's Office (FSO) as shown in **Table 4.6**.

Table 4.6 Gross Domestic Product Growth

Forecast	Real GDP
Forecast	
2021 (1)	4.5%
Assumed trend growth (per annum)	

Forecast	Real GDP
2022-25 (4 years) (2)	3.3%
2026-33 (8 years) (3)	2.8%
2034-43 (10 years) (3)	2.6%

Remarks: (1) The projected real GDP growth rate for 2021 is the mid-point of the range forecast of 3.5% to 5.5% as announced on 14 May 2021.

- (2) The assumed trend growth rates for 2022-25 are extracted from the 2021-22 Budget as announced in February 2021.
- (3) The assumptions for years from 2026 onwards are subject to a large degree of uncertainty and to a certain extent judgmental. They are rendered merely as working assumptions for internal reference and can be subject to revisions from time to time. These working assumptions should not be taken as the economic forecasts by the Government.

Value of Time (VOT) and Vehicle Operating Cost (VOC)

- 4.4.6. The VOT and VOC adopted are based on the TCS 2011 and GVTCS 2011 with the adjustment to the 2021 prices according to the Composite Consumer Price Index (CPI).
- The VOT for future years is assumed to growth at the one-third of the real GDP per 4.4.7. capita growth rate while the VOC will remain constant in real terms.

Vehicle Fleet Size

4.4.8. The future vehicle fleet size for private vehicles (private cars and motorcycles) (PV) and goods vehicle (GV) were adopted by the mid-year fleet size provided by TD as shown in Table 4.7.

Table 4.7 **Projected Vehicle Fleet Size at Mid-Year Private Vehicles**

Year	Private Car and Motorcycle	Goods Vehicles
2021	651,000 (actual)	116,600 (actual)
2026	711,700	119,500
2031	782,000	122,600
2036	821,800	125,700

Notes: Figures rounded to the nearest hundreds.

Airport Usage

4.4.9. The air passenger (excluding transit passengers) and air cargo (excluding transhipment) forecasts for model development were estimated with reference to the latest information obtained from Airport Authority Hong Kong (AA). The assumed future airport usage adopted are shown in **Table 4.8**.

Table 4.8 **Airport Usage Forecast**

Year	Daily OD (Trips)	Daily OD Cargo (Tonnes)
2026	185,000	14,200
2031	215.000	17,200

Daily traffic is calculated by the annual traffic divided by 365. Notes:

MP2035 traffic forecast. Source:

Port Productivity and Port Backup / Open Storage Area

4.4.10. According to the Study on the Strategic Development Plan for Hong Kong Port 2030, it is forecasted that there is no imminent need to build a new port container terminal prior to 2030 provided that the existing port facilities enhanced as recommended. The total container throughput forecast would be approximately 31.5 million TEU in year 2030. The average growth rate from year 2015 to year 2030 was estimated as 1.5% per annum (p.a.). To project the container throughput forecast, the estimated growth rate of 1.5% p.a. was applied to year 2018. The assumed future container terminal throughput adopted are shown in **Table 4.9**.

Table 4.9 Container Throughput Assumptions in Hong Kong Port

Year	Container Throughput Assumptions (TEUs)
2026	22,076,000
2031	23,782,000
2036	25,620,000
2041	27,600,000

4.5. Rail and Road Network Assumptions

Rail Network

4.5.1. The railway network assumptions adopted in this Study are shown in **Table 4.10**.

Table 4.10 Railway Network Assumptions

By Year	By Year 2032 (in addition to year 2021)		
1	Shatin to Central Link - North-South Corridor (NSC)		
2	Hung Shui Kiu Station		
3	Tung Chung West Extension and Tung Chung East Station		
4	Tuen Mun South Extension		
5	Siu Ho Wan Station		
6	Lok Ma Chau Spur Line Kwu Tung Station		

Road Network

4.5.2. The road network assumptions adopted in this Study are shown in **Table 4.11**.

Table 4.11 Major Road Network Assumptions

	Table 4.11 Major Roda Network Accumptions					
Year	2032 (in addition to year 2021)	Configuration (1)				
	Kowloon					
1	Road Improvement Works for South East Kowloon Development	S2 / D2 / D3 (2)				
2	Widening of Gascoigne Road Flyover	D2				
3	Central Kowloon Route and Trunk Road T2 D3 / D2 (2)					
	New Territories					
4	Tseung Kwan O – Lam Tin Tunnel and Cross Bay Link	D2				
5	Dualling of Hiram's Highway btn. Clear Water Bay Road & Marina Cove and Marine Cove & Sai Kung Town	D2				
6	Widening of Castle Peak Road - Castle Peak Bay	D2				
7	Widening of Lin Ma Hang Road btn. Ping Yuen River & Lin Ma Hang	S2				

8	Widening of Fuk Hang Tsuen Road	S2
9	Improvements to Fan Kam Road	S2
10	Widening of Tai Po Road (existing remaining D2 Shatin section)	D3
11	Fanling Bypass Eastern Section and Western Section	D2 / S2 (2)
12	Po Shek Wu Road Flyover	S1
13	North-South Link	S2
14	Trunk Road T4	D2
15	Flyover from Kwai Tsing Interchange Upramp to Kwai Chung Road	S1
16	Upgrading of remaining sections of Kam Tin Road and Lam Kam Road	S2
17	Widening of Fanling Highway btn. Pak Shek Au Int. & Po Shek Wu Int.	D4
18	North Lantau Road P1	D1
19	Widening and addition of slip roads at Lung Fu Road / Tuen Mun Road / Wong Chu Road / Hoi Wing Road	S1

Remarks: (1) "S1" denotes single 1-lane carriageway; "S2" denotes single 2-lane carriageway; "D2" denotes dual 3-lane carriageway; "D4" denotes dual 4-lane carriageway; and "D5" denotes dual 5-lane carriageway.

- (2) The configuration of these proposed highways varies at different sections of the roads.
- 4.5.3. The locations of the local road network improvement proposals by YLS Development and Housing Development at Long Bin are listed as below and the gazette layout is enclosed in **Appendix C**.
 - Shap Pat Heung Road / Kung Um Road & Kiu Hing Road
 - Shap Pat Heung Interchange
 - Tong Yan San Tsuen Interchange
 - New Junction at Long Hon Road / Shan Ha Road

4.6. Toll Assumption

4.6.1. Future tolls are assumed to remain constant in real terms. For government tunnels with an existing that toll structure, the same flat toll structure will be remained for future design years. Prevailing concessionary tolls on Western Harbour Crossing and Tai Lam Tunnel are adopted. Toll assumptions in 2021 dollars for future year STM are shown in **Table 4.12**. The tolls presented are assumed to remain constant in real terms in all future design years.

Table 4.12 Toll Assumptions for Design Year

	Vehicle Type											
Tunnel	Motorcycle	Car	Taxi	Public Light Bus	Private Light Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Single-Decked Bus	Double-Decked Bus	Articulated Vehicle (1)	Each Additional Axle
Cross Harbour Tunnel	8	20	10	10	10	15	20	30	10	15	40	10
Eastern Harbour Crossing	13	25	25	38	38	38	50	75	50	75	100	25
Western Harbour Crossing	25	75	70	85	85	85	110	140	140	200	170	30

	Vehicle Type											
Tunnel	Motorcycle	Car	Taxi	Public Light Bus	Private Light Bus	Light Goods Vehicle	Medium Goods Vehicle	Heavy Goods Vehicle	Single-Decked Bus	Double-Decked Bus	Articulated Vehicle (1)	Each Additional Axle
Tate's Cairn Tunnel	15	20	20	23	24	24	28	28	32	35	52	24
Tai Lam Tunnel	24	52	52	109	109	53	59	65	155	183	65	-
Aberdeen Tunnel						į	5					
Lion Rock Tunnel						8	3					
Shing Mun Tunnels	5											
Sha Tin Heights Tunnel / Eagle's Nest Tunnel / Tai Wai Tunnel	8											

Note: The toll level for Lantau Link, Tseung Kwan O Tunnel, Tseung Kwan O – Lam Tin Tunnel, Tune Mun-Chek Lap Kok Link, Route 11, Tuen Mun Bypass are assumed to be zero.

Remarks:

4.7. Trip Generation

- 4.7.1. To estimate the traffic generation of the Proposed Development appropriate trip rates should be adopted. Reference has been made to the TPDM published by TD.
- 4.7.2. The adopted trip rates and estimated trip generation/ attraction demand of the Proposed Development and associated facilities during the morning and evening peak as summarized in **Table 4.13**.

Table 4.13 Traffic Generation of the Proposed Development

	Donomostono		Trip Rates					Deman u/hr)	ıd
	Parameters	AM		P	M	AM		PM	
		Gen	Att	Gen	Att	Gen	Att	Gen	Att
Public Housing (Subsidised Housing: HOS / PSPS)	910 + 10% flats ⁽¹⁾	0.0622	0.0426	0.0297	0.0401	63	43	30	41
Social Welfare Facilities (2) (3)	-	-	-	-	-	10	10	10	10
Sub-Total							53	40	51
	12	26	9	1					

Remarks:

- (1) 10% variation for design flexibility is allowed in the population/flats for technical assessment. The actual nos. of population/flats will be subject to confirmation by the user department at later stage.
- (2) It is anticipated the Social Welfare Facilities and kindergarten would mainly serve the Proposed Development and resident in the vicinity. The traffic demand is anticipated to be minimal. 10pcu/hr one-way is assumed for assessment purpose.
- (3) The actual type of SWD facilities are subject to confirmation by user department at later stage.

⁽¹⁾ Toll of articulated vehicle = toll rate for "Heavy Goods Vehicle" + toll rate for "Each Additional Axle".

4.7.3. As shown in Table 4.13, the Proposed Development would generate about 126 pcu/hr and 91 pcu/hr during the morning and evening peak hour periods respectively.

Assessment Scenarios 4.8.

- 4.8.1. With the model development methodology and the modelling assumptions presented in the previous sections, the traffic models for this TTIA have been developed and model runs have been conducted for various assessment scenarios as follow:
 - a) Year 2021 Baseline Scenario;
 - b) Year 2032 Reference Scenario (i.e. without the Proposed Development);
 - c) Year 2032 Design Scenario (i.e. with the Proposed Development with Domestic Plot Ratio 6.5);
- 4.8.2. The traffic flows for the assessment scenarios a) to c) are shown in Figures 5210095-TIA-1302, 5210095-TIA-1403 and 5210095-TIA-1405 respectively.
- 4.8.3. The distribution of development traffic is shown in Figure 5210095-TIA-1404 and the development traffic routes are shown in Figure 5210095-TIA-1406.

5. Traffic and Transport Impact Assessment

5.1. Methodology

Road Links Assessment

- 5.1.1. Road link capacity analysis were carried out in accordance with the procedures outlined in TPDM. The performance of road links are represented in terms of Volume/Capacity (V/C) ratio.
- 5.1.2. A V/C ratio equals to or less than 1.0 indicates that a road has sufficient capacity to cope with the volume of vehicular traffic under consideration and the resultant traffic will flow smoothly. A V/C ratio above 1.0 indicates the onset of congestion. A V/C ratio above 1.2 indicates more serious congestion with traffic speeds deteriorating progressively with further increase in traffic.
- 5.1.3. The key road links assessed are tabulated in **Table 5.1** and the locations are shown

Junctions Assessment

- 5.1.4. The performance of priority junctions / roundabouts are represented in terms of design flow/capacity (DFC) ratio while that of signalized junctions are represented in terms of reserve capacity (RC). The performance indicators are summarized below:
 - DFC ≤ 0.75 / RC ≥ 25% acceptable for new junctions
 - DFC ≤ 0.85 / RC ≥ 15% acceptable for existing junctions
 - DFC > 1.0 / RC < 0% not acceptable in general under "with development" Scenario
- 5.1.5. Problematic road links and junctions will be identified and mitigation measures will be proposed where practicable.

5.2. Road Link Assessment

5.2.1. The performance of the assessed road links for all the assessment scenarios are summarized in **Table 5.2**.

Table 5.1 **Road Link Assessments**

								Flow / Volu	ume to Ca	pacity (V/0	C) Ratio ⁽¹)			
			Ca (p		2021 B	aseline		2032 Ref					2032 [Design	
<u> </u>	Ro	Direction / Turning		Α	M	PM		AM		PM		Α	М	PM	
Index (2)	Road Link		Capacity (pcu/hr)	Flow (pcu/hr)	V/C Ratio	Flow (pcu/hr)	V/C Ratio	Flow (pcu/hr)	V/C Ratio						
L1a		EB→NB	1800	1,617	0.90	1,647	0.92	1,025	0.57	1,394	0.77	1,025	0.57	1,394	0.77
L1b	Tong Yan San Tsuen	WB→NB	1800	1,298	0.72	1,298	0.72	1,395	0.78	1,395	0.78	1,395	0.78	1,395	0.78
L1c	Interchange L1c	SB→EB	1800	2,044	1.14	1,215	0.68	1,806	1.00	1,647	0.92	1,806	1.00	1,647	0.92
L1d		SB→WB	1800	1,274	0.71	1,327	0.74	912	0.51	823	0.46	912	0.51	823	0.46
L2	Long Tin Road	NB	3600/ 5400	3,582	1.00	3,860	1.07	3,327	0.62	4,035	0.75	3,327	0.62	4,035	0.75
	Long Till Road	SB	5400	4,190	0.78	3,471	0.64	4,316	0.80	3,859	0.71	4,316	0.80	3,859	0.71
L3	Yuen Long Highway (section between TSWW	EB	6100	5,776	0.95	4,843	0.79	6,622	1.09	6,765	1.11	6,638	1.09	6,780	1.11
	Int. and TYST Int.)	WB	6100	4,554	0.75	4,771	0.78	4,672	0.77	4,877	0.80	4,694	0.77	4,889	0.80
L4	Yuen Long Highway	EB	6100	6,203	1.02	4,411	0.72	6,956	1.14	6,299	1.03	6,956	1.14	6,299	1.03
L4	(section between TYST Int. & SPH Int.)	WB	6100	4,578	0.75	5,160	0.85	5,130	0.84	5,633	0.92	5,130	0.84	5,633	0.92

Bold figure indicates V/C ratio of more than 1.0 which denotes overcapacity. Refer to Figure 5210095-TIA-1301 Remarks: (1)

- 5.2.2. As shown in **Table 5.1**, most of the assessed road links would operate with acceptable operation performance with V/C ratio less than 1.0 under all assessment scenarios except the slip road of Tong Yan San Tsuen Interchange (i.e. L1c), Long Tin Road Northbound (i.e. L2 NB) and Yuen Long Highway Eastbound (i.e. L3 EB and L4 EB). These road links would still operate with tolerable V/C ratios with values between 1.0 to 1.2 which indicates the onset of congestion.
- 5.2.3. In short, the traffic condition with / without the Proposed Development would be tolerable even up to the design year.
- 5.2.4. The traffic impact to Yuen Long Highway induced by the Proposed Development is relatively small compared to the Year 2032 Reference Scenario (i.e. less than no increment in v/c ratio). The impact to these road links would be mainly due to the cumulative traffic impact of other the planned / committed developments in the district.
- 5.2.5. There will be road improvement works by others including Yuen Long South Development, Widening of Yuen Long Highway and Route 11. The link capacities on the key road links will be increased to cater the future traffic demand.
- 5.3. Junction Assessments
- 5.3.1. The key junctions assessed are tabulated in **Table 5.2** and the locations are shown in **Figure 5210095-TIA-1301**. The calculation sheets are attached in **Appendix A**.

Table 5.2	Junctions	Performance
-----------	------------------	--------------------

			Reserve Capacity (RC) % / Design Flow/Capacity Ratio (DFC) (1)									
No. ⁽²⁾	Junction	Type	2021 B	aseline	2032 Re	ference	2032 Design					
			AM	PM	AM	PM	AM	PM				
J1	Shap Pat Heung Road / Yuen Long Tai Yuk Road	Priority	0.82	0.84	0.79	0.82	0.80	0.83				
J2	Shap Pat Heung Road / Lam Hau Tsuen Road	Round- about	0.30	0.15	0.32	0.18	0.33	0.18				
J3	Town Park Road South / Lam Hau Tsuen Road	Signal	27%	58%	28%	55%	23%	50%				
J4	Shan Ha Road / Town Park Road North	Priority	0.70	0.82	0.79	0.76	0.82	0.79				
J5	Shap Pat Heung Road / Kung Um Road & Kiu Hing Road (4)	Signal	-5%	-4%	12% ⁽⁴⁾	12% ⁽⁴⁾	12%	12%				
J6	Shap Pat Heung Road / Tai Shu Ha Road West / Tai Shu Ha Road East	Priority	0.38	0.53	0.56	0.52	0.58	0.53				
J7	Shap Pat Heung Road / Tai Tong Road	Signal	22%	26%	21%	20%	16%	17%				
J8	Shap Pat Heung Road / Fung Ki Road	Signal	51%	53%	48%	32%	44%	31%				
J9	Shap Pat Heung Road / Tai Kei Leng Road	Signal	47%	47%	80%	57%	75%	55%				
J10	Shap Pat Heung Interchange	Round- about	0.91	0.91	0.89	0.89	0.90	0.90				
J11	Yuen Long Tai Yuk Road / Ma Tin Road	Signalis ed	22%	36%	27%	35%	27%	35%				
J12	Yuen Long Tai Yuk Road / Kau Yuk Road	Signalis ed	33%	34%	42%	37%	42%	37%				
J13	Castle Peak Road – Ping Shan / Ma Miu Road	Signalis ed	15%	32%	10%	28%	10%	28%				
J14	Castle Peak Road – Ping Shan / Long Tin Road	Signalis ed	65%	82%	45%	64%	45%	64%				
J15	Town Park Road North / Ma Tin Road	Priority	0.21	0.14	0.24	0.17	0.24	0.17				
J16	Tong Yan San Tsuen Interchange / Long Hon Road & Shan Ha Road (3)	Priority	0.88	0.89	N/A	N/A	N/A	N/A				

Remarks: (1)

Bold figure indicates RC of less than 15% or DFC of more than 0.85 which denotes marginal junction performance. RC of less than 0% or DFC of more than 1.0 denotes overcapacity.

(2) Refer to Figure 5210095-TIA-1301.

- (3) Junction will be removed upon the completion of road improvement works under YLS Development
- (4) Road improvement works proposed by YLS Development as mentioned in Section 4.5.3 would have been implemented in the design year (i.e. year 2032) and it is anticipated that certain development traffic would be conveyed via the proposed road improvement works. In this regard, the Proposed Development traffic with approved domestic plot ratio of 5.0 has been included in the 2032 Reference scenario.
- 5.3.2. As shown in **Table 5.2**, most of the key junctions would operate with satisfactory performance (i.e. RC ≥ 15% and DFC ≤ 0.85) under future year assessment scenarios except Shap Pat Heung Road / Kung Um Road & Kiu Hing Road (J5), Shap Pat Heung Interchange (J10) and Castle Peak Road Ping Shan / Ma Miu Road (J13).

- 5.3.3. The purpose of this TTIA is to assess the traffic impact due to the intensification of the Proposed Development from a domestic plot ratio of 5.0 to a maximum domestic plot ratio of 6.5. The additional traffic induced by the intensification is minimal (i.e. 10pcu/hr). According to the above table, the impact to J5 and J10 is insignificant, which indicated that the traffic condition would be same / similar regardless of the intensification of domestic plot ratio to 6.5. Furthermore, for J5 and J10, the RC and DFC would be 12% and 0.90 respectively, which are considered tolerable.
- 5.3.4. For J13, it is anticipated that the development traffic of the Proposed Development to strategic links will not travel the junction. Hence, there will be no traffic impact due to the Proposed Development and no improvement scheme will be required under this project.
- 5.3.5. In short, the traffic condition with / without the Proposed Development would be tolerable even up to the design year.
- 5.4. Queue Length Assessments
- 5.4.1. In accordance with the Chapter 2.5 of TPDM Volume 4, queue length assessments have been conducted for the signalized junctions. The estimated average queue lengths for design year 2032 Reference and 2032 Design scenarios have been summarized in **Table 5.3**. The calculation sheets are attached in **Appendix D**.

Table 5.3 Summary of Estimated Average Queue Length

			Length of	Estimated Average Queue Length (m)									
No. ⁽¹⁾	Junction	Arm	Stacking	2021 B	aseline	2032 Re	eference	2032 [Design				
			Area (m)	AM	PM	AM	PM	AM	PM				
	Tours Doub Dood Couth /	WB	35	28	25	30	25	31	26				
J3	Town Park Road South / Lam Hau Tsuen Road	NB	95	47	20	37	25	40	27				
		EB	>200	47	46	52	45	55	47				
	Chan Dat Hause Dand /	WB	185	112	104	49	51	50	52				
J5	Shap Pat Heung Road / Kung Um Road & Kiu Hing Road (2)	NB	75	126	117	51	62	52	62				
JO		EB	>200	87	66	81	58	83	59				
	ning Road (2)	SB	120	56	49	39	47	39	47				
		WB	>200	72	81	68	79	73	84				
J7	Shap Pat Heung Road /	NB	150	71	65	66	66	69	68				
J/	Tai Tong Road	EB	145	41	38	42	39	45	41				
		SB	>200	69	73	75	75	77	76				
		WB	>200	41	47	42	45	44	47				
10	J8 Shap Pat Heung Road / Fung Ki Road	NB	20	8	5	7	6	7	6				
J8		EB	>200	50	47	51	48	53	50				
		SB	175	41	41	51	58	52	58				
	Ohan Dat Harran Dand /	WB	95	26	32	28	33	29	34				
J9	Shap Pat Heung Road / Tai Kei Leng Road	NB	>200	75	31	36	41	37	42				
		EB	>200	205	35	43	50	44	50				
		WB	95	21	24	20	23	20	23				
J11	Yuen Long Tai Yuk Road	NB	200	39	38	40	36	40	36				
JII	/ Ma Tin Road	EB	170	37	32	38	32	38	32				
		SB	>200	34	31	32	30	32	30				
	Versal and TailVela Danel	WB	90	48	41	42	40	42	40				
J12	Yuen Long Tai Yuk Road	NB	>200	54	45	50	44	50	44				
	/ Kau Yuk Road	SB	125	49	36	40	30	40	30				
		WB	195	52	38	52	43	52	43				
140	Castle Peak Road - Ping	NB	95	51	49	56	50	56	50				
J13	Shan / Ma Miu Road	EB	>200	42	42	62	51	62	51				
		SB	95	53	46	54	42	54	42				
	Cootle Deals Dead Di	WB	>200	56	54	66	61	66	61				
J14	Castle Peak Road – Ping	EB	130	35	35	47	41	47	41				
•	Shan / Long Tin Road	SB	200	35	27	37	33	37	33				

Remarks: (1) Refer to Figure 5210095-TIA-1301.

- 5.4.2. From **Table 5.3**, it shows that the impact to junction average queue length due to the Proposed Development would be insignificant by comparing to 2032 Design Case with the 2032 Reference Case.
- 5.4.3. As shown in the above table, the existing average queue length of J5 (about 120m) exceeds the stacking area (about 75m). The junction will be enhanced by junction improvement works proposed by YLS Development.

⁽²⁾ Junction improvement works proposed by YLS Development as mentioned in Section 4.5.3 will implemented.

5.5. Construction Traffic Impact Assessment

- 5.5.1. No site formation works would be required for the Subject Site under this Study. Therefore, the construction traffic impact would be mainly due to the construction vehicles generated during the housing construction by HD. As advised by HD, for other previous projects in similar scale, the trip generation of construction vehicle will be about 5 to 6 trucks per hour, which would pose insignificant traffic impact to the nearby road network.
- 5.5.2. Furthermore, the construction traffic can be managed by avoiding entering / leaving the site during peak hour to minimise the traffic impact to the nearby road networks. In addition, the Contractor shall keep monitoring the traffic condition of near road network during the construction stage and traffic control measures will be implemented to avoid construction traffic via congested road sections or junctions of the area.
- 5.5.3. It is anticipated that there is sufficient area within the Subject Site to accommodate the construction vehicles during construction. Therefore, minimal traffic impact to the surrounding roads by gueueing of construction vehicles outside the Subject Site is anticipated.

5.6. **Proposed Traffic and Transport Arrangement**

Estimated Public Transport Passenger Demand

- 5.6.1. In view of the considerably long walking distance (>500m) from the Subject Site to the nearest LRT Station, additional road-based feeder services (i.e. franchised bus and GMB) have been studied for the Proposed Development to cater for the anticipated public transport demand.
- 5.6.2. The provision of public transport facilities of the Proposed Development were determined making reference to population characteristics of Shap Pat Heung area (Building Group YL0004 and YL0006), presented in the 2016 mid-term Population Census results, the breakdown of Workers. Student and Non-student in the area is summarized in Table 5.4.

Table 5.4 Breakdown of Workers, Student and Non-student in the Areas

	Population	Resident Worker	Student	Non-student (1)
Shap Pat Heung	3.549	2,110	470	969
(YL0004&YL0006) (2)	3,349	59.5%	13.2%	27.3%
Proposed Development (TO4)	2,703(4)	1,607	358	738

Remarks:

- Housewife, Retire or others.
- Building groups YL0004 and YL0006 refer to La Grove and Park Signature Tower 1-6 respectively. Source of information is attached in Appendix F.
- Detailed breakdown from 2021 Population Census is not available. Hence, the assessment is based on 2016 midterm Population Census results.
- 10% variation for design flexibility is allowed in the population/flats for technical assessment. The actual nos. of population/flats will be subject to confirmation by the user department at later stage.
- 5.6.3. With reference to TCS2011, the overall peak hours for mechanised trips on a weekday were found to be 08:00 - 09:00 a.m. in the morning and 06:00 - 07:00p.m. in the evening, each accounting for about 12% of the daily trips made. In

view of a majority of students present during morning peak period, therefore, nominal 20% and 35% of Workers and Students respectively to be generated during morning peak hour is assumed for assessment purpose. The pedestrian generation by Transport Mode are summarized in **Table 5.5**.

 Table 5.5
 Pedestrian Generation by Transport Mode

5	Pedestrian			Pedestrian	,			r) ⁽²⁾			
Population Type	Trip (ped/hr) ⁽¹⁾	MTR	Bus	PLB	Walk	School Bus	Others (3)	Total (4)			
2016 Model S	2016 Model Split of Shap Pat Heung (YL0004 & YL0006) (5)										
Worker	-	43%	30%	1%	2%	-	24%	100%			
Student	-	27%	11%	3%	17%	35%	7%	100%			
2016 Model S	2016 Model Split of New Town (6) (7)										
Worker	-	44%	29%	6%	9%	-	12%	100%			
Student	-	27%	16%	7%	33%	11%	6%	100%			
2021 Model S	Split of New To	wn ^{(6) (7)}									
Worker	-	45%	27%	5%	9%	-	13%	100%			
Student	-	33%	17%	5%	29%	10%	7%	100%			
Adopted Mod	del Split of The	Proposed	Developm	ent							
Worker	-	43%	30%	1%	2%	-	24%	100%			
Student	-	27%	11%	3%	17%	35%	7%	100%			
The Propose	d Developmen	t									
Worker	321	137	97	4	7	-	76	321			
Student	125	34	14	4	21	44	8	125			
	Total	171	112	8	28	44	84	447			

Remarks:

5.6.4. The model split of New Town in 2021 Population Census has been considered and compared with the model split of New Town in 2016 Population Census. As shown in the above table, the difference between 2016 and 2021 results for New Town is small. Hence, 2016 Model Split of Shap Pat Heung has been adopted.

Railway Assessment

5.6.5. From **Table 5.5**, it is anticipated that about 159 passengers would be travelling by MTR. The carrying capacities of the Tuen Ma Line (TML) and additional demand and V/C ratio induced by the Proposed Development is summarized in **Table 5.6**.

⁽¹⁾ Assumed about 20% and 35% of Workers and Students respectively to be generated during morning peak hour making reference to TCS2011.Source of information is attached in **Appendix F**.

⁽²⁾ Refer to the overall mode spilt of Shap Pat Heung area (YL0004 & YL0006) in the 2016 mid-term Population Census results.

^{(3) &}quot;Others" includes private cars, taxi and shuttle bus.

⁽⁴⁾ The figures are rounded to nearest integer. The figures may not add up to the totals due to rounding.

⁽⁵⁾ Source of information is attached in **Appendix F**.

^{(6) &}quot;New Town" includes Tseung Kwan O New Town, Tsuen Wan New Town, Tuen Mun New Town, Yuen Long New Town, Tin Shui Wai New Town, Fanling/ Sheung Shui New Town, Tai Po New Town, Sha Tin New Town, Ma On Shan New Town, Kwai Chung New Town, Tsing Yi New Town and North Lantau New Town.

⁽⁷⁾ Source of information is attached in Appendix F.

Table 5.6 **Estimated Additional Demand on Tuen Ma Line**

No. of Train per hour per direction	28
Design Capacity per direction in 6 ppsm (1) (a)	70,000
Carrying Capacity per direction in 6 ppsm (1) (b)	58,800
Carrying Capacity per direction in 4 ppsm ⁽¹⁾ [(b) * 71.2%] (c)	41,866
Passenger Demand from Proposed Developments (d)	171
Additional V/C Ratio in 6 ppsm [(d) / (b)]	+0.3%
Additional V/C Ratio in 4 ppsm [(d) / (c)]	+0.4%
Additional Passenger Demand per train	7

Remarks:

- The additional demand on the future TML is about +0.3% to +0.4% only, which is 5.6.6. equivalent to 7 passengers per train. It is anticipated that the additional demand is insignificant in comparison with the existing carrying capacity of TML. Moreover, MTR Corporation Limited will monitor the passenger flow and consider further enhancing the carrying capacity of TML by arranging short-haul trips to run between busy stations and acquitting more trains to cope with the passengers demands.
- 5.6.7. It is anticipated that the demand for Light Rail (LR) is minimal in view of long walking distance (i.e. >500m walking distance) from the Proposed Development to the nearest LR station. Existing public transport services in the vicinity of the Proposed Development have provided direct connection to urban area and Yuen Long MTR station. The traffic impact to LR system due to the Proposed Development would be negligible.

Public Transport Demand of the Proposed Development

5.6.8. From Table 5.5, the required public transport provision during morning peak hour is assessed and summarized in Table 5.7.

Table 5.7 Required Public Transport Provision during Morning Peak Hour

	Public Transport Type	Capacity (passenger/ service)	Estimated Passenger Demand (1)	Required no. of Services (service/hr)		
	Bus (include MTR Feeder) ⁽¹⁾	120	283	3		
_	PLB (2)	19	8	1		

Note:

- 5.6.9. As shown in Table 5.7, 3 nos. of bus and 1 no. of PLB during the AM peak hour would be required to cater for the additional public transport demand from the Proposed Development.
- 5.6.10. It is considered that the existing single bus layby on both sides of Shap Pat Heung Road can accommodate the additional bus and PLB demand from the Proposed Development. Also, based on the on-site observation of the existing usage of layby

Source of information is attached in **Appendix F**.

Passenger demand of Bus including the estimated passenger trips by 'Bus' and 'MTR' in Table 5.5. It is assumed that MTR passenger will use Bus as Feeder service to MTR station.

as well as existing bus and PLB utilization, the current bus and PLB routes would have adequate spare capabilities to cater for the additional demand.

5.7. Pedestrian Walkway Analysis

5.7.1. The definition of the Level-of-service (LOS) for analysis of pedestrian walkway is elaborated in **Table 5.8** below.

Table 5.8 Definition of Level-of-service (LOS)								
Level Of Service (LOS)	Flow Rate (ped/min/m)	Definition						
А	≤ 16	Pedestrian freely select walking speed and conflicts between pedestrians are unlikely.						
В	16 – 23	Pedestrians freely select walking speed and bypass other pedestrians in primarily one directional flow. Minor conflicts will occur where reverse direction or crossing movements exist, requiring slightly lowering mean pedestrian speeds and potential volumes.						
С	23 – 33	Pedestrians are restricted in selecting walking speed and bypass other pedestrians. Conflicts are highly likely to occur where reverse direction or crossing movements exits, requiring frequent adjustment of speed and direction.						
D	33 – 49	Most pedestrians would have their normal walking speed restricted and reduced. Multiple conflicts with other pedestrians will occur where pedestrians are involved in reverse-flow and crossing movements.						
Е	49 – 75	Virtually all pedestrians would have frequent adjustment of gait. At the lower range, forward progress would only be available their normal walking speeds restricted requiring to bypass slower-moving pedestrians. Extreme difficulties for pedestrian attempting reverse-flow and cross-flow movements.						
F	> 75	All pedestrian walking speeds are extremely restricted and forward progress can only be made by shuffling. Frequent and unavoidable contact with other pedestrians will occur. Reserve or crossing movements would be virtually impossible.						

5.7.2. The walkway is assessed based on the requirement stipulated in TPDM Vol. 2 Chapter 3.4 cl. 3.4.11.3:

"In view of the public expectation for a better walking environment, the upper end of LOS C(23 pedestrians/minute/m as stated in the HCM) is preferred. The Street Furniture & Greening Zone (SF&GZ) acts as a buffer between the Through Zone and the road and incorporates landscaping and a variety of street furniture."

5.7.3. It is expected that pedestrian demand generated by the Proposed Development will be using the nearest layby at Shap Pat Heung Road for commuting via buses / GMB. The westbound and eastbound footpaths at Shap Pat Heung Road adjacent to the Subject Site will be assessed.

- 5.7.4. The eastern footpath in between La Grove Tower 5 and the Proposed Development has been assessed to review the LOS performance for a scenario of a planned pedestrian access.
- 5.7.5. According to the pedestrian survey, the pedestrian flows during peak hours were relatively low.
- 5.7.6. The LOS analysis is summarized in **Table 5.9** for 2021 existing condition.

Table 5.9 LOS Analysis in Year 2021 2-way Flow Rate Clear Effective LOS Pedestrian (ped/min/m) Index (1) Location Width Width Flow (ped/hr) (m) (m) (2) AM AM PMAM PM EB Bus Stop P1 197 outside Ma 3.8 1.8 67 1.8 0.6 Α Α Tin Tsuen WB Bus Stop P2 outside 3.0 1.0 198 188 3.3 3.1 Α Α Subject Site Near La P3 Grove 0.5 231 7.7 1.5 153 5.1 Α Α Tower 5

Remarks:

- (1) Refer to Figure 5210095-TIA-1202.
- (2) Effective width is the width accounting the dead widths on both sides of the walkway, i.e. 0.5m on each side, and 1m bus stop queuing zones with reference to TPDM Vol.9 Chapter 2.7 cl. 2.7.14.7 if applicable.
- 5.7.7. From above table, it is found that all assessed footpaths have desirable LOS (i.e. "C" or above) in existing condition.
- 5.7.8. The future LOS analysis is summarized in **Table 5.10** for 2032 reference scenario. With decreasing trend of the population in the PDZ 179 of the 2019-based TPEDM from 2019 to 2036, the growth rate of 1% p.a. is adopted and applied to the 2021 pedestrian flows for the estimate of the 2032 pedestrian flows as a conservative approach.

Table 5.10 LOS Analysis of Year 2032 Reference Case

Index (1)		Clear Width	Effective Width (m) (2)	2-way Pedestrian Flow (ped/hr)		Flow Rate (ped/min/m)		LOS	
		(111)		AM	PM	AM	PM	AM	PM
P1	EB Bus Stop outside Ma Tin Tsuen	3.8	1.8	219	75	2.0	0.7	А	А
P2	WB Bus Stop outside Subject Site	3.0	1.0	220	209	3.7	3.5	А	А
P3	Near La Grove Tower 5	1.5 (3)	0.5	257	170	8.6	5.7	А	А

Remarks:

(1) Refer to Figure 5210095-TIA-1202.

- (2) Effective width is the width accounting the dead widths on both sides of the walkway, i.e. 0.5m on each side, and 1m bus stop queuing zones with reference to TPDM Vol.9 Chapter 2.7 cl. 2.7.14.7 if applicable.
- (3) Existing width is used for assessment purpose. The provision of the footpath width should be further reviewed by HD.
- 5.7.9. From above table, it is found that all assessed footpaths have desirable LOS (i.e. "C" or above) in 2032 reference scenario.
- 5.7.10. Future LOS analysis is summarized in **Table 5.11** for 2032 design scenario. The total passenger demand derived in **Table 5.7** is superimposed on top of Year 2032 reference pedestrian flows for all assessed footpaths as conservative assessment.

Table 5.11 LOS Analysis of Year 2032 Design Case

Index (1)	Clear Location Width (m)	Effective Width (m) (2)	2-way Pedestrian Flow (ped/hr)		Flow Rate (ped/min/m)		LOS		
		(111)	(111) (-/	AM	PM	AM	PM	AM	PM
P1	EB Bus Stop outside Ma Tin Tsuen	3.8	1.8	510	366	4.7	3.4	А	А
P2	WB Bus Stop outside Subject Site	3.0	1.0	511	500	8.5	8.3	А	А
P3	Near La Grove Tower 5	1.5 (3)	0.5	704	617	23.5	20.6	С	В

Remarks:

- (1) Refer to Figure 5210095-TIA-1202.
- (2) Effective width is the width accounting the dead widths on both sides of the walkway, i.e. 0.5m on each side, and 1m bus stop queuing zones with reference to TPDM Vol.9 Chapter 2.7 cl. 2.7.14.7 if applicable.
- (3) Existing width is used for assessment purpose.
- 5.7.11. From above table, it is found that all assessed footpaths have desirable LOS (i.e. "C" or above) in 2032 design scenario.
- 5.7.12. Based on the LOS analysis results, the impact due to the Proposed Development on adjacent footpaths is insignificant.

6. Summary and Conclusions

6.1. Summary

- 6.1.1. Civil Engineering and Development Department appointed Atkins China Limited to undertake the Task Order No. 4 of Agreement No. CE 46/2020 (CE) Term Consultancy for Site Formation and Infrastructure Works for Proposed Housing Developments in Zone 1 Feasibility Study.
- 6.1.2. The Subject Site consists of about 0.71ha developable area and the current allowable development domestic plot ratio is 5.0. With the proposed increase of domestic plot ratio to 6.5, the Proposed Development consists of public housing with 910 flats and social welfare facilities. The tentative intake year will be at 2028/2029.
- 6.1.3. The provision of parking and servicing facilities of the Proposed Development will be made reference to the Hong Kong Planning Standard and Guideline published by Planning Department. HD advised that the high-end of the parking provision will be adopted.
- 6.1.4. Vehicular access for the Proposed Development will be via Shap Pat Heung Road. The development traffic will reach the strategic road network of Yuen Long Highway via Shap Pat Heung Interchange to the east, or via Shan Ha Road and Tong Yan San Tsuen Interchange to the west.
- 6.1.5. A two-tier transport modelling approach, including the upper tier Strategic Transport Model and the lower tier Local Area Traffic Model, has been adopted for this study. Traffic and Transport Impact Assessment has been carried out for the design year 2032. The future road network has considered the proposed roadwork under Yuen Long South Development Stage 1 and Stage 2 Phase 1 which is anticipated to be completed and commissioned before the population intake of this development.
- 6.1.6. Road link assessments have been carried out in accordance with the procedures outlined in Transport Planning and Design Manual (TPDM). It was found that most of the road links would operate with Volume/Capacity (V/C) ratio less than 0.85; some road links would operate with operation performance with V/C ratio between 0.85 to 1.2 in the Year 2032. The traffic impact induced by the Proposed Development was found to be insignificant.
- 6.1.7. Junction assessments have been carried out in accordance with the procedures outlined in TPDM. The operational performance of most of the key junctions would operate with reserved capacities (RC) more than 15% or design flow/capacity ratio (DFC) less than 0.85 in the Year 2032. Amongst all, the junctions of Shap Pat Heung Road / Kung Um Road & Kiu Hing Road (J5), Shap Pat Heung Interchange (J10) and Castle Peak Road Ping Shan / Ma Miu Road (J13) would operate with RC between 0% and 15% or DFC between 0.85 and 1.0 in the Year 2032. Based on the assessment results, the traffic impact induced by the Proposed Development is considered relatively insignificant. In short, the traffic condition with the Proposed Development would be tolerable in the design year.
- 6.1.8. Considering the minimal estimated construction traffic generation from the Proposed Development, it is anticipated that the construction traffic impact on adjacent road links and junctions would be insignificant.

- 6.1.9. The provision of public transport facilities of the Proposed Development were determined making reference to population characteristics as presented in the 2016 mid-term and 2021 Population Census results. It is anticipated that public transport demand from the Proposed Development would have negligible impact to the existing public transport facilities.
- 6.1.10. It is expected that pedestrian demand generated by the Proposed Development will be using the nearest layby at Shap Pat Heung Road for commuting via buses / GMB. The footpaths at Shap Pat Heung Road adjacent to the Subject Site have been assessed. Based on the LOS analysis results, the impact due to the Proposed Development on adjacent footpaths is insignificant.

6.2. Conclusions

- 6.2.1. Based on the above discussion, it is concluded that the proposed public housing development at Shap Pat Heung Road with domestic plot ratio 6.5 would not induce adverse traffic and transport impact on the surrounding road network upon in year 2032. Therefore, the Proposed Development is considered acceptable from traffic and transport point of view.
- 6.2.2. It is concluded that no road improvement works under this Subject Site (i.e. Shap Pat Heung Road Site) would be required to be carried out by CEDD.

Figures

Appendix A Junction Calculation Sheets

(Two Lanes Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J1 - Shap Pat Heung Road / Yuen Long Tai Yuk Road Junction: Designed by: PC Checked by: Scheme: TL Job No.: 5210095 31/05/2022 Design Year: 2021 Date: Shap Pat Heung Road (EB) ARM A: ARM B: Yuen Long Tai Yuk Road (SB) ARM C: Shap Pat Heung Road (WB) am pm ARM C 175 136 300 354 Shap Pat Heung Road (WB) Shap Pat Heung Road (EB) am pm 181 141 274 239 ARM A am pm 104 81 191 116 ARM B Yuen Long Tai Yuk Road (SB) GEOMETRY Major road width 10.90 Lane widths w(b-a) 0.00 Central Reserve width Wcr w(b-c) 0.00 7.00 Residual width Wr(c-a) 3.00 w(c-b) 0.00 Visibilities Vr(b-a) Calculated 0.62 D 85 VI(b-a) 110 Ε 1.27 Vr(b-c) 85 F 0.64 Vr(c-b) 85 0.62 ANALYSIS AM PEAK PM PEAK TRAFFIC FLOWS q(c-a) 175 136 q(c-b) 300 354 q(a-b) 274 239 q(a-c) 181 141 116 q(b-a) 191 q(b-c) 104 81 0.35 0.41 CAPACITIES 273 273 Q(b-a) Q(b-c) 865 881 Q(c-b) 408 419 359 381 Q(b-ac) DFC's 0.70 0.43 b-a 0.09 b-c 0.12 c-b 0.735 0.845 0.821 0.517 b-ac

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(Vl(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

0.82

T.P.D.M.V.2.4

Appendix 1

0.84

In accordance with TPDM V2.4

(Two Lanes Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J1 - Shap Pat Heung Road / Yuen Long Tai Yuk Road Junction: Designed by: PC Reference Checked by: Scheme: TL Job No.: 5210095 31/05/2022 Design Year: 2032 Date: Shap Pat Heung Road (EB) ARM A: ARM B: Yuen Long Tai Yuk Road (SB) ARM C: Shap Pat Heung Road (WB) am pm ARM C 112 156 271 352 Shap Pat Heung Road (WB) Shap Pat Heung Road (EB) am pm 166 82 240 356 ARM A am pm 188 109 160 94 ARM B Yuen Long Tai Yuk Road (SB) GEOMETRY Major road width 10.90 Lane widths w(b-a) 0.00 Central Reserve width Wcr w(b-c) 0.00 7.00 Residual width Wr(c-a) 3.00 w(c-b) 0.00 Visibilities Vr(b-a) Calculated 0.62 D 85 VI(b-a) 110 Ε 1.27 Vr(b-c) 85 F 0.64 Vr(c-b) 85 0.62 ANALYSIS AM PEAK PM PEAK TRAFFIC FLOWS q(c-a) 112 156 q(c-b) 271 352 q(a-b) 356 240 q(a-c) 166 82 94 q(b-a) 160 188 109 q(b-c) 0.54 0.54 CAPACITIES 282 280 Q(b-a) Q(b-c) 860 898 Q(c-b) 399 427 Q(b-ac) 442 444 DFC's 0.57 0.34 b-a b-c 0.22 0.12 c-b 0.680 0.823 0.787 0.458 b-ac 0.82 Critical DFC 0.79

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(Vl(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1

(Two Lanes Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J1 - Shap Pat Heung Road / Yuen Long Tai Yuk Road Junction: Designed by: PC Checked by: Scheme: Design TL 2032 Job No.: 5210095 31/05/2022 Design Year: Date: Shap Pat Heung Road (EB) ARM A: ARM B: Yuen Long Tai Yuk Road (SB) ARM C: Shap Pat Heung Road (WB) am pm ARM C 134 168 271 352 Shap Pat Heung Road (WB) Shap Pat Heung Road (EB) am pm 182 97 356 240 ARM A am pm 188 109 160 94 ARM B Yuen Long Tai Yuk Road (SB) GEOMETRY Major road width 10.90 Lane widths w(b-a) 0.00 Central Reserve width Wcr w(b-c) 0.00 7.00 Residual width Wr(c-a) w(c-b) 3.00 0.00 Visibilities Vr(b-a) Calculated 0.62 D 85 VI(b-a) 110 Ε 1.27 Vr(b-c) 85 F 0.64 Vr(c-b) 85 0.62 ANALYSIS AM PEAK PM PEAK TRAFFIC FLOWS q(c-a) 134 168 q(c-b) 271 352 q(a-b) 356 240 q(a-c) 182 97 q(b-a) 160 94 188 109 q(b-c) 0.54 0.54 CAPACITIES 277 276 Q(b-a) Q(b-c) 855 893 Q(c-b) 396 425 Q(b-ac) 437 439 DFC's 0.58 0.34 b-a b-c 0.22 0.12 c-b 0.684 0.828 0.797 0.462 b-ac

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1 0.83

0.80

SIMPLIFIED ROUNDABOUT CAPACITY CALCULATION

Job Title:	CE46/2020 TO4 Ho	using Development at Shap Pat Heun	ng Road	
Junction:	J2 - Shap Pat Heung	Road / Lam Hau Tsuen Road	Designed by:	PC
Scheme:	Existing		Checked by:	TL
Design Ye	ar: 2021	Job No.: 5210095	Date :	31/05/2022

ARM A: LAM HAU TSUEN ROAD SB
ARM B: SHAP PAT HEUNG ROAD WB
ARM C: LAM HAU TSUEN ROAD NB

GEOMETRY	*						
ARM	v (m)	e (m)	L (m)	r (m)	D (m)	Phi	S
Α	5.30	8.00	9	60	35	5	0.48
В	5.10	7.70	8	60	35	5	0.52
С	3.20	7.80	16	30	35	5	0.46
, and the second					•		•

AM FLOWS							
from/to	Α	В	С	Circ	Entry		
Α	0	109	85	269	194		
В	135	0	232	85	367		
С	260	269	0	135	529		
Flow in pcu/hr							

PM FLOWS						
from/to	Α	В	С	Circ	Entry	
Α	0	75	69	209	144	
В	81	0	82	69	163	
С	55	209	0	81	264	
Flow in pcu/hr						

CALCULATION	CALCULATIONS *									-C
ARM	K	X_2	М	F	t _D	f _c	$Q_E(AM)$	$Q_E(PM)$	AM	PM
Α	1.12	6.68	0.08	2023	1.46	0.72	2049	2097	0.09	0.07
В	1.12	6.37	0.08	1931	1.46	0.70	2096	2108	0.18	80.0
С	1.10	5.60	0.08	1696	1.46	0.65	1773	1812	0.30	0.15

 Critical Arm:
 C
 C

 DFC:
 0.30
 0.15

*- In accordance with TPDM V2.4 Appendix

SIMPLIFIED ROUNDABOUT CAPACITY CALCULATION

Job Title:	CE46/2020 TO4 Ho	using Development at Shap Pat Heung	Road	
Junction:	J2 - Shap Pat Heung	Road / Lam Hau Tsuen Road	Designed by:	PC
Scheme:	Reference		Checked by:	TL
Design Yea	ar: 2032	Job No.: 5210095	Date :	31/05/2022

ARM A: LAM HAU TSUEN ROAD SB ARM B: SHAP PAT HEUNG ROAD WB ARM C: LAM HAU TSUEN ROAD NB В

GEOMETRY	*						
ARM	v (m)	e (m)	L (m)	r (m)	D (m)	Phi	S
Α	5.30	8.00	9	60	35	5	0.48
В	5.10	7.70	8	60	35	5	0.52
С	3.20	7.80	16	30	35	5	0.46
	0.20						00

AM FLOWS							
from/to	Α	В	С	Circ	Entry		
Α	0	82	135	367	217		
В	51	0	218	135	269		
С	224	367	0	51	591		
Flow in pcu/hr							

PM FLOWS						
from/to	Α	В	С	Circ	Entry	
Α	0	98	54	169	152	
В	26	0	136	54	162	
С	156	169	0	26	325	
Flow in pcu/hr						

CALCULATION	ALCULATIONS *									
ARM	K	X_2	М	F	t _D	f _c	$Q_E(AM)$	$Q_E(PM)$	AM	PM
Α	1.12	6.68	0.08	2023	1.46	0.72	1970	2129	0.11	0.07
В	1.12	6.37	0.08	1931	1.46	0.70	2056	2120	0.13	0.08
С	1.10	5.60	0.08	1696	1.46	0.65	1834	1852	0.32	0.18

 Critical Arm:
 C
 C

 DFC:
 0.32
 0.18

*- In accordance with TPDM V2.4 Appendix

SIMPLIFIED ROUNDABOUT CAPACITY CALCULATION

Job Title:	CE46/2020 TO4 Housi	ng Development at Shap Pat Heung	g Road	
Junction:	J2 - Shap Pat Heung Roa	ad / Lam Hau Tsuen Road	Designed by:	PC
Scheme:	Design		Checked by:	TL
Design Yea	ar: 2032	Job No.: 5210095	Date :	31/05/2022

ARM A: LAM HAU TSUEN ROAD SB ARM B: SHAP PAT HEUNG ROAD WB ARM C: LAM HAU TSUEN ROAD NB

GEOMETRY	*						
ARM	v (m)	e (m)	L (m)	r (m)	D (m)	Phi	S
Α	5.30	8.00	9	60	35	5	0.48
В	5.10	7.70	8	60	35	5	0.52
С	3.20	7.80	16	30	35	5	0.46

AM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	98	135	367	233
В	73	0	218	135	291
С	224	367	0	73	591
	Flow in pcu	ı/hr			

PM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	113	54	169	167
В	38	0	136	54	174
С	156	169	0	38	325
	Flow in pcu	ı/hr			

CALCULATION	ONS *								DF	-C
ARM	K	X_2	М	F	t _D	f _c	$Q_E(AM)$	$Q_E(PM)$	AM	PM
Α	1.12	6.68	0.08	2023	1.46	0.72	1970	2129	0.12	0.08
В	1.12	6.37	0.08	1931	1.46	0.70	2056	2120	0.14	0.08
С	1.10	5.60	0.08	1696	1.46	0.65	1818	1843	0.33	0.18

 Critical Arm:
 C
 C

 DFC:
 0.33
 0.18

*- In accordance with TPDM V2.4 Appendix

J3 - LAM HAU TSUEN ROAD/TOWN PARK ROAD SOUTH (YL112)

JOB NO. : 5210095

Design Year: 2021

Capacity	Calcula	tions						AM	Peak		PM Peak				
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow	
	3	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor	
		w `	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у	
own Park	Road Sout		(,	(1,117)			((1-1-1)		(1-1-1)		(1		
A1	1	4.50	Υ	N	15		380	31%	2005	0.190	474	24%	2015	0.235	
	Road Sout														
B2	2	3.50	Y	N	15		187	42%	1885	0.099	176	18%	1930	0.091	
am Hau Ts	suen Road	NB													
C1	3	4.50	Υ	N	15/20		395	53% / 47%	1900	0.208	136	69% / 31%	1890	0.072	
Dp	3		5GM +	4FG =	9	sec									
Ep	3		5GM +	4FG =	9	sec									
Fр	3		12GM +	8FG =	20	sec									
ıρ	J		12GW 1	010-	20	360									

Notes:	AM Peak	A+B+C+Fp	PM Peak	A+B+C+Fp
	Sum of Critical y Y	0.497	Sum of Critical y Y	0.398
	Lost Time L (sec)	36	Lost Time L (sec)	36
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.630	Practical Y Ypr	0.630
	Reserve Capacity RC	27%	Reserve Capacity RC	58%

J3 - LAM HAU TSUEN ROAD/TOWN PARK ROAD SOUTH (YL112)

 JOB NO. :
 5210095

 Design Year:
 2032

Capacity	y Calcula	tions					AM Peak					PM Peak			
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in % g	Design Flow q (pcu/hr)	Proportion turning (%)		Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	
Town Park	Road Sout		(, ,	(- /					\(\frac{1}{2}\)	,	_ (i · /		VI - /	,	
A1	1	4.50	Y	N	15		472	31%	2000	0.236	434	28%	2010	0.216	
Town Park	Road Sout														
B2	2	3.50	Υ	N	15		208	33%	1900	0.109	181	18%	1930	0.094	
I am Hau T	suen Road	NR													
C1	3	4.50	Y	N	15/20		275	56% / 44%	1895	0.145	183	37% / 63%	1905	0.096	
Dp	3		5GM +	4FG =	9	sec									
Ep	3		5GM +	4FG =	9	sec									
Fp	3		12GM +	8FG =	20	sec									
														·	

Notes:	AM Peak	A+B+C+Fp	PM Peak	A+B+C+Fp
	Sum of Critical y Y	0.491	Sum of Critical y Y	0.406
	Lost Time L (sec)	36	Lost Time L (sec)	36
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.630	Practical Y Ypr	0.630
	Reserve Capacity RC	28%	Reserve Capacity RC	55%

Date : 31/05/2022 Junction : J3 - LAM HAU TSUEN ROAD/TOWN PARK ROAD SOUTH

JOB NO. : 5210095
sign Year: 2032

Junction: J3 - LAM HAU TSUEN ROAD/TOWN PARK ROAD SOUTH (YL112) Design Year: 2032

Scheme: Design Designed by: PC Checked by: TL

Traffic Flow (pcu/hr)

AM(PM)

AM(PM)

Capacity	y Calcula	Iculations						AM	Peak			PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in % g	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y		
Town Park	Road Sout	h EB	` '			-	,		,	•	,					
A1	1	4.50	Y	N	15		488	34%	2000	0.244	449	30%	2005	0.224		
Town Park	Road Sout	h WB														
B2	2	3.50	Υ	N	15		208	33%	1900	0.109	181	18%	1930	0.094		
	suen Road													1		
C1	3	4.50	Υ	N	15/20		297	59% / 41%	1895	0.157	195	41% / 59%	1905	0.102		
Dp	3		5GM +	4FG =	9	sec										
Ep	3		5GM +	4FG =	9	sec										
Fp	3		12GM +	8FG =	20	sec										
														1		
														I		

Notes:	AM Peak	A+B+C+Fp	PM Peak	A+B+C+Fp
	Sum of Critical y Y	0.510	Sum of Critical y Y	0.420
	Lost Time L (sec)	36	Lost Time L (sec)	36
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.630	Practical Y Ypr	0.630
	Reserve Capacity RC	23%	Reserve Capacity RC	50%

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J4 - Shan Ha Road / Town Park Road North Junction: Designed by: PC Scheme: Checked by: Existing TL Job No.: 5210095 31/05/2022 Design Year: 2021 Date: Yuen Long Park Road South NB ARM A: ARM B: Shan Ha Road EB Yuen Long Park Road North SB ARM C: am pm ARM C 75 40 43 36 Yuen Long Park Road North SB Yuen Long Park Road South NB am pm 20 213 29 326 ARM A am pm 78 84 304 377 ARM B Shan Ha Road EB GEOMETRY Major road width 9.80 Lane widths w(b-a) 4.00 Central Reserve width Wcr w(b-c) 0.00 4.00 Residual width Wr(c-a) w(c-b) 2.50 4.40 Visibilities Vr(b-a) Calculated 0.92 65 D VI(b-a) 45 Ε 0.98 Vr(b-c) 65 F 1.00 Vr(c-b) 45 0.66 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 40 q(c-b) 43 36 q(a-b) 326 213 q(a-c) 29 20 304 377 q(b-a) q(b-c) 78 84 0.20 0.18 CAPACITIES Q(b-a) 518 537 Q(b-c) 694 707 Q(c-b) 658 688 561 Q(b-ac) 546 DFC's 0.59 0.70 b-a b-c 0.11 0.12 c-b 0.065 0.052 0.700 0.821 b-ac

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(Vl(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

- In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1

0.70

0.82

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J4 - Shan Ha Road / Town Park Road North Junction: Designed by: PC Scheme: Reference Checked by: TL Job No.: 5210095 Date: 31/05/2022 Design Year: 2032 Yuen Long Park Road South NB ARM A: ARM B: Shan Ha Road EB Yuen Long Park Road North SB ARM C: am pm ARM C 18 14 48 85 Yuen Long Park Road North SB Yuen Long Park Road South NB am pm 33 144 29 253 ARM A am pm 84 72 356 345 ARM B Shan Ha Road EB GEOMETRY Major road width 9.80 Lane widths w(b-a) 4.00 Central Reserve width Wcr w(b-c) 0.00 4.00 Residual width Wr(c-a) w(c-b) 2.50 4.40 Visibilities Vr(b-a) Calculated 0.92 65 D VI(b-a) 45 Ε 0.98 Vr(b-c) 65 F 1.00 Vr(c-b) 45 0.66 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 14 18 q(c-b) 48 85 q(a-b) 253 144 q(a-c) 29 33 356 345 q(b-a) 72 q(b-c) 84 0.19 0.17 CAPACITIES Q(b-a) 527 531 Q(b-c) 701 710 Q(c-b) 676 701 Q(b-ac) 557 552 DFC's 0.67 0.65 b-a 0.10 b-c 0.12 c-b 0.071 0.121 0.790 0.756 b-ac

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(Vl(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

- In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1

0.79

0.76

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J4 - Shan Ha Road / Town Park Road North Junction: Designed by: PC Scheme: Checked by: Design TL 2032 Job No.: 5210095 31/05/2022 Design Year: Date: Yuen Long Park Road South NB ARM A: ARM B: Shan Ha Road EB Yuen Long Park Road North SB ARM C: am pm ARM C 18 14 48 85 Yuen Long Park Road North SB Yuen Long Park Road South NB am pm 33 156 29 275 ARM A am pm 84 72 372 360 ARM B Shan Ha Road EB GEOMETRY Major road width 9.80 Lane widths w(b-a) 4.00 Central Reserve width Wcr w(b-c) 0.00 4.00 Residual width Wr(c-a) w(c-b) 2.50 4.40 Visibilities Vr(b-a) Calculated 0.92 65 D VI(b-a) 45 Ε 0.98 Vr(b-c) 65 F 1.00 Vr(c-b) 45 0.66 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 14 18 q(c-b) 48 85 q(a-b) 156 275 q(a-c) 29 33 372 360 q(b-a) q(b-c) 72 84 0.18 0.17 526 CAPACITIES Q(b-a) 529 Q(b-c) 699 709 Q(c-b) 671 698 550 Q(b-ac) 554 DFC's 0.70 0.68 b-a 0.10 b-c 0.12 c-b 0.072 0.122 0.823 0.785 b-ac 0.79 Critical DFC 0.82

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1

JOB NO. : 5210095

2021 J5 - SHAP PAT HEUNG ROAD/KUNG UM ROAD/KIU HING ROAD (YL109) Design Year: ___ PC TL Scheme : ___ Designed by: _ Checked by: Traffic Flow (pcu/hr) 26(17) 109(118) 9(7) 9(8) 202(106) 65(104) 5(11) 207(146) 208(277) La Grove 201(207) 3(10) 334(334)

Capacity	apacity Calculations							AM	Peak		PM Peak				
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow	
	5-	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor	
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	,	f ,	(pcu/hr)	у	
Shap Pat H	Heung Road			(- /			(1 - /		(,				u · /		
A1	4	4.10	Y	N	15/15		276	3% / 24%	1965	0.140	218	4% / 48%	1920	0.114	
Shap Pat H	Heung Road	WB													
B1	2	4.20	Y	N	20/15		420	50% / 1%	1960	0.214	434	64% / 3%	1935	0.224	
Kung Um I	Road NB														
D1	1	4.60	Y	N	15/15		538	37% / 62%	1885	0.285	551	38% / 61%	1890	0.292	
Kiu Hing R	Road SB														
C1	3	3.30	Y	N	20/15		144	6% / 18%	1900	0.076	142	5% / 12%	1915	0.074	
Ep	4,5		5GM +	5FG =	10	sec									
Fp	1,2,3,5		5GM +	5FG =	10	sec									
Gp	5		5GM +	7FG =	12	sec									
Hp	1,2,4,5		5GM +	8FG =	13	sec					1				
lp	2,5		5GM + 5GM +	5FG = 5FG =	10 10	sec									
Jp Kp	1,3,4,5 5		5GM +	7FG =	10	sec sec		+			-				
Lp	2,3,4,5		5GM +	10FG =	15	sec		+			1				
	2,0,4,0		JOIN 1	101 0 =	10	300									
												1			
												1			

Notes:	AM Peak	D+B+C+A+Kp	PM Peak	D+B+C+A+Kp
	Sum of Critical y Y	0.716	Sum of Critical y Y	0.704
	Lost Time L (sec)	45	Lost Time L (sec)	45
	Cycle Time c (sec)	182	Cycle Time c (sec)	182
	Practical Y Ypr	0.677	Practical Y Ypr	0.677
	Reserve Capacity RC	-5%	Reserve Capacity RC	-4%

JOB NO. : 5210095

2032 J5 - SHAP PAT HEUNG ROAD/KUNG UM ROAD/KIU HING ROAD (YL109) Design Year: _ PC TL Scheme : _ Reference (PR5.0) Designed by: Checked by: _ Traffic Flow (pcu/hr) 136(173) 5(5) 7(11) 1(0) ___ 281(122) ___ 128(131) 5(1) 218(219) 262(313) 15(23) 311(361) 182(254)

Capacity	y Calcula	tions					AM Peak					PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane?	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q	Proportion turning (%)		Flow	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor		
Ohan Batil	Income Descri	W	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у		f	(pcu/hr)	У		
A1	Heung Road	4.10	Y	N	15/15		410	0% / 31%	1965	0.209	253	0% / 52%	1925	0.131		
A1	4	4.10	Y	IN .	15/15		410	0%/31%	1905	0.209	253	0% / 52%	1925	0.131		
Shap Pat H	Heung Road															
B1	2	3.50	Y	N	15		262	100%	1610	0.163	313	100%	1610	0.194		
B2	2	3.50	N	N	15		223	2%	2100	0.106	220	0%	2105	0.105		
Kung Um I	Road NB															
D1	1	3.50	Y	N	15		197	92%	1800	0.109	277	92%	1800	0.154		
D2	1	3.50	N	N	20		311	100%	1960	0.159	361	100%	1960	0.184		
Kiu Hing R	Road SB															
C1	3	3.30	Y	N	20/15		148	3% / 5%	1930	0.077	189	3% / 6%	1930	0.098		
F	4,5		5GM +	5FG =	10											
Ep Fp	1,2,3,5		5GM +	5FG =	10	sec										
- FP - Gp	1,2,3,5		5GM +	7FG =	12	sec sec										
Нp	1,2,4,5		5GM +	8FG =	13	sec										
lp	2,5		5GM +	5FG =	10	sec										
Jp	1,3,4,5		5GM +	7FG =	12	sec										
Кр	5		5GM +	10FG =	15	sec										
Lp	2,3,4,5		5GM +	10FG =	15	sec										

Notes:	AM Peak	D+B+C+A+Kp	PM Peak	D+B+C+A+Kp
	Sum of Critical y Y	0.607	Sum of Critical y Y	0.608
	Lost Time L (sec)	44	Lost Time L (sec)	44
	Cycle Time c (sec)	182	Cycle Time c (sec)	182
	Practical Y Ypr	0.682	Practical Y Ypr	0.682
	Reserve Capacity RC	12%	Reserve Capacity RC	12%

IG=8 IG=8 G=

G=

IG=6

IG=6

G=

D+B+C+A+Kp

D+B+C+A+Kp

JOB NO. : ____ 5210095 2032 J5 - SHAP PAT HEUNG ROAD/KUNG UM ROAD/KIU HING ROAD (YL109) Design Year: PC TL Scheme : __ Reference (PR0) Designed by: Checked by: _ ↑ N Traffic Flow (pcu/hr) ‡Ν 131(168) 5(5) 7(11) 1(0) — 240(99) — 128(131) 5(1) 188(190) 262(313) 182(254) 15(23) 311(361) STAGE / PHASE DIAGRAM

Capacit	y Calcula	tions						AM	Peak		PM Peak			
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
	J	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)		factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	,	f ,	(pcu/hr)	У
Shap Pat	Heung Road		(,	(1,117)	-		(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		(1-1-1-1-1)				(1	
A1	4	4.10	Y	N	15/15		369	0% / 35%	1950	0.189	230	0% / 57%	1910	0.120
Shap Pat	Heung Road	i WB												
B1	2	3.50	Y	N	15		262	100%	1610	0.163	313	100%	1610	0.194
B2	2	3.50	N	N	15		193	3%	2100	0.092	191	1%	2105	0.091
Kung Um	Road NB													
D1	1	3.50	Y	N	15		197	92%	1800	0.109	277	92%	1800	0.154
	· ·	0.00	·	.,				0270		0.100		5275	.000	0
D2	1	3.50	N	N	20		311	100%	1960	0.159	361	100%	1960	0.184
Kiu Hing F	Road SB													
C1	3	3.30	Y	N	20/15		143	3% / 5%	1930	0.074	184	3% / 6%	1930	0.095
Ep	4,5		5GM +	5FG =	10	sec								
- Fp	1,2,3,5		5GM +	5FG =	10	sec								
Gp	5		5GM +	7FG =	12	sec								
Hp	1,2,4,5		5GM +	8FG =	13	sec								
lp	2,5		5GM +	5FG =	10	sec								
Jp	1,3,4,5		5GM +	7FG =	12	sec								
Кр	5		5GM +	10FG =	15	sec								
Lp	2,3,4,5		5GM +	10FG =	15	sec								
												1		

Notes:	AM Peak	D+B+C+A+Kp	PM Peak	D+B+C+A+Kp
	Sum of Critical y Y	0.585	Sum of Critical y Y	0.594
	Lost Time L (sec)	44	Lost Time L (sec)	44
	Cycle Time c (sec)	182	Cycle Time c (sec)	182
	Practical Y Ypr		Practical Y Ypr	0.682
	Reserve Capacity RC	17%	Reserve Capacity RC	15%

Date : 31/05/2022 Junction : J5 - SHAP PAT HEUNG ROAD/KUNG UM ROAD/KIU HING ROAD

G=

G=

IG=9

IG=9

IG=8

IG=8

JOB NO. : 5210095

J5 - SHAP PAT HEUNG ROAD/KUNG UM ROAD/KIU HING ROAD (YL109) 2032 Design Year: PC TL Scheme : __ Designed by: _ Checked by: ↑ N Traffic Flow (pcu/hr) 136(173) 5(5) 7(11) 1(0) 291(127) 128(131) 5(1) 225(226) 262(313) 311(361) 182(254) 15(23)

SMAP PAT NEUMS RD	ID ON IN	2 2 SHAP PATINE MEDING ADDRESS OF THE PATINE	Hp	3 SHAD PAR HEUWA R		A SHAP PAI NEURO RE TO		5 5 SHAP PATA MEDING RO LTD TO TO TO TO TO TO TO TO TO TO TO TO TO	10 Mg	IP TO
)+B+C+A+Kp	G=	IG=8	G=	IG=6	G=	IG=8	G=	IG=9	G=5	IG=12
)+B+C+A+Kp	G=	IG=8	G=	IG=6	G=	IG=8	G=	IG=9	G=5	IG=12

Capacity Calculations							AM	Peak		PM Peak				
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
	9-	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у		f (1)	(pcu/hr)	у
Shap Pat F	leung Road		(1117)	(1,11)			(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		(1-1-1-1-1)	,			(1-1-1)	
A1	4	4.10	Y	N	15/15		420	0% / 30%	1965	0.214	258	0% / 51%	1925	0.134
Shap Pat F	leung Road	i WB												
B1	2	3.50	Υ	N	15		262	100%	1610	0.163	313	100%	1610	0.194
B2	2	3.50	N	N	15		230	2%	2100	0.110	227	0%	2105	0.108
Kung Um I	Road NB													
D1	1	3.50	Y	N	15		197	92%	1800	0.109	277	92%	1800	0.154
D2	1	3.50	N	N	20		311	100%	1960	0.159	361	100%	1960	0.184
Kiu Hing R	oad SB													
C1	3	3.30	Υ	N	20/15		148	3% / 5%	1930	0.077	189	3% / 6%	1930	0.098
- 01		0.00		14	20/10		140	3707370	1330	0.077	103	3707070	1550	0.030
Ep	4,5		5GM +	5FG =	10	sec								
Fp	1,2,3,5		5GM +	5FG =	10	sec								
Gp	5		5GM +	7FG =	12	sec								
Нр	1,2,4,5		5GM +	8FG =	13	sec								
lp	2,5		5GM +	5FG =	10	sec								
Jp	1,3,4,5		5GM +	7FG =	12	sec								
Кр	5		5GM +	10FG =	15	sec								
Lp	2,3,4,5		5GM +	10FG =	15	sec								
												1		

Notes:	AM Peak	D+B+C+A+Kp	PM Peak	D+B+C+A+Kp
	Sum of Critical y Y	0.612	Sum of Critical y Y	0.611
	Lost Time L (sec)	44	Lost Time L (sec)	44
	Cycle Time c (sec)	182	Cycle Time c (sec)	182
	Practical Y Ypr	0.682	Practical Y Ypr	0.682
	Reserve Capacity RC	12%	Reserve Capacity RC	12%

Simplified Priority Junction Capacity Calculation

(Single Lane Minor Arm B) CE46/2020 TO4 Housing Development at Shap Pat Heung Road Job Title: J6 - Shap Pat Heung Road / Tai Shu Ha Road West \ Tai Shu Ha Road East Junction: Designed by: PC Scheme: Existing Checked by: TL Design Year: 31/05/2022 Job No.: 5210095 Date Shap Pat heung Road (WB) Shap Pat heung Road (EB) ARM A: ARM C ARM B: Tai Shu Ha Road West (NB) ARM D: Tai Shu Ha Road East (SB) Minor Road ARM D Left Turn 58 62 Tai Shu Ha Road East (SB) 136 208 Right Turn am Major Road Left Turn 488 399 ARM A Shap Pat heung Road (WB) Right Turn 54 49 am pm Major Road Right Turn 0 0 ARM C 307 337 5 Left Turn Shap Pat heung Road (EB) am Left Turn 101 80 Right Turn Minor Road ARM B Tai Shu Ha Road West (NB) GEOMETRY Major road width W 9.50 Residual width Wr(c-a) 0.00 Central Reserve width Wcr 0.00 Residual width Wr(a-c) 0.00 Arm B Arm D I ane widths 5.40 Lane widths w(d-c) 5 40 w(b-a) w(b-c) 5 40 w(d-a) 5.40 w(c-b) 0.00w(a-d) 0.00 Visibilities Vr(b-a) Visibilities 108 D 1.07 Vr(d-c) 108 D 1.08 VI(b-a) 37 E 1.15 VI(d-c) 47 E 1.15 Vr(b-c) 108 F Vr(d-a) 108 F 0.60 0.65 <u>Vr(</u>c-b) 31 Y 0.67 Vr(a-d) 100 Y 0.67 ANALYSIS Arm D Arm B AM PEAK PM PEAK AM PEAK PM PEAK TRAFFIC FLOWS TRAFFIC FLOWS q(a-c) q(c-a) 399 33 488 307 q(c-b) 54 49 0 0 q(a-d) q(a-b) 13 q(c-d) q(a-c) 307 337 q(c-a) 488 399 q(b-a) 42 q(d-c) 16 q(b-c) 101 80 q(d-a) 58 62 q(b-d) 8 q(d-b) 136 208 0.71 0.79 0.89 0.79 CAPACITIES Q(b-a) 438 427 CAPACITIES Q(d-c) 449 477 Q(b-c) 770 763 Q(d-a) 721 746 Q(c-b) 403 400 Q(a-d) 391 406 Q(b-ac) 630 655 Q(d-ca) 676 668 O(b-d)left 481 490 500 Q(d-b)left 502 Q(b-d)right 490 500 Q(d-b)right 481 502 1559 1800 1579 Q(a-c) 1800 Q(c-a) DFC's 0.056 DFC's 0.234 0.103 0.155 b-ad d-c 0.140 0.224 0.297 b-cd 0.112 d-a c-b 0.134 0.123 0.000 0.000 a-d 0.243 0.168 0.379 0.531 b-acd d-abc c-a 0.313 0.253 а-с 0.171 0.187 0.31 0.38 0.53 AM PEAK PM PEAK Critical DFC Where VI and Vr are visibility distances to the left or right of the respective streams D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150)) E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))T.P.D.M.V.2.4 Y = 1-0.0345W Appendix 1 = proportion of minor traffic turning left Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)Capacity of combined streams In accordance with TPDM V2.4

Simplified Priority Junction Capacity Calculation

(Single Lane Minor Arm B) CE46/2020 TO4 Housing Development at Shap Pat Heung Road Job Title: J6 - Shap Pat Heung Road / Tai Shu Ha Road West \ Tai Shu Ha Road East Junction: Designed by: PC Scheme: Reference Checked by: TL Design Year: 31/05/2022 Job No.: 5210095 Date Shap Pat heung Road (WB) Shap Pat heung Road (EB) ARM A: ARM C ARM B: Tai Shu Ha Road West (NB) ARM D: Tai Shu Ha Road East (SB) Minor Road ARM D Left Turn 50 70 Tai Shu Ha Road East (SB) 190 Right Turn am Major Road Left Turn 5 466 443 ARM A Shap Pat heung Road (WB) Right Turn 86 am pm Major Road Right Turn 0 0 ARM C 338 404 24 Left Turn Shap Pat heung Road (EB) am Left Turn 114 87 Right Turn Minor Road ARM B Tai Shu Ha Road West (NB) GEOMETRY Major road width W 9.50 Residual width Wr(c-a) 0.00 Central Reserve width Wcr 0.00 Residual width Wr(a-c) 0.00 Arm B Arm D I ane widths 5.40 Lane widths w(d-c) 5 40 w(b-a) w(b-c) 5 40 w(d-a) 5.40 w(c-b) 0.00w(a-d) 0.00 Visibilities Vr(b-a) Visibilities 108 D 1.07 Vr(d-c) 108 D 1.08 VI(b-a) 37 E 1.15 VI(d-c) 47 E 1.15 Vr(b-c) 108 F Vr(d-a) 108 F 0.60 0.65 <u>Vr(</u>c-b) 31 Y 0.67 Vr(a-d) 100 Y 0.67 ANALYSIS Arm D Arm B AM PEAK PM PEAK AM PEAK PM PEAK TRAFFIC FLOWS TRAFFIC FLOWS q(a-c) q(c-a) 443 338 404 466 q(c-b) 86 0 0 q(a-d) q(a-b) q(c-d) q(a-c) 338 404 q(c-a) 466 443 q(b-a) 29 q(d-c) 14 q(b-c) 114 87 q(d-a) 50 70 q(b-d) q(d-b) 223 190 0.80 0.88 0.88 0.83 CAPACITIES Q(b-a) 402 415 CAPACITIES Q(d-c) 439 463 Q(b-c) 762 742 Q(d-a) 726 733 Q(c-b) 399 387 Q(a-d) 387 406 Q(b-ac) 645 677 Q(d-ca) 672 668 O(b-d)left 474 484 474 Q(d-b)left 484 Q(b-d)right 474 484 Q(d-b)right 474 484 1412 1800 1800 1721 Q(a-c) Q(c-a) DFC's 0.033 DFC's 0.247 0.221 0.078 b-ad d-c 0.156 0.308 0.298 b-cd 0.122 d-a c-b 0.215 0.044 0.000 0.000 a-d 0.555 0.518 0.234 0.154 b-acd d-abc c-a 0.330 0.257 а-с 0.188 0.224 0.33 0.56 0.52 AM PEAK PM PEAK Critical DFC Where VI and Vr are visibility distances to the left or right of the respective streams D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150)) E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))T.P.D.M.V.2.4 Y = 1-0.0345W Appendix 1 = proportion of minor traffic turning left Q(b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)Capacity of combined streams In accordance with TPDM V2.4

Simplified Priority Junction Capacity Calculation

Job Title:		TO4 Housing Dev				T=	
Junction:		<u>ıt Heung Road / Tai</u>	Shu Ha Road W	<u>/est∖Tai Shu Ha</u>	Road East	Designed by:	PC
Scheme:						Checked by:	TL
Design Year:	2032		Job No.:	521009	95	Date :	31/05/2022
ARM A:	Design 2032 Job No.: 5210095 Date : 31/0						
ARM B:			ARM D:	Tai Shu Ha R	oad East (SE	3)	
					,	,	
			1	1 1 1	Min on Doord	I	
	а	m nm					
			70			ast (SB)	
	Loit ruini				ona na rtoad L	.d3i (OD)	
	Right Turn			, 1			
			∄ ←	<u> </u>			_
				↓			_
Left Turn				`			Major Road
Loit Tuill			─		→		ARM
Right Turn				7		Shap Pat h	
							_ `
				+			
-			'		↑		-
Maior Dood							-
Major Road							rkigni Turn
ARM C	D (ED)	←					L - # T
Shap Pat heung F	(oad (EB)					6 24	Left Turn
_	am	nm					_
Left Turn					\downarrow		
					•		
Right Turn							
				Minor Road			
				ARM B			
GEOMETRY			Iai	Shu Ha Road We	est (NB)		
Major road width		W	9.50	Residual width		Wr(c-a)	0.00
Central Reserve v	vidth	Wcr		Residual width		Wr(a-c)	0.00
		Arm B				Arm D	
Lane widths		w(b-a)	5.40			w(d-c)	5.40
		w(b-c)	5.40			w(d-a)	5.40
		w(c-b)	0.00			w(a-d)	0.00
Visibilities	Vr(b-a)	108 D	1.07		Vr(d-c)	108 D	1.08
	VI(b-a)	37 E 108 F	1.15 0.60		VI(d-c)	47 E 108 F	1.15
	Vr(b-c) Vr(c-b)	31 Y	0.67		Vr(d-a) Vr(a-d)	100 F	0.65 0.67
ANALYSIS	71(0.5)	<u> </u>	0.01	1	ντ(α-α <i>)</i>	100 1	0.07
		Arm B				Arm D	
TRAFFIC FLOWS	A (0.0)	M PEAK 517	PM PEAK 471	TRAFFIC FLOW	19 a(a a)	AM PEAK 375	PM PEAK 440
	q(c-a)	86	17		q(a-c) q(a-d)	0	440
	q(o-b) q(a-b)	6	24		q(a-d) q(c-d)	5	5
	q(a-c)	375	440		q(c-a)	517	471
	q(b-a)	29	12		q(d-c)	7	14
	q(b-c)	114	87		q(d-a)	50	70
	q(b-d)	6	4		q(d-b)	223	190
	f	0.80	0.88		f	0.88	0.83
OADACITIES	0//- `	004		OADA CITITO	0(1)	400	
CAPACITIES	Q(b-a)	384	401	CAPACITIES	Q(d-c)	420	449
	Q(b-c)	752	731		Q(d-a)	712	725
	Q(c-b)	394	382		Q(a-d)	379 656	402
	Q(b-ac) Q(b-d)left	629 456	665 470		Q(d-ca) Q(d-b)left	656 454	658 471
	Q(b-d)right	456 456	470 470		Q(d-b)right	454 454	47
	Q(b-d)right Q(c-a)	1407	1720		Q(d-b)right Q(a-c)	1800	1800
DFC's	b-ad	0.082		4 DFC's	d-c	0.258	0.227
	b-cd	0.159	0.12		d-a	0.320	0.305
	c-b	0.218	0.04		a-d	0.000	0.000
	b-acd	0.240	0.15		d-abc	0.578	0.53
	c-a	0.367	0.27		а-с	0.208	0.244
		0.37	0.27			0.58	0.53
DFC		a ··· · -	AM PEAK	PM PEAK			
DFC		Critical D	FC 0.58	0.53			
DFC			ht of the re	o otroc			
DFC			nt of the respectiv				
Where VI and Vr a		ances to the left or rig					
Where VI and Vr a	-a)-3.65))(1+0.00	009(Vr(b-a)-120))(1+0		J))			
Where VI and Vr	-a)-3.65))(1+0.00 -c)-3.65))(1+0.00	009(Vr(b-a)-120))(1+0 009(Vr(b-c)-120))		J)))		TDDMV	124
Vhere VI and Vr a 0 = (1+0.094(w(b E = (1+0.094(w(b F = (1+0.094(w(c-	-a)-3.65))(1+0.00 -c)-3.65))(1+0.00	009(Vr(b-a)-120))(1+0		J))		T.P.D.M.V	
Vhere VI and Vr	-a)-3.65))(1+0.00 -c)-3.65))(1+0.00 -b)-3.65))(1+0.00	009(Vr(b-a)-120))(1+0 009(Vr(b-c)-120)) 009(Vr(c-b)-120))		J))		T.P.D.M.V Appendix	
/here VI and Vr a = (1+0.094(w(b = (1+0.094(w(b = (1+0.094(w(c = 1-0.0345W) = proportion of n	-a)-3.65))(1+0.00 -c)-3.65))(1+0.00	009(Vr(b-a)-120))(1+0 009(Vr(b-c)-120)) 009(Vr(c-b)-120)) ng left		J)) Capacity of com	hined streams		

ATKINS

STAGE / PHA	To to the same of	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE STATE OF THE S	3 i i i i i i i i i i i i i	1	4 g		5 NAME OF RESIDENCE		
A+B+C+D	G=	IG=5	G=	IG=11	G=	IG=11	G=	IG=11	G=	IG=
A+B+C+D	G=	IG=5	G=	IG=11	G=	IG=11	G=	IG=11	G=	IG=

Capacity	/ Calcula	tions						AM Peak			PM Peak			
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у
Shap Pat H	leung Road	EB												
A1	1	3.30	Υ	N	13		87	100%	1745	0.050	133	100%	1745	0.076
A2	1	3.30	N	N			246		2085	0.118	196		2085	0.094
A3	1	3.30	N	N			246		2085	0.118	195		2085	0.094
Shap Pat H	leung Road	WB												
C1	3	3.60	Y	N	20		135	100%	1835	0.074	163	100%	1835	0.089
C2	3	3.90	N	N			176		2145	0.082	201		2145	0.094
C3	3	3.30	N	N	15		169	9%	2065	0.082	194	5%	2075	0.093
Tai Tong R	load NB													
B1	2	3.60	Y	N	30		286	0%	1380	0.207	258	6%	1380	0.187
B2	2	3.60	N	N	25		292	85%	1410	0.207	267	67%	1425	0.187
Tai Tong R	load SB													
D1	4	3.30	Υ	N	25		233	51%	1890	0.123	259	57%	1880	0.138
D2	4	3.30	N	N	20		254	13%	2065	0.123	283	19%	2055	0.138
Ep	1,3,4		6GM +	6FG =	12	sec								
Fp	1,3,4		7GM +	7FG =	14	sec								
Gp	1,2		8GM +	8FG =	16	sec								
Hp	1,2,4		10GM +	10FG =	20	sec								
lp	3,4		8GM +	8FG =	16	sec								
Jp	1,2,3		6GM +	8FG =	14	sec								·
Кр	1,2,3		6GM +	6FG =	12	sec								
Lp	4		9GM +	6FG =	15	sec								
Mp	2,3,4		10GM +	6FG =	16	sec								
Np	1,2		6GM +	6FG =	12	sec								

Notes:	AM Peak	A+B+C+D	PM Peak	A+B+C+D
	Sum of Critical y Y	0.531	Sum of Critical y Y	0.513
	Lost Time L (sec)	34	Lost Time L (sec)	34
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.645	Practical Y Ypr	0.645
	Reserve Capacity RC	22%	Reserve Capacity RC	26%

Date : _____15/07/2022 ____ Junction : _____J7 - SHAP PAT HEUNG ROAD/TAI TONG ROAD

 JOB NO.:
 5210095

 Junction:
 J7 - SHAP PAT HEUNG ROAD/TAI TONG ROAD (YL100)
 Design Year:
 2032

 Scheme:
 Reference
 Designed by:
 PC
 Checked by:
 TL

 ↑ N AM(PM)
 Traffic Flow (pcu/hr) AM(PM)
 39(73)
 422(392)
 106(102)

 ↓ 106(135)
 ↓ 489(408)
 ↓ 25(28)
 ← 25(385)

 ↓ 135(135)
 ↓ 135(135)

Capacity	/ Calcula	tions						AM	Peak		PM Peak				
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow	
	3	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor	
		w`´	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	У	(pcu/hr)	f	(pcu/hr)	у	
Shap Pat H	leung Road			(- /			(I - /		u · /		, ,		u · /		
A1	1	3.30	Υ	N	13		106	100%	1745	0.061	135	100%	1745	0.077	
A2	1	3.30	N	N			245		2085	0.118	204		2085	0.098	
A3	1	3.30	N	N			244		2085	0.117	204		2085	0.098	
Shap Pat H	leung Road	WB													
C1	3	3.60	Υ	N	20		135	100%	1835	0.074	135	100%	1835	0.074	
C2	3	3.90	N N	N			158	10070	2145	0.074	211	1.0070	2145	0.098	
C3	3	3.30	N	N	15		152	16%	2050	0.074	202	14%	2055	0.098	
Tai Tong R	oad NB														
B1	2	3.60	Υ	N	30		266	7%	1280	0.208	262	8%	1280	0.205	
B2	2	3.60	N	N	25		273	75%	1315	0.208	271	72%	1320	0.205	
B3 Flare	2	3.60													
Tai Tong R	oad SB														
D1	4	3.30	Υ	N	25		258	29%	1910	0.135	260	28%	1915	0.136	
D2	4	3.30	N	N	20		279	14%	2065	0.135	277	26%	2045	0.135	
D3 Flare	4	3.30													
Ep	1,3,4		6GM +	6FG =	12	sec									
Fp	1,3,4		7GM +	7FG =	14	sec									
Gp	1,2		8GM +	8FG =	16	sec									
Hp	1,2,4		10GM +	10FG =	20	sec									
lp	3,4		8GM +	8FG =	16	sec									
Jp	1,2,3		6GM +	8FG =	14	sec									
Кp	1,2,3		6GM +	6FG =	12	sec									
Lp	4		9GM +	6FG =	15	sec									
Mp	2,3,4		10GM +	6FG =	16	sec									
Np	1,2		6GM +	6FG =	12	sec									

Notes:	AM Peak	A+B+C+D	PM Peak	A+B+C+D
	Sum of Critical y Y	0.535	Sum of Critical y Y	0.537
	Lost Time L (sec)	34	Lost Time L (sec)	34
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.645	Practical Y Ypr	0.645
	Reserve Capacity RC	21%	Reserve Capacity RC	20%

Date : 15/07/2022 Junction : J7 - SHAP PAT HEUNG ROAD/TAI TONG ROAD

1	THE SWIN	2 2 190 (6336 1900)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5 No. of the Post Medicals		
	G=	IG=5	G=	IG=11	G=	IG=11	G=	IG=11	G=	IG=
A+B+C+D					G=	IG=11	G=	IG=11	G=	IG=

Capacity	Calcula	tions						AM	Peak		PM Peak			
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)		factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f (1.1)	(pcu/hr)	у
Shap Pat H	eung Road	EB		(- /					(I · /		(1 - /		(I · /	
A1	1	3.30	Υ	N	13		106	100%	1745	0.061	135	100%	1745	0.077
A2	1	3.30	N	N			270		2085	0.129	218		2085	0.105
A3	1	3.30	N	N			270		2085	0.129	218		2085	0.105
Shap Pat H	Auna Road	WR												
C1	3	3.60	Υ	N	20		135	100%	1835	0.074	135	100%	1835	0.074
C2	3	3.90	N N	N	20		177	10070	2145	0.083	229	10070	2145	0.107
C3	3	3.30	N	N	15		170	15%	2055	0.083	220	13%	2060	0.107
Tai Tong R	and NP													
B1	2	3.60	Y	N	30		266	7%	1280	0.208	262	8%	1280	0.205
B2	2	3.60	N	N	25		273	75%	1315	0.208	271	72%	1320	0.205
B3 Flare	2	3.60	11	11	20		210	7370	1010	0.200	2/1	1270	1020	0.200
Tai Tong R		0.00												
D1	4	3.30	Υ	N	25		258	29%	1910	0.135	260	28%	1915	0.136
D2	4	3.30	N	N	20		279	14%	2065	0.135	277	26%	2045	0.135
D3 Flare	4	3.30												
Ep	1,3,4		6GM +	6FG =	12	sec								
Fp	1,3,4		7GM +	7FG =	14	sec								
Gp	1,2		8GM +	8FG =	16	sec								
Hp	1,2,4		10GM +	10FG =	20	sec								
lp	3,4		8GM +	8FG =	16	sec								
Jp	1,2,3		6GM +	8FG =	14	sec								
Кр	1,2,3		6GM +	6FG =	12	sec								
Lp	4		9GM +	6FG =	15	sec								
Мр	2,3,4		10GM +	6FG =	16	sec								
Np	1,2		6GM +	6FG =	12	sec								
	·									·				_

Notes:	AM Peak	A+B+C+D	PM Peak	A+B+C+D
	Sum of Critical y Y	0.555	Sum of Critical y Y	0.552
	Lost Time L (sec)	34	Lost Time L (sec)	34
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.645	Practical Y Ypr	0.645
	Reserve Capacity RC	16%	Reserve Capacity RC	17%

Date : _____15/07/2022 ____ Junction : _____J7 - SHAP PAT HEUNG ROAD/TAI TONG ROAD

JOB NO. : 5210095

2021 J8 - FUNG KI ROAD/SHAP PAT HEUNG ROAD/ACCESS ROAD (YL97) Design Year: ___ PC Scheme : __ Designed by: _ Checked by: _ Traffic Flow (pcu/hr) **↑** N 46(98) 39(28) 434(552) 300(196) <u>—</u> 559(523) — 279(493) 406(438) 53(87) 52(40) 28(22) 73(32)

Capacity	y Calcula	tions						AM	Peak		PM Peak				
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow	
	· ·	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor	
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	У	
Shap Pat F	leung Road	EB		, ,						•	, ,		, ,		
A1	1	3.30	Υ	N	10		300	100%	1690	0.178	196	100%	1690	0.116	
A2	1	3.50	N	N			280		2105	0.133	262		2105	0.124	
A3	1	3.50	N	N			279		2105	0.133	261		2105	0.124	
Oh D-4 I	Inches Bases	LMD													
	leung Road			N.	20		200	0.40/	4000	0.440	054	250/	4000	0.404	
B1	2	3.00	Y	N	30		220 239	24%	1890	0.116	251	35%	1880 2055	0.134	
B2		3.00	N	N	45			4000/	2055	0.116	274	1000/		0.133	
B3	2	3.50	N	N	15		279	100%	1915	0.146	493	100%	1915	0.257	
Access Ro	ad NB														
E1	4	3.30	Υ	N	10		28	100%	845	0.033	22	100%	845	0.026	
E2	4	3.50	N	N	25		64	19%	1040	0.062	40	0%	1055	0.038	
E3	4	3.75	N	N	23		61	100%	1000	0.061	32	100%	1000	0.032	
Fung Ki Ro															
C1	2,3	3.30	Υ	N	10		434	100%	1690	0.257	552	100%	1690	0.327	
D1	3	3.50	N	N	25		44	11%	2090	0.021	64	56%	2035	0.031	
D2	3	3.75	N	N	23		41	100%	1995	0.021	62	100%	1995	0.031	
Fp	1,4		7GM +	10FG =	17	sec									
Gp	2,3,4		5GM +	10FG =	15	sec									
Hp	1		5GM +	9FG =	14	sec									
lp	1		10GM +	9FG =	19	sec									
Jp	3		5GM +	8FG =	13	sec									
												1			

Notes:	AM Peak	A+C+E	PM Peak	A+C+E
	Sum of Critical y Y	0.496	Sum of Critical y Y	0.451
	Lost Time L (sec)	20	Lost Time L (sec)	28
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.750	Practical Y Ypr	0.690
	Reserve Capacity RC	51%	Reserve Capacity RC	53%

JOB NO. : 5210095

2032 J8 - FUNG KI ROAD/SHAP PAT HEUNG ROAD/ACCESS ROAD (YL97) Design Year: ___ PC Scheme : __ Designed by: _ Checked by: _ Traffic Flow (pcu/hr) **↑** N 32(102) 62(59) 473(679) 201(204) — 598(500) — 341(567) 341(358) 78(98) 27(64) 72(39) 56(7)

Capacity	/ Calcula	tions					AM Peak				PM Peak			
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	V	(pcu/hr)	f	(pcu/hr)	у
Shap Pat F	leung Road		(. ,	(- /			(1 . /		\(\frac{1}{2}\)	,	,		u /	
A1	1	3.30	Υ	N	10		201	100%	1690	0.119	204	100%	1690	0.121
A2	1	3.50	N	N			299		2105	0.142	250		2105	0.119
A3	1	3.50	N	N			299		2105	0.142	250		2105	0.119
Chan Bat L	leung Road	I W/D												
B1	2	3.00	Y	N	30		200	39%	1880	0.106	217	45%	1875	0.116
B2	2	3.00	N	N	30		219	3976	2055	0.100	239	45%	2055	0.116
B3	2	3.50	N	N	15		341	100%	1915	0.107	567	100%	1915	0.110
- 53		3.30	IN	IN	13		341	10070	1915	0.170	307	10070	1915	0.290
Access Ro	ad NB													
E1	4	3.30	Υ	N	10		72	100%	845	0.085	39	100%	845	0.046
E2	4	3.50	N	N	25		56	0%	1055	0.053	36	81%	1005	0.036
E3	4	3.75	N	N	23		27	100%	1000	0.027	35	100%	1000	0.035
Fung Ki Ro	and SP													
C1	2,3	3.30	Y	N	10		473	100%	1690	0.280	679	100%	1690	0.402
D1	3	3.50	N	N	25		62	0%	2105	0.029	82	28%	2070	0.040
D2	3	3.75	N	N	23		32	100%	1995	0.016	79	100%	1995	0.040
F	1,4		7GM +	10FG =	17									
Fp Gp	2,3,4		7GM +	10FG =	15	sec								
Нр	1		5GM +	9FG =	14	sec								
lp	1		10GM +	9FG =	19	sec								
Jp	3		5GM +	8FG =	13	sec								
	 													
-														
	1			-			₽	+			-	1		

Notes:	AM Peak	A+C+E	PM Peak	A+C+E
	Sum of Critical y Y	0.507	Sum of Critical y Y	0.569
	Lost Time L (sec)	20	Lost Time L (sec)	20
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.750	Practical Y Ypr	0.750
	Reserve Capacity RC	48%	Reserve Capacity RC	32%

341(567) 378(394) 78(98)

 JOB NO.:
 5210095

 Junction:
 J8 - FUNG KI ROAD/SHAP PAT HEUNG ROAD/ACCESS ROAD (YL97)
 Design Year:
 2032

 Scheme:
 Design
 Designed by:
 PC
 Checked by:
 TL

 ↑ N AM(PM)
 Traffic Flow (pcu/hr) AM(PM)
 32(102)
 62(59)
 473(679)

 201(204)
 ↑ 0649(528)
 ↑ 341(567)

Capacity	y Calcula	tions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane?	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q	Proportion turning (%)	Saturation flow S	Flow	Design Flow q	Proportion turning (%)	Saturation flow S	Flow
Ohan Bat I	Income Decad	W	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	У	(pcu/hr)	f	(pcu/hr)	У
A1	leung Road	3.30	Y	N	10		201	100%	1690	0.119	204	100%	1690	0.121
A2	1	3.50	N N	N	10		325	100 %	2105	0.119	264	10076	2105	0.121
A3	1	3.50	N	N			324		2105	0.154	264		2105	0.125
7.0	'	0.00	11	11			524		2100	0.104	204		2100	0.120
Shap Pat H	leung Road	WB												
B1	2	3.00	Υ	N	30		218	36%	1880	0.116	235	42%	1875	0.125
B2	2	3.00	N	N			238		2055	0.116	257		2055	0.125
В3	2	3.50	N	N	15		341	100%	1915	0.178	567	100%	1915	0.296
Access Ro														
E1	4	3.30	Υ	N	10		72	100%	845	0.085	39	100%	845	0.046
E2	4	3.50	N	N	25		56	0%	1055	0.053	36	81%	1005	0.036
E3	4	3.75	N	N	23		27	100%	1000	0.027	35	100%	1000	0.035
Fung Ki Ro	oad SB													
C1	2,3	3.30	Υ	N	10		473	100%	1690	0.280	679	100%	1690	0.402
D1	3	3.50	N	N	25		62	0%	2105	0.029	82	28%	2070	0.040
D2	3	3.75	N	N	23		32	100%	1995	0.016	79	100%	1995	0.040
Fp	1,4		7GM +	10FG =	17	sec								
Gp	2,3,4		5GM +	10FG =	15	sec								
Hp	1		5GM + 10GM +	9FG = 9FG =	14 19	sec								
lp Jp	3		5GM +	9FG =	13	sec								1
эp	3		JGIVI	01 0 -	13	360								

Notes:	AM Peak	A+C+E	PM Peak	A+C+E
	Sum of Critical y Y	0.519	Sum of Critical y Y	0.573
	Lost Time L (sec)	20	Lost Time L (sec)	20
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.750	Practical Y Ypr	0.750
	Reserve Capacity RC	44%	Reserve Capacity RC	31%

Date : 15/07/2022 Junction : J8 - FUNG KI ROAD/SHAP PAT HEUNG ROAD/ACCESS ROAD

ATKINS

JOB NO. : ____ 5210095 2021 J9 - TAI KEI LENG ROAD/SHAP PAT HEUNG ROAD (YL84) Design Year: Scheme : Designed by: _ PC Checked by: TL N Traffic Flow (pcu/hr) ▼× 1066(1107) ----> 731(932) 579(841) 24(86) 558(526) STAGE / PHASE DIAGRAM

Capacity	Calculat	ions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in % g	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Shap Pat He	eung Road		(1711)	(1714)	-	3	(pou/)		(род/11)	,	(род/111)	-	(pou/)	
A1	1	4.00	Υ	N			515		1410	0.365	535		1410	0.379
A2	1	4.00	N	N			551		1510	0.365	572		1510	0.379
	•								10.10					
Shap Pat He	eung Road	WB												
A3	1	4.00	Υ	N			418		2015	0.207	533		2015	0.265
A4	1	4.00	N	N			313		1510	0.207	399		1510	0.264
Tai Kei Len	g Road NB													
B1	2	4.00	Υ	N	20		254	100%	1310	0.194	240	100%	1310	0.183
B2	2	4.00	N	N	15		304	100%	1565	0.194	286	100%	1565	0.183
														l
														l
														l
														l
														l

Notes:	AM Peak	A+B	PM Peak	A+B
	Sum of Critical y Y		Sum of Critical y Y	0.563
	Lost Time L (sec)		Lost Time L (sec)	10
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.825	Practical Y Ypr	0.825
	Reserve Capacity RC	47%	Reserve Capacity RC	47%

Date : 08/03/2023 Junction : J9 - TAI KEI LENG ROAD/SHAP PAT HEUNG ROAD

IG=7 IG=7 IG=

IG=

JOB NO. : 5210095 2032 J9 - TAI KEI LENG ROAD/SHAP PAT HEUNG ROAD (YL84) Design Year: ___ PC TL Scheme : ___ Designed by: _ Checked by: N Traffic Flow (pcu/hr) AM(PM) N ▼x 1099(1244) — 710(832) 518(839) 50(191) 709(822) STAGE / PHASE DIAGRAM

IG=5

Capacity	Calcula	tions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Shap Pat H	eung Road		· · /	· · /			/		· · /		, , , , , , , , , , , , , , , , , , ,		(1 - /	,
A1	1	4.00	Υ	N			531		2015	0.264	601		2015	0.298
A2	1	4.00	N	N			568		2155	0.264	643		2155	0.298
Shap Pat H	eung Road	WB												
A3	1	4.00	Υ	N			406		2015	0.201	476		2015	0.236
A4	1	4.00	N	N			304		1510	0.201	356		1510	0.236
Tai Kei Len	g Road NB													
B1	2	4.00	Y	N	20		328	100%	1685	0.195	380	100%	1685	0.226
B2	2	4.00	N	N	15		381	100%	1960	0.194	442	100%	1960	0.226
						-								
		<u> </u>									IL	<u> </u>		

Notes:	AM Peak	A+B	PM Peak	A+B
	Sum of Critical y Y	0.458	Sum of Critical y Y	0.524
	Lost Time L (sec)	10	Lost Time L (sec)	10
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.825	Practical Y Ypr	0.825
	Reserve Capacity RC	80%	Reserve Capacity RC	57%

Date : _____15/07/2022 ____ Junction : ___ J9 - TAI KEI LENG ROAD/SHAP PAT HEUNG ROAD

G=

IG=

IG=7 IG=7

IG=

JOB NO. : 5210095 2032 J9 - TAI KEI LENG ROAD/SHAP PAT HEUNG ROAD (YL84) Design Year: ___ PC TL Scheme : ___ Designed by: _ Checked by: N Traffic Flow (pcu/hr) AM(PM) N ▼ 1150(1272) — 747(868) 518(839) 50(191) 709(822) STAGE / PHASE DIAGRAM

IG=5

Capacity	Calcula	tions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in % g	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor
Shap Pat H	eung Road	EB	` ′	` ′			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		" /	<u> </u>	. ,		`` ′	
A1	1	4.00	Y	N			556		2015	0.276	615		2015	0.305
A2	1	4.00	N	N			594		2155	0.276	657		2155	0.305
Shap Pat H	eung Road	I WB												
A3	1	4.00	Y	N			427		2015	0.212	496		2015	0.246
A4	1	4.00	N	N			320		1510	0.212	372		1510	0.246
Tai Kei Len	g Road NB	8												
B1	2	4.00	Y	N	20		328	100%	1685	0.195	380	100%	1685	0.226
B2	2	4.00	N	N	15		381	100%	1960	0.194	442	100%	1960	0.226
											-			
											-			
											-			
										·				·

Notes:	AM Peak	A+B	PM Peak	A+B
	Sum of Critical y Y	0.471	Sum of Critical y Y	0.531
	Lost Time L (sec)	10	Lost Time L (sec)	10
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr		Practical Y Ypr	0.825
	Reserve Capacity RC	75%	Reserve Capacity RC	55%

Date : 15/07/2022 Junction : J9 - TAI KEI LENG ROAD/SHAP PAT HEUNG ROAD

G=

IG=

SIMPLIFIED ROUNDABOUT CAPACITY CALCULATION

Job Title:	CE46/2020 TO4 Housing I	Development at Shap Pat Heun	g Road	
Junction:	J10 - Shap Pat Heung Intercl	hange	Designed by:	PC
Scheme:	Existing		Checked by:	TL
Design Ye	ar: 2021	Job No.: 5210095	Date :	31/05/2022

ARM A: YUEN LONG HIGHWAY SB ARM B: SHAP PAT HEUNG ROAD EB ARM C: YUEN LONG HIGHWAY NB

GEOMETRY	*						
ARM	v (m)	e (m)	L (m)	r (m)	D (m)	Phi	S
Α	7.30	8.60	5	23	100	50	0.42
В	7.30	12.70	5	22	100	50	1.73
С	7.30	10.60	5	37	100	40	1.06
			_				

AM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	630	943	498	1,573
В	1,131	0	498	1,171	1,629
С	1,171	484	0	630	1,655
	Flow in pcu	/hr			

PM FLOWS									
from/to	Α	В	С	Circ	Entry				
Α	0	1,039	710	682	1,749				
В	951	0	682	656	1,633				
С	656	735	0	1,039	1,391				
Flow in pcu/hr									

CALCULATION	ONS *								DI	-C
ARM	K	X_2	М	F	t_D	f _c	$Q_E(AM)$	$Q_E(PM)$	AM	PM
Α	0.94	8.01	54.60	2427	1.01	0.55	2017	1922	0.78	0.91
В	0.94	8.51	54.60	2579	1.01	0.57	1785	2060	0.91	0.79
С	0.99	8.36	54.60	2533	1.01	0.57	2150	1921	0.77	0.72

Crtical Arm: B A

DFC: 0.91 0.91

*- In accordance with TPDM V2.4 Appendix

SIMPLIFIED ROUNDABOUT CAPACITY CALCULATION

Job Title:CE46/2020 TO4 Housing Development at Shap Pat Heung RoadJunction:J10 - Shap Pat Heung InterchangeDesigned by:PCScheme:ReferenceChecked by:TLDesign Year:2032Job No.: 5210095Date:31/05/2022

ARM A: YUEN LONG HIGHWAY SB ARM B: SHAP PAT HEUNG ROAD EB ARM C: YUEN LONG HIGHWAY NB

GEOMETRY	*						
ARM	v (m)	e (m)	L (m)	r (m)	D (m)	Phi	S
Α	7.30	8.60	5	23	100	50	0.42
В	7.30	12.70	5	22	100	50	1.73
С	7.30	10.60	5	37	100	40	1.06

AM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	648	1,109	344	1,757
В	728	0	344	1,316	1,072
С	1,316	581	0	648	1,897
•	Flow in pcu	/hr	•		

PM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	907	908	436	1,815
В	815	0	436	935	1,251
С	935	764	0	907	1,699
	Flow in pcu	ı/hr			

CALCULATION	ONS *								DI	-C
ARM	K	X_2	М	F	t_D	f _c	$Q_E(AM)$	$Q_E(PM)$	AM	PM
Α	0.94	8.01	54.60	2427	1.01	0.55	2096	2049	0.84	0.89
В	0.94	8.51	54.60	2579	1.01	0.57	1707	1911	0.63	0.65
С	0.99	8.36	54.60	2533	1.01	0.57	2140	1995	0.89	0.85

Crtical Arm: C A

DFC: 0.89 0.89

*- In accordance with TPDM V2.4 Appendix

SIMPLIFIED ROUNDABOUT CAPACITY CALCULATION

Job Title:	CE46/2020 TO4 Ho	using Development at Shap Pat Heun	g Road	
Junction:	J10 - Shap Pat Heung	Interchange	Designed by:	PC
Scheme:	Design		Checked by:	TL
Design Ye	ar: 2032	Job No.: 5210095	Date :	31/05/2022

ARM A: YUEN LONG HIGHWAY SB ARM B: SHAP PAT HEUNG ROAD EB ARM C: YUEN LONG HIGHWAY NB

GEOMETRY	*						
ARM	v (m)	e (m)	L (m)	r (m)	D (m)	Phi	S
Α	7.30	8.60	5	23	100	50	0.42
В	7.30	12.70	5	22	100	50	1.73
С	7.30	10.60	5	37	100	40	1.06

AM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	688	1,109	344	1,794
В	758	0	344	1,316	1,098
С	1,316	581	0	685	1,897
•	Flow in pcu	/hr			

PM FLOWS					
from/to	Α	В	С	Circ	Entry
Α	0	945	908	436	1,851
В	830	0	436	935	1,264
С	935	764	0	943	1,699
_	Flow in pcu	ı/hr			

CALCULATION	ONS *								DF	-C
ARM	K	X_2	М	F	t_D	f _c	$Q_E(AM)$	$Q_E(PM)$	AM	PM
Α	0.94	8.01	54.60	2427	1.01	0.55	2096	2049	0.86	0.90
В	0.94	8.51	54.60	2579	1.01	0.57	1707	1911	0.64	0.66
С	0.99	8.36	54.60	2533	1.01	0.57	2119	1975	0.90	0.86

Crtical Arm: C A

DFC: 0.90 0.90

*- In accordance with TPDM V2.4 Appendix

JOB NO. : 5210095 2021 J11 - YUEN LONG TAI YUK ROAD/MA TIN ROAD (YL101) Design Year: PC Scheme : ___ Designed by: _ Checked by: Traffic Flow (pcu/hr) 御庭居 129(125) 199(138) 164(190) Hong Chi Morning joy Sc Yuen Long 匡智元朗晨樂學校 239(201) ___ 321(272) ___ 89(160) 125(106) 91(61) 9(23) 369(391) 191(172)

Capacity	/ Calcula	tions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane?	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	У
Ma Tin Roa														
A1	1	3.60	Υ	N	10		239	100%	1715	0.139	201	100%	1715	0.117
A2	1	3.60	N	N			321		2115	0.152	272		2115	0.129
Ma Tin Roa	ad WB													
C1	3	3.00	Y	N	15		216	42%	1840	0.117	167	37%	1850	0.090
C2	3	3.00	N	N	15		89	100%	1870	0.048	160	100%	1870	0.086
Yuen Long	Tai Yuk Ro	oad NB												
B1	2	3.60	Υ	N	15		281	3%	1970	0.143	288	8%	1960	0.147
B2	2	3.60	N	N	20		288	66%	2015	0.143	298	58%	2025	0.147
Yuen Long	Tai Yuk Ro	oad SB												
D1	4	3.60	Υ	N	10		231	71%	1785	0.129	210	90%	1740	0.121
D2	4	3.40	N	N	20		261	49%	2020	0.129	243	51%	2015	0.121
Еp	1,3,4		5GM +	8FG =	13	sec								
Fp	2		5GM +	7FG =	12	sec								
Gp	1,2,4		5GM +	7FG =	12	sec								
Нр	3		5GM +	8FG =	13	sec								
lp	1,2,3		5GM +	8FG =	13	sec								
Jp	4		5GM +	7FG =	12	sec								
Кр	2,3,4		5GM +	7FG =	12	sec								
Lp	1		5GM +	11FG =	16	sec								

Notes:	AM Peak	A+B+C+D	PM Peak	A+B+C+D
	Sum of Critical y Y	0.542	Sum of Critical y Y	0.487
	Lost Time L (sec)	32	Lost Time L (sec)	32
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.660	Practical Y Ypr	0.660
	Reserve Capacity RC	22%	Reserve Capacity RC	36%

Date : _____15/07/2022 ____ Junction : ____J11 - YUEN LONG TAI YUK ROAD/MA TIN ROAD

Capacity	y Calcula	tions						AM	Peak		PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane?	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor	Design Flow q	Proportion turning (%)	Saturation flow S	Flow	
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у	
Ma Tin Ro	ad EB		` '	, ,			.,		. /	•	, ,		. /		
A1	1	3.60	Υ	N	10		251	100%	1715	0.146	194	100%	1715	0.113	
A2	1	3.60	N	N			336		2115	0.159	289		2115	0.137	
Ma Tin Ro	ad WB														
C1	3	3.00	Y	N	15		162	31%	1855	0.087	175	26%	1865	0.094	
C2	3	3.00	N	N	15		110	100%	1870	0.059	153	100%	1870	0.082	
Yuen Long	Tai Yuk Ro	oad NB													
B1	2	3.60	Υ	N	15		297	15%	1945	0.153	264	10%	1955	0.135	
B2	2	3.60	N	N	20		311	51%	2035	0.153	273	58%	2030	0.134	
Yuen Long	l g Tai Yuk Ro	oad SB													
D1	4	3.60	Υ	N	10		225	44%	1855	0.121	209	100%	1715	0.122	
D2	4	3.40	N	N	20		243	58%	2005	0.121	236	44%	2030	0.116	
	4.0.4		5014	050	40										
Ep	1,3,4		5GM +	8FG = 7FG =	13 12	sec									
Fp	1,2,4		5GM +	7FG =	12	sec									
Gp Hp	3		5GM +	8FG =	13	sec									
lp	1,2,3		5GM +	8FG =	13	sec									
Jp	4		5GM +	7FG =	12	sec									
Кр	2,3,4		5GM +	7FG =	12	sec									
Lp	1		5GM +	11FG =	16	sec									
 	 	1		 				+				 			

Notes:	AM Peak	A+B+C+D	PM Peak	A+B+C+D
	Sum of Critical y Y	0.520	Sum of Critical y Y	0.487
	Lost Time L (sec)	32	Lost Time L (sec)	32
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.660	Practical Y Ypr	0.660
	Reserve Capacity RC	27%	Reserve Capacity RC	35%

Date : _____15/07/2022 ____ Junction : ____J11 - YUEN LONG TAI YUK ROAD/MA TIN ROAD

 JOB NO. :
 5210095

 Design Year:
 2032

Capacity	y Calcula	tions						AM	Peak		PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane?	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor	Design Flow q	Proportion turning (%)	Saturation flow S	Flow	
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у	
Ma Tin Ro	ad EB		` '	, ,			.,		. /	•	, ,		. /		
A1	1	3.60	Υ	N	10		251	100%	1715	0.146	194	100%	1715	0.113	
A2	1	3.60	N	N			336		2115	0.159	289		2115	0.137	
Ma Tin Ro	ad WB														
C1	3	3.00	Y	N	15		162	31%	1855	0.087	175	26%	1865	0.094	
C2	3	3.00	N	N	15		110	100%	1870	0.059	153	100%	1870	0.082	
Yuen Long	Tai Yuk Ro	oad NB													
B1	2	3.60	Υ	N	15		297	15%	1945	0.153	264	10%	1955	0.135	
B2	2	3.60	N	N	20		311	51%	2035	0.153	273	58%	2030	0.134	
Yuen Long	l g Tai Yuk Ro	oad SB													
D1	4	3.60	Υ	N	10		225	44%	1855	0.121	209	100%	1715	0.122	
D2	4	3.40	N	N	20		243	58%	2005	0.121	236	44%	2030	0.116	
	4.0.4		5014	050	40										
Ep	1,3,4		5GM +	8FG = 7FG =	13 12	sec									
Fp	1,2,4		5GM +	7FG =	12	sec									
Gp Hp	3		5GM +	8FG =	13	sec									
lp	1,2,3		5GM +	8FG =	13	sec									
Jp	4		5GM +	7FG =	12	sec									
Кр	2,3,4		5GM +	7FG =	12	sec									
Lp	1		5GM +	11FG =	16	sec									
 	 	1		 				+				 			

Notes:	AM Peak	A+B+C+D	PM Peak	A+B+C+D
	Sum of Critical y Y	0.520	Sum of Critical y Y	0.487
	Lost Time L (sec)	32	Lost Time L (sec)	32
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.660	Practical Y Ypr	0.660
	Reserve Capacity RC	27%	Reserve Capacity RC	35%

Date : _____15/07/2022 ____ Junction : ____J11 - YUEN LONG TAI YUK ROAD/MA TIN ROAD

J12 - YUEN LONG TAI YUK ROAD/KAU YUK ROAD (YL51)

 JOB NO. :
 5210095

 Design Year:
 2021

Capacity	y Calcula	tions						AM	Peak		PM Peak				
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow	
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor	
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у	
Yuen Long	Tai Yuk Ro	oad NB	` ′	` '			, ,		. ,	-	, ,		. /		
A1	1,2	3.20	Υ	N			721		1935	0.373	649		1935	0.335	
D1	2	3.20	N	N	15		43	100%	1885	0.023	113	100%	1885	0.060	
Yuen Lond	Tai Yuk Ro	oad SB													
C1	1,3	3.30	Υ	N	15		346	100%	1770	0.195	320	100%	1770	0.181	
B1	1	3.30	N	N			518		2085	0.248	385		2085	0.185	
Kau Yuk R	load WB														
E1	2	3.00	Y	N	10		67	100%	1665	0.040	93	100%	1665	0.056	
F1	3	3.00	N	N	15		444	100%	1870	0.237	475	100%	1870	0.254	
			40014												
Gp	3		10GM +	6FG =	16	sec									

Notes:	AM Peak	A+F	PM Peak	A+F
	Sum of Critical y Y	0.610	Sum of Critical y Y	0.589
	Lost Time L (sec)	12	Lost Time L (sec)	12
	Cycle Time c (sec)	120	Cycle Time c (sec)	100
	Practical Y Ypr	0.810	Practical Y Ypr	0.792
	Reserve Capacity RC	33%	Reserve Capacity RC	34%

Date : 15/07/2022 Junction : J12 - YUEN LONG TAI YUK ROAD/KAU YUK ROAD

IG=7

IG=7

IG=

IG=

JOB NO. : 5210095 Design Year: 2032 J12 - YUEN LONG TAI YUK ROAD/KAU YUK ROAD (YL51) PC TL Scheme : ___ Designed by: _ Checked by: Traffic Flow (pcu/hr) 424(325) 382(297) 1 370(475) - ₈₅₍₁₃₈₎ 新界鄉議局元相原由縣 N.T. Heung Yee Kuk Yuen Long District Secondary School 723(627) 71(92) STAGE / PHASE DIAGRAM

IG=

Capacity	/ Calcula	tions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Yuen Long	Tai Yuk Ro		(1111)	()		3	(1-1-1,111)		(1-1-1,111)		(1-1-1)		(1-1-1-1-1)	
A1	1,2	3.20	Υ	N			723		1935	0.374	627		1935	0.324
D1	2	3.20	N	N	15		71	100%	1885	0.038	92	100%	1885	0.049
Yuen Long	Tai Yuk Ro	oad SB												
C1	1,3	3.30	Υ	N	15		382	100%	1770	0.216	297	100%	1770	0.168
B1	1	3.30	N	N			424		2085	0.203	325		2085	0.156
Kau Yuk Ro	oad WB													
E1	2	3.00	Υ	N	10		85	100%	1665	0.051	138	100%	1665	0.083
F1	3	3.00	N	N	15		370	100%	1870	0.198	475	100%	1870	0.254
Gp	3		10GM +	6FG =	16	sec								

Notes:	AM Peak	A+F	PM Peak	A+F
	Sum of Critical y Y	0.572	Sum of Critical y Y	0.578
	Lost Time L (sec)	12	Lost Time L (sec)	12
	Cycle Time c (sec)	120	Cycle Time c (sec)	100
	Practical Y Ypr	0.810	Practical Y Ypr	0.792
	Reserve Capacity RC	42%	Reserve Capacity RC	37%

Date : 15/07/2022 Junction : J12 - YUEN LONG TAI YUK ROAD/KAU YUK ROAD

G=

G=

IG=

IG=7

IG=7

IG=7

IG=7

IG=

IG=

JOB NO. : 5210095 Design Year: 2032 J12 - YUEN LONG TAI YUK ROAD/KAU YUK ROAD (YL51) PC TL Scheme : ___ Designed by: _ Checked by: Traffic Flow (pcu/hr) 424(325) 382(297) 1 370(475) - ₈₅₍₁₃₈₎ 新界鄉議局元相原由縣 N.T. Heung Yee Kuk Yuen Long District Secondary School 723(627) 71(92) STAGE / PHASE DIAGRAM

IG=

Capacity	/ Calcula	tions						AM	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Yuen Long	Tai Yuk Ro		(1111)	()		3	(1-1-1,111)		(1-1-1,111)		(1-1-1)		(1-1-1-1-1)	
A1	1,2	3.20	Υ	N			723		1935	0.374	627		1935	0.324
D1	2	3.20	N	N	15		71	100%	1885	0.038	92	100%	1885	0.049
Yuen Long	Tai Yuk Ro	oad SB												
C1	1,3	3.30	Υ	N	15		382	100%	1770	0.216	297	100%	1770	0.168
B1	1	3.30	N	N			424		2085	0.203	325		2085	0.156
Kau Yuk Ro	oad WB													
E1	2	3.00	Υ	N	10		85	100%	1665	0.051	138	100%	1665	0.083
F1	3	3.00	N	N	15		370	100%	1870	0.198	475	100%	1870	0.254
Gp	3		10GM +	6FG =	16	sec								

Notes:	AM Peak	A+F	PM Peak	A+F
	Sum of Critical y Y	0.572	Sum of Critical y Y	0.578
	Lost Time L (sec)	12	Lost Time L (sec)	12
	Cycle Time c (sec)	120	Cycle Time c (sec)	100
	Practical Y Ypr	0.810	Practical Y Ypr	0.792
	Reserve Capacity RC	42%	Reserve Capacity RC	37%

Date : _____15/07/2022 ____ Junction : ____J12 - YUEN LONG TAI YUK ROAD/KAU YUK ROAD

G=

G=

IG=

IG=7

IG=7

K+D+N B+D+N **ATKINS**

IG=

JOB NO. : 5210095 Junction : _____ J13 - YUEN LONG TAI YUK ROAD/CASTLE PEAK ROAD - PING SHAN (MJ16) PC Scheme : __ Designed by: _ Checked by: ↑ N Traffic Flow (pcu/hr) **♠** N 12(10) 722(617) 128(149) 196(156) — 485(518) — 674(516) 142(89) 374(430) 522(453) 269(241) STAGE / PHASE DIAGRAM

IG=5

IG=11

IG=9

Capacity	y Calcula	tions					AM Peak					PM	Peak	
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у
Castle Pea	k Road - Yu	en Long EE		` '			, ,		i í		,		. /	
B1	1	3.20	Υ	N	45		325	60%	1895	0.172	323	48%	1905	0.170
B2	1	3.20	N	N			356		2075	0.172	351		2075	0.169
		en Long Wi												
K1	1	3.40	Υ	N	40		391	36%	1930	0.203	290	31%	1935	0.150
K2	1	3.40	N	N			425		2095	0.203	315		2095	0.150
	L													
	Tai Yuk Ro													
L1	2,3	3.30	Y	N	40		374	100%	1875	0.199	430	100%	1875	0.229
C1	2,3	3.50	N	N			522		2105	0.248	453		2105	0.215
N1	3	4.60	N	N	12		269	100%	1970	0.137	241	100%	1970	0.122
Ma Miu Ro														
D1	2,4	3.20	Y	N	45		408	31%	1915	0.213	367	41%	1910	0.192
D2	2,4	3.20	N	N			442		2075	0.213	399		2075	0.192
01	4	3.40	N	N	10		12	100%	1820	0.007	10	100%	1820	0.005
	1	(LRT)	6GM +	6FG =	12									
A Ep	1	(LRT)	8GM +	9FG =	17	sec								
Fp	1,3		5GM +	9FG =	10	sec								
гр Gp	1,3		5GM +	5FG =	10	sec								
- Gр Нр	2,3		15GM +	8FG =	23	sec								
lp	2,3,4		5GM +	5FG =	10	sec								
Jp	2,4		17GM +	8FG =	25	sec								
Mp	2,3,4		10GM +	6FG =	16	sec								
- INP	2,0,1		100	0. 0										

Notes:	AM Peak	K+D+N	PM Peak	B+D+N
	Sum of Critical y Y	0.552	Sum of Critical y Y	0.484
	Lost Time L (sec)	35	Lost Time L (sec)	35
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.638	Practical Y Ypr	0.638
	Reserve Capacity RC	15%	Reserve Capacity RC	32%

Date : 31/05/2022 Junction : J13 - YUEN LONG TAI YUK ROAD/CASTLE PEAK ROAD - PING SHAN

B+D+N B+D+N **ATKINS**

IG=

IG=

IG=9

IG=5

IG=11

Capacity	y Calcula	tions						AM I	Peak			PM	Peak	
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
Phase	Stage	Width (m)	lane?	turn?	turning (m)	in %	Flow q		flow S	factor		1 '	flow S	factor
		` '			0 \ /			turning (%)			Flow q	turning (%)	_	
0	1.51.1/	w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у
		uen Long EB		N.	45		540	000/	4000	0.007	400	000/	4000	0.007
B1	1	3.20	Y	N	45		513	22%	1920	0.267	436	26%	1920	0.227
B2	1	3.20	N	N			555		2075	0.267	472		2075	0.227
	<u> </u>													
		ien Long Wi												
K1	1	3.40	Y	N	40		444	24%	1940	0.229	368	20%	1940	0.190
K2	1	3.40	N	N			479		2095	0.229	397		2095	0.189
	L													
	Tai Yuk Ro													
L1	2,3	3.30	Υ	N	40		420	100%	1875	0.224	440	100%	1875	0.235
C1	2,3	3.50	N	N			482		2105	0.229	460		2105	0.219
N1	3	4.60	N	N	12		199	100%	1970	0.101	209	100%	1970	0.106
Ma Miu Ro														
D1	2,4	3.20	Υ	N	45		400	34%	1915	0.209	315	34%	1915	0.164
D2	2,4	3.20	N	N			434		2075	0.209	341		2075	0.164
01	4	3.40	N	N	10		32	100%	1820	0.018	30	100%	1820	0.016
Α	1	(LRT)	6GM +	6FG =	12	sec								
Ep	1		8GM +	9FG =	17	sec								
Fp	1,3		5GM +	5FG =	10	sec								
Gp	1,4		5GM +	5FG =	10	sec								
Hp	2,3		15GM +	8FG =	23	sec								
lp	2,3,4		5GM +	5FG =	10	sec								
Jp	2,4		17GM +	8FG =	25	sec								
Мр	2,3,4		10GM +	6FG =	16	sec								

Notes:	AM Peak	B+D+N	PM Peak	B+D+N
	Sum of Critical y Y	0.578	Sum of Critical y Y	0.498
	Lost Time L (sec)	35	Lost Time L (sec)	35
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.638	Practical Y Ypr	0.638
	Reserve Capacity RC	10%	Reserve Capacity RC	28%

Date : 31/05/2022 Junction : J13 - YUEN LONG TAI YUK ROAD/CASTLE PEAK ROAD - PING SHAN

B+D+N B+D+N **ATKINS**

IG=

IG=

JOB NO. : 5210095 Design Year: _____ 2032 Junction : _____ J13 - YUEN LONG TAI YUK ROAD/CASTLE PEAK ROAD - PING SHAN (MJ16) PC Scheme : __ Designed by: _ Checked by: ↑ N Traffic Flow (pcu/hr) 32(30) 700(549) 134(107) 115(112) — 953(796) — 818(692) 105(73) 420(440) 482(460) 199(209) STAGE / PHASE DIAGRAM

IG=5

IG=11

Capacity Calculations						AM I	Peak		PM Peak					
Phase	Stage	Lane Width (m)	Nearside lane?	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor	Design Flow q	Proportion turning (%)	Saturation flow S	Flow factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	У
Castle Pea	k Road - Yu	en Long EB	3											
B1	1	3.20	Υ	N	45		513	22%	1920	0.267	436	26%	1920	0.227
B2	1	3.20	N	N			555		2075	0.267	472		2075	0.227
Castle Pea	k Road - Yu	en Long Wi	3											
K1	1	3.40	Υ	N	40		444	24%	1940	0.229	368	20%	1940	0.190
K2	1	3.40	N	N			479		2095	0.229	397		2095	0.189
Yuen Long	Tai Yuk Ro	oad NB												
L1	2,3	3.30	Υ	N	40		420	100%	1875	0.224	440	100%	1875	0.235
C1	2,3	3.50	N	N			482		2105	0.229	460		2105	0.219
N1	3	4.60	N	N	12		199	100%	1970	0.101	209	100%	1970	0.106
Ma Miu Ro	ad SB													
D1	2,4	3.20	Υ	N	45		400	34%	1915	0.209	315	34%	1915	0.164
D2	2,4	3.20	N	N			434		2075	0.209	341		2075	0.164
01	4	3.40	N	N	10		32	100%	1820	0.018	30	100%	1820	0.016
Α	1	(LRT)	6GM +	6FG =	12	sec								
Ep	1		8GM +	9FG =	17	sec								
Fp	1,3		5GM +	5FG =	10	sec								
Gp	1,4		5GM +	5FG =	10	sec								
Нр	2,3		15GM +	8FG =	23	sec								
lp	2,3,4		5GM +	5FG =	10	sec								
Jp	2,4		17GM +	8FG =	25	sec								
Mp	2,3,4		10GM +	6FG =	16	sec								
														1

Notes:	AM Peak	B+D+N	PM Peak	B+D+N
	Sum of Critical y Y	0.578	Sum of Critical y Y	0.498
	Lost Time L (sec)	35	Lost Time L (sec)	35
	Cycle Time c (sec)	120	Cycle Time c (sec)	120
	Practical Y Ypr	0.638	Practical Y Ypr	0.638
	Reserve Capacity RC	10%	Reserve Capacity RC	28%

Date : 31/05/2022 Junction : J13 - YUEN LONG TAI YUK ROAD/CASTLE PEAK ROAD - PING SHAN

IG=9 IG=9

ATKINS

Capacity	/ Calculat	ions						AM I	AM Peak			PM Peak		
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	у
Castle Pea	k Road EB													
J1	1,3	5.00	Υ	N	26		640	100%	2000	0.320	594	100%	2000	0.297
B1	1	3.50	Υ	N			260		1965	0.132	288		1965	0.147
B2	1	3.50	N	N			278		2105	0.132	308		2105	0.146
H1	1,2	3.50	Υ	N			260		1965	0.132	288		1965	0.147
H2	1,2	3.50	N	N			278		2105	0.132	308		2105	0.146
l1	1,3	3.50	Υ	N			640		1965	0.326	594		1965	0.302
	k Road WB													
D1	1,2	3.30	Υ	N	15		652	100%	1770	0.368	462	100%	1770	0.261
D2	1,2	3.30	N	N			505		2085	0.242	463		2085	0.222
Ma Wang F	Road SB													
C1	3	3.30	Υ	N	20/55		174	82% / 18%	1825	0.095	140	66% / 34%	1835	0.076
C2	3	3.30	N	N	50		194	100%	2025	0.096	155	100%	2025	0.077
C3	3	3.30	N	N	50		193	100%	2025	0.095	154	100%	2025	0.076
A(LRT)	2	#	7GM +	7FG =	14	sec								
Ep	3		10GM +	9FG =	19	sec								
Fp	1,2		5GM +	10FG =	15	sec								
Gp	2		5GM +	6FG =	11	sec								
Кр	3		5GM +	9FG =	14	sec								
L(LRT)	2	#	7GM +	7FG =	14	sec								

Notes:	AM Peak	D+C	PM Peak	J+A(LRT)
# LRT I/G time by observation is adopted for phase A & L(LRT)	Sum of Critical y Y	0.464	Sum of Critical y Y	0.297
Averaged cycle time by observation is adopted.	Lost Time L (sec)	16	Lost Time L (sec)	43
	Cycle Time c (sec)	108	Cycle Time c (sec)	108
	Practical Y Ypr	0.767	Practical Y Ypr	0.542
	Reserve Capacity RC	65%	Reserve Capacity RC	82%

ATKINS

JOB NO. : 5210095

 Junction :
 J14 - MA WANG ROAD/CASTLE PEAK ROAD - PING SHAN (MJ15)
 Design Year:
 2032

 Scheme :
 Reference
 Designed by:
 PC
 Checked by:
 TL

 ↑ N
 Traffic Flow (pcu/hr) AM(PM)
 459(412)
 120(110)
 ↑ N

 669(495)
 ↑ 1114(982)
 ↑ 660(670)
 √ 609(492)

 862(1000)
 538(521)
 ★ 388(2100)
 ★ 388(210)

Capacity	y Calculat	tions						AM	Peak					
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
	-	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	У
Castle Pea	k Road EB													
J1	1,3	5.00	Υ	N	26		669	100%	2000	0.335	495	100%	2000	0.248
B1	1	3.50	Υ	N			538		1965	0.274	474		1965	0.241
B2	1	3.50	N	N			576		2105	0.274	508		2105	0.241
H1	1,2	3.50	Υ	N			538		1965	0.274	474		1965	0.241
H2	1,2	3.50	N	N			576		2105	0.274	508		2105	0.241
l1	1,3	3.50	Υ	N			669		1965	0.340	495		1965	0.252
	k Road WB													
D1	1,2	3.30	Υ	N	15		609	100%	1770	0.344	535	92%	1780	0.301
D2	1,2	3.30	N	N			660		2085	0.317	627		2085	0.301
Ma Wang F	Road SB													
C1	3	3.30	Υ	N	20/55		181	66% / 34%	1835	0.099	163	67% / 33%	1835	0.089
C2	3	3.30	N	N	50		199	100%	2025	0.098	180	100%	2025	0.089
C3	3	3.30	N	N	50		199	100%	2025	0.098	179	100%	2025	0.088
							-				-			
A(LRT)	2	#	7GM +	7FG =	14	sec								
Ep	3		10GM +	9FG =	19	sec								
- Fp	1,2		5GM +	10FG =	15	sec								
Gp	2		5GM +	6FG =	11	sec								
Кр	3		5GM +	9FG =	14	sec								
L(LRT)	2	#	7GM +	7FG =	14	sec								
	1													

Notes: #LRT I/G time by observation is adopted for phase A & L(LRT)	AM Peak Sum of Critical y Y	B+A(LRT)+C 0.372	PM Peak Sum of Critical y Y	B+A(LRT)+C 0.330
Averaged cycle time by observation is adopted.	Lost Time L (sec) Cycle Time c (sec)		Lost Time L (sec) Cycle Time c (sec)	43 108
	Practical Y Ypr Reserve Capacity RC		Practical Y Ypr Reserve Capacity RC	0.542 64%

JOB NO.: 5210095

 Junction :
 J14 - MA WANG ROAD/CASTLE PEAK ROAD - PING SHAN (MJ15)
 Design Year:
 2032

 Scheme :
 Design
 Designed by:
 PC
 Checked by:
 TL

 ↑ N AM(PM)
 459(412)
 120(110)
 ↑ N 660(670)
 ↑ N 609(492)

 11114(982)
 ↑ 0 660(670)
 √ 609(492)
 ↑ 0 609(492)
 ↑ 0 609(492)

Capacity	y Calculat	tions						AM	Peak					
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
	-	Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	у	(pcu/hr)	f	(pcu/hr)	У
Castle Pea	k Road EB													
J1	1,3	5.00	Υ	N	26		669	100%	2000	0.335	495	100%	2000	0.248
B1	1	3.50	Υ	N			538		1965	0.274	474		1965	0.241
B2	1	3.50	N	N			576		2105	0.274	508		2105	0.241
H1	1,2	3.50	Υ	N			538		1965	0.274	474		1965	0.241
H2	1,2	3.50	N	N			576		2105	0.274	508		2105	0.241
l1	1,3	3.50	Υ	N			669		1965	0.340	495		1965	0.252
	k Road WB													
D1	1,2	3.30	Υ	N	15		609	100%	1770	0.344	535	92%	1780	0.301
D2	1,2	3.30	N	N			660		2085	0.317	627		2085	0.301
Ma Wang F	Road SB													
C1	3	3.30	Υ	N	20/55		181	66% / 34%	1835	0.099	163	67% / 33%	1835	0.089
C2	3	3.30	N	N	50		199	100%	2025	0.098	180	100%	2025	0.089
C3	3	3.30	N	N	50		199	100%	2025	0.098	179	100%	2025	0.088
							-				-			
A(LRT)	2	#	7GM +	7FG =	14	sec								
Ep	3		10GM +	9FG =	19	sec								
- Fp	1,2		5GM +	10FG =	15	sec								
Gp	2		5GM +	6FG =	11	sec								
Кр	3		5GM +	9FG =	14	sec								
L(LRT)	2	#	7GM +	7FG =	14	sec								
	1													

[
Notes:	AM Peak	B+A(LRT)+C	PM Peak	B+A(LRT)+C
# LRT I/G time by observation is adopted for phase A & L(LRT)	Sum of Critical y Y	0.372	Sum of Critical y Y	0.330
Averaged cycle time by observation is adopted.	Lost Time L (sec)	43	Lost Time L (sec)	43
	Cycle Time c (sec)	108	Cycle Time c (sec)	108
	Practical Y Ypr	0.542	Practical Y Ypr	0.542
	Reserve Capacity RC	45%	Reserve Capacity RC	64%

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J15 - Town Park Road North / Ma Tin Road Junction: Designed by: PC Scheme: Checked by: Existing TL Job No.: 5210095 Date: 31/05/2022 Design Year: 2021 Ma Tin Road EB ARM A: ARM B: Town Park Road North SB Ma Tin Road WB ARM C: am pm ARM C 165 162 76 47 Ma Tin Road WB Ma Tin Road EB am pm 400 370 51 33 ARM A am pm 100 74 25 14 ARM B Town Park Road North SB GEOMETRY Major road width 8.95 Lane widths w(b-a) 4.70 Central Reserve width Wcr w(b-c) 0.00 4.50 Residual width Wr(c-a) w(c-b) 4.50 2.50 Visibilities Vr(b-a) Calculated 65 D 0.98 VI(b-a) 50 Ε 1.03 Vr(b-c) 65 F 1.03 Vr(c-b) 65 0.69 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 165 162 q(c-b) 76 47 q(a-b) 33 51 370 q(a-c) 400 q(b-a) 25 14 100 74 q(b-c) 0.80 0.84 CAPACITIES Q(b-a) 459 479 Q(b-c) 656 666 Q(c-b) 648 661 Q(b-ac) 604 627 DFC's 0.05 0.03 b-a

Where VI and Vr are visibility distances to the left or right of the respective streams

b-c

c-b

b-ac

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1 0.11

0.071

0.140

0.14

0.15

0.117

0.207

0.21

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J15 - Town Park Road North / Ma Tin Road Junction: Designed by: PC Reference Scheme: Checked by: TL Job No.: 5210095 Date: 31/05/2022 Design Year: 2032 ARM A: Ma Tin Road EB ARM B: Town Park Road North SB Ma Tin Road WB ARM C: am pm ARM C 198 168 106 59 Ma Tin Road WB Ma Tin Road EB pm 390 370 55 60 ARM A am pm 139 97 11 12 ARM B Town Park Road North SB GEOMETRY Major road width 8.95 Lane widths w(b-a) 4.70 Central Reserve width Wcr w(b-c) 0.00 4.50 Residual width Wr(c-a) w(c-b) 4.50 2.50 Visibilities Vr(b-a) Calculated 65 D 0.98 VI(b-a) 50 Ε 1.03 Vr(b-c) 65 F 1.03 Vr(c-b) 65 0.69 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 198 168 q(c-b) 106 59 q(a-b) 60 55 q(a-c) 390 370 q(b-a) 11 12 139 97 q(b-c) 0.93 0.89 CAPACITIES Q(b-a) 446 471 Q(b-c) 658 663 Q(c-b) 650 654 Q(b-ac) 636 635 DFC's 0.02 0.03 b-a 0.15 b-c 0.21

Where VI and Vr are visibility distances to the left or right of the respective streams

c-b

b-ac

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1 0.090

0.172

0.17

0.163

0.236

0.24

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J15 - Town Park Road North / Ma Tin Road Junction: Designed by: PC Scheme: Checked by: Design TL 2032 Job No.: 5210095 Date: 31/05/2022 Design Year: ARM A: Ma Tin Road EB ARM B: Town Park Road North SB Ma Tin Road WB ARM C: am pm ARM C 198 168 106 59 Ma Tin Road WB Ma Tin Road EB pm 390 370 55 60 ARM A am pm 139 97 11 12 ARM B Town Park Road North SB GEOMETRY Major road width 8.95 Lane widths w(b-a) 4.70 Central Reserve width Wcr w(b-c) 0.00 4.50 Residual width Wr(c-a) w(c-b) 4.50 2.50 Visibilities Vr(b-a) Calculated 65 D 0.98 VI(b-a) 50 Ε 1.03 Vr(b-c) 65 F 1.03 Vr(c-b) 65 0.69 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 198 168 q(c-b) 106 59 q(a-b) 60 55 q(a-c) 390 370 q(b-a) 11 12 139 97 q(b-c) 0.93 0.89 CAPACITIES Q(b-a) 446 471 Q(b-c) 658 663 Q(c-b) 650 654 Q(b-ac) 636 635 DFC's 0.02 0.03 b-a

Where VI and Vr are visibility distances to the left or right of the respective streams

b-c

c-b

b-ac

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

Critical DFC

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1

0.21

0.163

0.236

0.24

0.15

0.090

0.172

0.17

(Single Lane Minor Arm B) Job Title: CE46/2020 TO4 Housing Development at Shap Pat Heung Road J16 - Tong Yan San Tsuen Interchange / Long Hon Road & Sh Designed by: Junction: PC Scheme: Checked by: TL 2021 Job No.: 5210095 Date: 31/05/2022 Design Year: ARM A: Shan Ha Road NB ARM B: Tong Yan San Tsuen Int. EB Shan Ha Road SB ARM C: am pm ARM C 53 60 406 194 Shan Ha Road SB Shan Ha Road NB am pm 48 98 159 175 ARM A am pm 606 596 164 205 ARM B Tong Yan San Tsuen Int. EB GEOMETRY Major road width 7.05 Lane widths w(b-a) 4.00 Central Reserve width Wcr w(b-c) 0.00 4.00 Residual width Wr(c-a) w(c-b) 3.30 2.50 Visibilities Vr(b-a) Calculated 0.89 45 D VI(b-a) 28 Ε 0.96 Vr(b-c) 45 F 0.89 Vr(c-b) 36 0.76 ANALYSIS **AM PEAK** PM PEAK TRAFFIC FLOWS q(c-a) 53 q(c-b) 406 194 q(a-b) 175 159 q(a-c) 48 98 164 205 q(b-a) 606 596 q(b-c) 0.79 0.74 CAPACITIES 441 Q(b-a) 382 Q(b-c) 688 673 Q(c-b) 615 599 DFC's 0.46 b-a 0.43 0.89 0.88 b-c c-b 0.660 0.324 Critical DFC 0.88 0.89

Where VI and Vr are visibility distances to the left or right of the respective streams

D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))

E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))

F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))

Y = 1-0.0345W

f = proportion of minor traffic turning left

Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)

Capacity of combined streams

- In accordance with TPDM V2.4

T.P.D.M.V.2.4 Appendix 1

Appendix B Validation Results

Appendix B - Validations Results

Screenline Validation Results

Caraculina	Darmal	Road		Al	VI			PI	M	
Screenline	Bound	Road	obs	mod	m/o	GEH	obs	mod	m/o	GEH
Α	WB	CPR-PS	1454	1362	0.94	2.5	1468	1415	0.96	1.4
Α	EB	CPR-PS	1178	1243	1.06	1.9	1190	1198	1.01	0.2
Α	WB	YLHY	4554	4504	0.99	0.7	4771	4490	0.94	4.1
Α	EB	YLHY	5776	6000	1.04	2.9	4843	5049	1.04	2.9
В	WB	CPR-YK	816	779	0.95	1.3	605	521	0.86	3.5
В	EB	CPR-YK	882	903	1.02	0.7	908	919	1.01	0.4
В	WB	KYR	511	556	1.09	1.9	568	611	1.08	1.8
В	EB	KYR	389	392	1.01	0.2	433	426	0.98	0.3
В	WB	MTR	305	278	0.91	1.6	327	293	0.90	1.9
В	EB	MTR	676	644	0.95	1.2	634	597	0.94	1.5
В	WB	SPHR	475	507	1.07	1.4	490	515	1.05	1.1
В	EB	SPHR	285	329	1.15	2.5	222	181	0.82	2.9
В	WB	YLHW	4578	4461	0.97	1.7	5160	4817	0.93	4.9
В	EB	YLHW	6203	6252	1.01	0.6	4411	4510	1.02	1.5
С	NB	LTR	3582	3289	0.92	5.0	3860	3595	0.93	4.3
С	SB	LTR	4190	3864	0.92	5.1	3471	3167	0.91	5.3
С	NB	LHTR	395	360	0.91	1.8	136	130	0.96	0.5
С	SB	LHTR	194	195	1.01	0.1	144	125	0.87	1.6
С	NB	TYR	574	549	0.96	1.1	593	594	1.00	0.0
С	SB	TYR	295	267	0.91	1.7	197	177	0.90	1.5
С	NB	KUR	17	16	0.94	0.2	29	26	0.90	0.6
С	SB	KHR	144	130	0.90	1.2	142	149	1.05	0.6
С	NB	TSHRW	9	10	1.11	0.3	8	8	1.00	0.0
С	SB	TSHRE	201	175	0.87	1.9	286	267	0.93	1.1
С	NB	TTR	430	402	0.93	1.4	475	403	0.85	3.4
С	SB	TTR	487	474	0.97	0.6	542	527	0.97	0.6
С	NB	FKR	631	587	0.93	1.8	729	759	1.04	1.1
С	SB	FKR	519	561	1.08	1.8	678	708	1.04	1.1
С	NB	YLHY	6652	6706	1.01	0.7	4627	5034	1.09	5.9
С	SB	YLHY	4710	4590	0.97	1.8	5517	5191	0.94	4.5

Junction Validation Results

Junction	Bound	Road		Al	М		PM				
			obs	mod	m/o	GEH	obs	mod	m/o	GEH	
J1	Entry	SPHR (W)	455	529	1.16	3.3	380	354	0.93	1.4	
	Exit	SPHR (W)	366	425	1.16	3.0	252	265	1.05	0.8	
	Entry	SPHR (E)	475	507	1.07	1.4	490	515	1.05	1.1	
	Exit	SPHR (E)	285	329	1.15	2.5	222	181	0.82	2.9	
	Entry	TYR (S)	295	267	0.91	1.7	197	171	0.87	1.9	
	Exit	TYR (S)	574	549	0.96	1.1	593	594	1.00	0.0	
J2	Entry	MTR (W)	560	532	0.95	1.2	473	444	0.94	1.4	
	Exit	MTR (W)	263	275	1.05	0.7	254	273	1.07	1.2	
	Entry	MTR (E)	305	278	0.91	1.6	327	291	0.89	2.0	
	Exit	MTR (E)	676	644	0.95	1.2	634	597	0.94	1.5	
	Entry	TYR (N)	492	512	1.04	0.9	453	466	1.03	0.6	
	Exit	TYR (N)	697	686	0.98	0.4	752	754	1.00	0.1	
	Entry	TYR (S)	569	549	0.96	0.8	586	594	1.01	0.3	
	Exit	TYR (S)	290	266	0.92	1.4	199	171	0.86	2.1	
J3	Entry	TYR (N)	1165	1217	1.04	1.5	705	749	1.06	1.6	
	Exit	TYR (N)	864	904	1.05	1.3	1124	1206	1.07	2.4	
	Entry	TYR (S)	764	765	1.00	0.0	762	770	1.01	0.3	
	Exit	TYR (S)	585	616	1.05	1.3	478	498	1.04	0.9	
	Entry	KYR (E)	511	556	1.09	1.9	568	611	1.08	1.8	
	Exit	KYR (E)	389	392	1.01	0.2	433	426	0.98	0.3	
J4	Entry	MMR (N)	718	683	0.95	1.3	776	803	1.03	1.0	
	Exit	MMR (N)	862	939	1.09	2.6	609	634	1.04	1.0	
	Entry	MMR (S)	1165	1226	1.05	1.8	1124	1207	1.07	2.4	
	Exit	MMR (S)	864	904	1.05	1.3	706	749	1.06	1.6	
	Entry	CPR (W)	681	674	0.99	0.3	674	678	1.01	0.2	
	Exit	CPR (W)	1060	1128	1.06	2.1	956	907	0.95	1.6	
	Entry	CPR (E)	816	779	0.95	1.3	605	521	0.86	3.5	
	Exit	CPR (E)	882	903	1.02	0.7	908	919	1.01	0.4	
J5	Entry	SPHR (W)	276	330	1.20	3.1	218	181	0.83	2.6	
	Exit	SPHR (W)	434	475	1.09	1.9	370	400	1.08	1.5	
	Entry	SPHR (E)	420	489	1.16	3.2	434	469	1.08	1.6	
	Exit	SPHR (E)	545	623	1.14	3.2	447	431	0.96	0.8	
	Entry	KHR (N)	144	130	0.90	1.2	142	149	1.05	0.6	
	Exit	KUR (N)	17	6	0.35	3.2	29	17	0.59	2.5	
	Entry	KUR (S)	538	537	1.00	0.0	551	564	1.02	0.6	
	Exit	KHR (N)	382	382	1.00	0.0	499	515	1.03	0.7	

Appendix B - Validations Results

	1	I 6	1	l	1	1 1			1 1	1 1
J6		SPHR (W)	543	622	1.15	3.3	449	431	0.96	0.9
	Exit	SPHR (W)	415	504	1.21	4.2	433	469	1.08	1.7
	Entry	SPHR (E)	320	397	1.24	4.1	342	277	0.81	3.7
	Exit	SPHR (E)	588	500	0.85	3.8	482	443	0.92	1.8
	Entry	TSHRE (N)	201	175	0.87	1.9	286	267	0.93	1.1
	Exit	TSHRW (N)	9	5	0.56	1.5	8	5	0.63	1.2
	Entry	TSHRW (S)	151	157	1.04	0.5	108	213	1.97	8.3
	Exit	TSHRE (S)	203	342	1.68	8.4	262	271	1.03	0.6
J7	Entry	TTR (N)	487	474	0.97	0.6	542	477	0.88	2.9
	Exit	TTR (N)	430	402	0.93	1.4	475	403	0.85	3.4
	Entry	TTR (S)	578	587	1.02	0.4	525	602	1.15	3.2
	Exit	TTR (S)	470	467	0.99	0.1	502	501	1.00	0.0
	Entry	SPHR (W)	579	638	1.10	2.4	524	519	0.99	0.2
	Exit	SPHR (W)	365	442	1.21	3.8	455	457	1.00	0.1
	Entry	SPHR (E)	480	429	0.89	2.4	558	456	0.82	4.5
	Exit	SPHR (E)	859	817	0.95	1.5	717	693	0.97	0.9
18	Entry	FKR (N)	519	361	0.70	7.5	678	758	1.12	3.0
	Exit	FKR (N)	631	587	0.93	1.8	729	759	1.04	1.1
	Entry	AccessRd (S)	153	154	1.01	0.1	94	99	1.05	0.5
	Exit	AccessRd (S)	92	84	0.91	0.9	115	115	1.00	0.0
	Entry	SPHR (W)	859	817	0.95	1.5	719	694	0.97	0.9
	Exit	SPHR (W)	480	430	0.90	2.3	558	456	0.82	4.5
		SPHR (E)	738	827	1.12	3.2	1018	969	0.95	1.6
	Entry	SPHR (E)	1066	1058	0.99	0.2	1018	1190	1.07	2.4
J9	Exit									
19	Entry	SPHR (W)	1066	1057	0.99	0.3	1107	1190	1.07	2.4
	Exit	SPHR (W)	755	826	1.09	2.5	1018	968	0.95	1.6
	Entry	SPHR (E)	1310	1377	1.05	1.8	1773	1806	1.02	0.8
	Exit	SPHR (E)	1624	1703	1.05	1.9	1633	1956	1.20	7.6
		TKLR (S)	582	679	1.17	3.9	612	822	1.34	7.8
	Exit	TKLR (S)	579	584	1.01	0.2	841	894	1.06	1.8
J10	Entry	MWR (N)	561	539	0.96	0.9	449	437	0.97	0.6
	Exit	LTR (N)	640	645	1.01	0.2	594	631	1.06	1.5
	Entry	LTR (S)	1334	1038	0.78	8.6	1417	1177	0.83	6.7
	Exit	LTR (S)	1456	1273	0.87	5.0	1231	1047	0.85	5.5
	Entry	CPR (W)	1178	1243	1.06	1.9	1190	1198	1.01	0.2
	Exit	CPR (W)	1454	1362	0.94	2.5	1468	1415	0.96	1.4
	Entry	CPR (E)	1157	1128	0.97	0.9	925	907	0.98	0.6
	Exit	CPR (E)	680	668	0.98	0.5	688	626	0.91	2.4
J11	Entry	SPHR (W)	1629	1703	1.05	1.8	1633	1956	1.20	7.6
	Exit	SPHR (W)	1310	1378	1.05	1.9	1773	1805	1.02	0.8
	Entry	YLHY (N)	1573	1570	1.00	0.1	1749	1553	0.89	4.8
	Exit	YLHY (N)	2104	2444	1.16	7.1	1607	1829	1.14	5.4
				1990	1.20	7.8	1391	1305	0.04	2.3
	Entry	YLHY (S)	1655						0.94	
1		1	1655 1441	1441		0.0	1392			5.9
J12	Exit	YLHY (S)	1441	1441	1.00			1180	0.85	5.9 2.3
J12	Exit Entry	YLHY (S) SHR (N)	1441 459	1441 468	1.00 1.02	0.4	254	1180 292	0.85 1.15	2.3
J12	Exit Entry Exit	YLHY (S) SHR (N) SHR (N)	1441 459 654	1441 468 672	1.00 1.02 1.03	0.4 0.7	254 694	1180 292 702	0.85 1.15 1.01	2.3 0.3
J12	Exit Entry Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S)	1441 459 654 207	1441 468 672 266	1.00 1.02 1.03 1.29	0.4 0.7 3.8	254 694 273	1180 292 702 288	0.85 1.15 1.01 1.05	2.3 0.3 0.9
J12	Exit Entry Exit Entry Exit	YLHY (S) SHR (N) SHR (S) SHR (S)	1441 459 654 207 217	1441 468 672 266 341	1.00 1.02 1.03 1.29 1.57	0.4 0.7 3.8 7.4	254 694 273 265	1180 292 702 288 315	0.85 1.15 1.01 1.05 1.19	2.3 0.3 0.9 2.9
J12	Exit Entry Exit Entry Exit Entry Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W)	1441 459 654 207 217 770	1441 468 672 266 341 809	1.00 1.02 1.03 1.29 1.57 1.05	0.4 0.7 3.8 7.4 1.4	254 694 273 265 801	1180 292 702 288 315 811	0.85 1.15 1.01 1.05 1.19 1.01	2.3 0.3 0.9 2.9 0.4
	Exit Entry Exit Entry Exit Entry Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W)	1441 459 654 207 217 770 565	1441 468 672 266 341 809 530	1.00 1.02 1.03 1.29 1.57 1.05	0.4 0.7 3.8 7.4 1.4 1.5	254 694 273 265 801 369	1180 292 702 288 315 811 374	0.85 1.15 1.01 1.05 1.19 1.01	2.3 0.3 0.9 2.9 0.4 0.3
J12	Exit Entry Exit Entry Exit Entry Exit Entry Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N)	1441 459 654 207 217 770 565	1441 468 672 266 341 809 530	1.00 1.02 1.03 1.29 1.57 1.05 0.94	0.4 0.7 3.8 7.4 1.4 1.5 6.5	254 694 273 265 801 369 76	1180 292 702 288 315 811 374	0.85 1.15 1.01 1.05 1.19 1.01 1.01	2.3 0.3 0.9 2.9 0.4 0.3
	Exit Entry Exit Entry Exit Entry Exit Entry Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N)	1441 459 654 207 217 770 565 118 107	1441 468 672 266 341 809 530 57 139	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30	0.4 0.7 3.8 7.4 1.4 1.5 6.5	254 694 273 265 801 369 76 104	1180 292 702 288 315 811 374 81 95	0.85 1.15 1.01 1.05 1.19 1.01 1.01 1.07 0.91	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9
	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S)	1441 459 654 207 217 770 565 118 107 355	1441 468 672 266 341 809 530 57 139 442	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4	254 694 273 265 801 369 76 104 233	1180 292 702 288 315 811 374 81 95	0.85 1.15 1.01 1.05 1.19 1.01 1.01 1.07 0.91 0.82	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9
	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S)	1441 459 654 207 217 770 565 118 107 355 379	1441 468 672 266 341 809 530 57 139 442 359	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0	254 694 273 265 801 369 76 104 233 417	1180 292 702 288 315 811 374 81 95 192 371	0.85 1.15 1.01 1.05 1.19 1.01 1.01 1.07 0.91 0.82 0.89	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3
	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W)	1441 459 654 207 217 770 565 118 107 355 379 382	1441 468 672 266 341 809 530 57 139 442 359 454	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5	254 694 273 265 801 369 76 104 233 417 461	1180 292 702 288 315 811 374 81 95 192 371 416	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369	1441 468 672 266 341 809 530 57 139 442 359 454 455	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2	254 694 273 265 801 369 76 104 233 417 461 249	1180 292 702 288 315 811 374 81 95 192 371 416 223	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1
	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) LHTR (N)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194	1441 468 672 266 341 809 530 57 139 442 359 454 455 195	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2	254 694 273 265 801 369 76 104 233 417 461 249	1180 292 702 288 315 811 374 81 95 192 371 416 223 125	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91	0.4 0.7 3.8 7.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8	254 694 273 265 801 369 76 104 233 417 461 249 144	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5
J13	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88	0.4 0.7 3.8 7.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) LHTR (S)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4
J13	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20	0.4 0.7 3.8 7.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6
J13	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.9
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.9
J13	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.9
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.9
J13	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8
J13	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRS (E) LHTR (S)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8
J13	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRS (E) LHTR (S) LHTR (S) LHTR (S)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451 395	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290 359	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64 0.91 1.01	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4 1.9	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404 136	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349 131	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86 0.96	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8 0.4 1.6
J13 J14 J15	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRS (E) TPRS (E) LHTR (S) LHTR (S) LHTR (S) LHTR (S) TPRN (N)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451 395 194 88	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290 359 195	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64 0.91 1.01 1.14	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4 1.9 0.1	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404 136 144 88	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349 131 125 100	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86 0.96 0.97 1.14	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8 2.1 1.7
J13 J14 J15	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRS (E) TPRS (E) LHTR (S) LHTR (S) LHTR (S) TPRN (N) TPRN (N) TPRN (N)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451 395 194 88 80	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290 359 195 100 103	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64 0.91 1.01 1.14 1.29	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4 1.9 0.1 1.2 2.4	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404 136 144	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349 131 125 100 103	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86 0.96 0.97 1.14 1.29	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8 0.4 1.6 1.2 2.4
J13 J14 J15	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRN (N) TPRN (N) TPRN (N) TPRN (N)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451 395 194 88 80 403	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290 359 195 100 103 348	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64 0.91 1.01 1.14 1.29 0.86	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4 1.9 0.1 1.2 2.4 2.8	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404 136 144 88 80 403	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349 131 125 100 103 348	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86 0.96 0.87 1.14 1.29 0.86	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8 0.4 1.6 1.2 2.4 2.8
J13 J14 J15	Exit Entry Exit	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRS (W) TPRS (W)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451 395 194 88 80 403 176	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290 359 195 100 103 348 165	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64 0.91 1.01 1.14 1.29 0.86 0.94	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4 1.9 0.1 1.2 2.4 2.8 0.8	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404 136 144 88 80 403 176	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349 131 125 100 103 348 165	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86 0.96 0.97 1.14 1.29 0.86 0.94	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8 0.4 1.6 1.2 2.4 2.8 0.8
J13 J14 J15	Exit Entry	YLHY (S) SHR (N) SHR (N) SHR (S) SHR (S) TYSTIC (W) TYSTIC (W) TPRN (N) TPRN (N) TPRN (S) TPRN (S) SHR (W) SHR (W) LHTR (N) LHTR (N) LHTR (S) SPHR (E) SPHR (E) TPRS (W) TPRS (W) TPRS (W) TPRS (E) TPRN (N) TPRN (N) TPRN (N) TPRN (N)	1441 459 654 207 217 770 565 118 107 355 379 382 369 194 395 529 317 367 378 380 317 187 451 395 194 88 80 403	1441 468 672 266 341 809 530 57 139 442 359 454 455 195 360 467 277 427 452 456 437 107 290 359 195 100 103 348	1.00 1.02 1.03 1.29 1.57 1.05 0.94 0.48 1.30 1.25 0.95 1.19 1.23 1.01 0.91 0.88 0.87 1.16 1.20 1.38 0.57 0.64 0.91 1.01 1.14 1.29 0.86	0.4 0.7 3.8 7.4 1.4 1.5 6.5 2.9 4.4 1.0 3.5 4.2 0.1 1.8 2.8 2.3 3.0 3.6 3.7 6.2 6.6 8.4 1.9 0.1 1.2 2.4 2.8	254 694 273 265 801 369 76 104 233 417 461 249 144 136 264 151 163 284 474 238 176 404 136 144 88 80 403	1180 292 702 288 315 811 374 81 95 192 371 416 223 125 130 260 156 171 270 407 229 165 349 131 125 100 103 348	0.85 1.15 1.01 1.05 1.19 1.01 1.07 0.91 0.82 0.89 0.90 0.90 0.87 0.96 0.98 1.03 1.05 0.95 0.86 0.96 0.94 0.86 0.96 0.87 1.14 1.29 0.86	2.3 0.3 0.9 2.9 0.4 0.3 0.6 0.9 2.8 2.3 2.1 1.7 1.6 0.5 0.2 0.4 0.6 0.8 3.2 0.6 0.8 2.8 0.4 1.6 1.2 2.4 2.8

Appendix C

Planned / Committed Road Network and Junction Modification

道路(工程、使用及補償)條例(第370章)

ROADS (WORKS, USE AND COMPENSATION) ORDINANCE (CHAPTER 370)

工務計劃項目第B810CL號 元朗閱邊公營房屋發展之工地平整 及基礎設施工程 道路工程

ROAD WORKS UNDER PWP ITEM NO. B810CL

SITE FORMATION AND INFRASTRUCTURE WORKS
FOR PUBLIC HOUSING DEVELOPMENTS AT

LONG BIN, YUEN LONG

圖則編號 PLAN NO.

頁次 SHEFT NO. 圖則名稱 PLAN TITLE

261044/GZ/001

二張之第一張 SHEET 1 OF 2

261044/GZ/002

二張之第二張 SHEET 2 OF 2 根據<<道路(工程、使用及補償)條例>> (第370章)而在憲報公布之圖則 PLAN FOR GAZETTING UNDER ROADS (WORKS, USE AND COMPENSATION) ORDINANCE (CHAPTER 370) 批簽 ENDORSED BY

Original Signed

黎以德 JOSEPH Y T LAI

運輸及房屋局常任秘書長(運輸)
PERMANENT SECRETARY FOR TRANSPORT AND HOUSING (TRANSPORT)

MIE

MIE

版權所有 不得翻印 COPYRIGHT RESERVED

土木工程拓展署土木工程處房屋工程2部

房屋工程之前 CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT CIVIL ENGINEERING OFFICE HOUSING PROJECTS 2 DIVISION

道路(工程、使用及補償)條例(第370章)

ROADS (WORKS , USE AND COMPENSATION) ORDINANCE (CHAPTER 370)

工務計劃項目第7817CL號及第7827CL號(部分) 元朗南發展 第一階段工程及第二階段工程第一期的道路工程

PWP ITEM NOS. 7817CL AND 7827CL (PART)
ROAD WORKS UNDER YUEN LONG SOUTH DEVELOPMENT
STAGE 1 WORKS AND STAGE 2 WORKS, PHASE 1

圖則編號 PLAN NO.	頁次 SHEET NO.	圖則名稱 PLAN TITLE	
60566218/GAZ/100	索引圖 KEY PLAN		
60566218/GAZ/LEGEND	圖例 LEGEND		
60566218/GAZ/101	十二張之第一張 SHEET 1 OF 12		
60566218/GAZ/102	十二張之第二張 SHEET 2 DF 12		
60566218/GAZ/103	十二張之第三張 SHEET 3 OF 12		批註 EMDORSED BY
60566218/GAZ/104	十二張之第四張 SHEET 4 OF 12		陳美寶 CHAN Mobile 運輸及房屋局常任秘書長(運輸) 日期
60566218/GAZ/105	十二張之第五張 SHEET 5 OF 12		運輸及房屋局常任秘書長(運輸)
60566218/GAZ/106	十二張之第六張 SHEET 6 OF 12	根據《道路(工程、使用及補償)條例》 (第370章)而在憲報公布之圖則 PLANS FOR GAZETTING UNDER ROADS	
60566218/GAZ/107	十二張之第七張 SHEET 7 OF 12	(WORKS, USE AND COMPENSATION) ORDINANCE (CHAPTER 370)	
60566218/GAZ/108	十二張之第八張 SHEET 8 OF 12		核准 APPROVED BY
60566218/GAZ/109	十二張之第九張 SHEET 9 DF 12 ———————————————————————————————————		林志強 DESMOND CK LAM 土木工程拓展署總工程師/西1 日期
60566218/GAZ/110	十二張之第十張 SHEET 10 OF 12		上バー工作和改有部 工作印/四1 ログリ CHIEF ENGINEER / WEST 1 DATE CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
60566218/GAZ/111	十二張之第十一張 SHEET 11 OF 12 —————		

十二張之第十二張

SHEET 12 OF 12

60566218/GAZ/112

圖例: LEGEND:	施工區界限
	ルニー・ボードで LIMIT OF WORKS AREA 擬建地面行車道 PROPOSED AT-GRADE CARRIAGEWAY
	擬建高架行車道 PROPOSED ELEVATED CARRIAGEWAY
	擬建隧道 PROPOSED UNDERPASS
	擬建行人路 PROPOSED FOOTPATH
ATTATA	擬建行人隧道 PROPOSED PEDESTRIAN SUBWAY
	擬建單車徑 PROPOSED CYCLE TRACK
	擬建單車徑暨行人隧道 PROPOSED CYCLE TRACK CUM PEDESTRIAN SUBWAY
	擬建單車停放處 PROPOSED CYCLE PARKING PLACE
	擬建車輛進出口通道 PROPOSED RUN-IN/RUN-OUT
	擬建行人過路處 PROPOSED PEDESTRIAN CROSSING
	擬建中央分隔帶/安全島/交通島 PROPOSED CENTRAL RESERVE/REFUGE ISLAND / TRAFFIC ISLAND
	擬建美化市容地帶 PROPOSED AMENITY AREA
	擬建路旁帶 PROPOSED VERGE
000000	現有地面/高架行車道將永久封閉並改建為行人路 EXISTING AT-GRADE/ELEVATED CARRIAGEWAY TO BE PERMANENTLY CLOSED AND CONVERTED INTO FOOTPATH 現有地面(真如名声道解)。力料即坐近時中間車網
0 0 0 0 0 0 0	現有地面/高架行車道將永久封閉並改建為單車徑 EXISTING AT-GRADE/ELEVATED CARRIAGEWAY TO BE PERMANENTLY CLOSED AND CONVERTED INTO CYCLE TRACK 現有地面/高架行車道將永久封閉並改建為單車停放處
0 0 0 0 0 0 0	EXISTING AT-GRADE/ELEVATED CARRIAGEWAY TO BE PERMANENTLY CLOSED AND CONVERTED INTO CYCLE PARKING PLACE 現有地面/高架行車道將永久封閉並改建為中央分隔帶/安全島/交通島 FXISTING AT-GRADE/FVAIFD CARRIAGEWAY TO BE
000000	PERMAMENTLY CLOSED AND CONVERTED INTO CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND 現有地面/高架行車道將永久封閉並改建為美化市容地帶 EXISTING AT-GRADE/ELEVATED CARRIAGEWAY TO BE PERMANENTLY CLOSED AND CONVERTED INTO AMENITY AREA
000000	現有地面/高架行車道將永久封閉並改建為路旁帶 EXISTING AT-GRADE/ELEVATED CARRIAGEWAY TO BE PERMANENTLY CLOSED AND CONVERTED INTO VERGE
+ + +	現有行人路將永久封閉並改建為地面行車道 EXISTING FOOTPATH TO BE PERMANENTLY CLOSED AND CONVERTED INTO AT-GRADE CARRIAGEWAY
+ + +	現有行人路將永久封閉並改建為單車徑 EXISTING FOOTPATH TO BE PERMANENTLY CLOSED AND CONVERTED INTO CYCLE TRACK
+ + +	現有行人路將永久封閉並改建為單車停放處 EXISTING FOOTPATH TO BE PERMANENTLY CLOSED AND CONVERTED INTO CYCLE PARKING PLACE
+ + +	現有行人路將永久封閉並改建為 中央分隔帶/安全島/交通島 EXISTING FOOTPATH TO BE PERMANENTLY CLOSED AND CONVERTED INTO CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND
+ + +	現有行人路將永久封閉並改建為美化市容地帶 EXISTING FOOTPATH TO BE PERMANENTLY CLOSED AND CONVERTED INTO AMENITY AREA
	現有通道將永久封閉並改建為地面行車道 EXISTING ACCESS TO BE PERMAMENTLY CLOSED AND CONVERTED INTO AT-GRADE CARRIAGEWAY
	現有通道將永久封閉並改建為行人路 EXISTING ACCESS TO BE PERMANENTLY CLOSED AND CONVERTED INTO FOOTPATH 現有通道將永久封閉並改建為單車徑 EXISTING ACCESS TO BE PERMANENTLY
	CLOSED AND CONVERTED INTO CYCLE TRACK 現有通道將永久封閉並改建為單車停放應 EXISTING ACCESS TO BE PERMANENTLY
<u> </u>	CLOSED AND CONVERTED INTO CYCLE PARKING PLACE 現有演道將永久封閉並改建為中央
	分隔帶/安全島/交通島 EXISTING ACCESS TO BE PERMANENTLY CLOSED AND CONVERTED INTO CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND
00000000	現有通道將永久封閉並改建為美化市容地帶 EXISTING ACCESS TO BE PERMAMENTLY CLOSED AND CONVERTED INTO AMENITY AREA

0000000 + + + 現有通道將永久封閉並拆卸 EXISTING ACCESS TO BE PERMANENTLY CLOSED AND DEMOLISHED 現有單車徑將永久封閉並拆卸 EXISTING CYCLE TRACK TO BE PERMANENTLY CLOSED AND DEMOLISHED 0 0 0 0 現有中央分隔帶/安全島/交通島將永久封閉並拆卸 EXISTING CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND TO BE PERMANENTLY CLOSED AND DEMOLISHED EXISTING VERGE TO BE PERMANENTLY CLOSED AND DEMOLISHED 現有行人天橋將永久封閉並拆卸 EXISTING FOOTBRIDGE TO BE PERMANENTLY CLOSED AND DEMOLISHED 0000000 現有行人路將暫時封閉並重建 EXISTING FOOTPATH TO BE TEMPORARILY CLOSED AND RECONSTRUCTED 現有單車徑將暫時封閉並重建 EXISTING CYCLE TRACK TO BE TEMPORARILY CLOSED AND RECONSTRUCTED 0000 現有中央分隔帶/安全島/交通島將暫時封閉並重建 EXISTING CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND TO BE TEMPORARILY CLOSED AND RECONSTRUCTED 現有美化市容地帶將暫時封閉並重建 EXISTING AMENITY AREA TO BE TEMPORARILY CLOSED AND RECONSTRUCTED ***** 現有路旁帶將暫時封閉並重建 EXISTING VERGE TO BE TEMPORARILY CLOSED AND RECONSTRUCTED 現有行人天橋將暫時封閉並重建 EXISTING FOOTBRIDGE TO BE TEMPORARILY CLOSED AND RECONSTRUCTED 現有車輛進出口通道將暫時封閉並重建 EXISTING RUN-IN/RUN-OUT TO BE TEMPORARILY CLOSED AND RECONSTRUCTED 擬建擋土牆 PROPOSED RETAINING WALL 現有斜坡將拆卸 EXISTING SLOPE TO BE DEMOLISHED 擬建懸臂式隔音屏障 PROPOSED CANTILEVER NOISE BARRIER 擬建直立式隔音屏障 PROPOSED VERTICAL NOISE BARRIER 擬建半密封式隔音屏障 PROPOSED SEMI-ENCLOSURE NOISE BARRIER 擬建全密封式隔音屏障 PROPOSED FULL-ENCLOSURE NOISE BARRIER 正在興建中的隔音屏障(正由其他工程項目 推造)將予取代 NOISE BARRIER BEING CONSTRUCTED UNDER OTHER PROJECT TO BE REPLACED 由其他工程項目興建中的懸臂式隔音屏障 CANTILEVER NOISE BARRIER UNDER CONSTRUCTION BY OTHER PROJECT 由其他工程項目興建中的直立式隔音屏障 VERTICAL NOISE BARRIER UNDER CONSTRUCTION BY OTHER PROJECT 行車線(每一箭嘴表示一條行車線)

行人路/隧道/地面/高架行車道

(+8.62)

現有單車經將永久封閉並改建為地面行車道 EXISTING CYCLE TRACK TO BE PERMANENTLY CLOSED AND CONVERTED INTO AT-GRADE CARRIAGEWAY

現有單車徑將永久封閉並改建為行人路 EXISTING CYCLE TRACK TO BE PERMANENTLY CLOSED AND CONVERTED INTO FOOTPATH

現有中央分隔帶/安全島/交通島將永久封閉並

現有美化市容地帶將永久封閉並改建為行人路

EXISTING AMENITY AREA TO BE PERMANENTLY CLOSED AND CONVERTED INTO FOOTPATH

現有路旁帶將永久封閉並改建為地面行車道 EXISTING VERGE TO BE PERMANENTLY CLOSED AND CONVERTED INTO AT-GRADE CARRIAGEWAY

現有路旁帶將永久封閉並改建為行人路 EXISTING VERGE TO BE PERMANENTLY CLOSED AND CONVERTED INTO FOOTPATH

現有路旁帶將永久封閉並改建為單車徑 EXISTING VERGE TO BE PERMANENTLY CLOSED AND CONVERTED INTO CYCLE TRACK

中央分隔帶/安全島/交通島 EXISTING VERGE TO BE PERMANENTLY CLOSED AND CONVERTED INTO CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND

現有路旁帶將永久封閉並改建為美化市容地帶 EXISTING VERGE TO BE PERMANENTLY CLOSED AND CONVERTED INTO AMENITY AREA

現有斜坡將拆卸並改建為地面行車道 EXISTING SLOPE TO BE DEMOLISHED AND CONVERTED INTO AT-GRADE CARRIAGEWAY

現有路旁帶將永久封閉並改建為

現有斜坡將拆卸並改建為行人路

現有斜坡將拆卸並改建為單車徑

EXISTING SLOPE TO BE DEMOLISHED AND CONVERTED INTO ENOTPATH

EXISTING SLOPE TO BE DEMOLISHED AND CONVERTED INTO CYCLE TRACK

中央分隔帶/安全島/交通島 EXISTING SLOPE TO BE DEMOLISHED AND CONVERTED INTO CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND

現有斜坡將拆卸並改建為美化市容地帶 EXISTING SLOPE TO BE DEMOLISHED AND CONVERTED INTO AMENITY AREA

現有美化市容地帶將永久封閉並改建為 地面行車道 EXISTING AMENITY AREA TO BE PERMANENTLY CLOSED AND CONVERTED INTO AT-GRADE CARRIAGEWAY

次理為地面行車道 EXISTING CENTRAL RESERVE / REFUGE ISLAND / TRAFFIC ISLAND TO BE PERMANENTLY CLOSED AND CONVERTED INTO AT-GRADE CARRIAGEWAY

, , , , , ,

, , , , , , ,

· · · · · · ·

TRAFFIC LANE (ONE ARROW REPRESENTS ONE LANE)

NOTES:

1. 除在其他方面指定外,所有量度以米為單位。 ALL DIMENSIONS ARE IN METRES UNLESS OTHERNISE SPECIFIED. 2. 所有水平均為約數·以米為單位,並在香港主水平基準

以上。 ALL LEVELS ARE APPROXIMATE VALUES AND IN METRES ABOVE HONG KONG PRINCIPAL DATUM. 3. 如有需要,施工區界限內之部分現有行車道、行人路、 單車徑、美化市容地帶、中央分隔帶。安全島、交通島及路旁

宿町3m分分路2/他間慮以其部分文配會分階段階間時封閉。 SECTIONS OF THE EXISTING CARRIAGEWAYS, FOODTPATHS. CYCLE TRACKS, AMENITY AREAS, CENTRAL RESERVES/REFUGE ISLANDS/TRAFFIC ISLANDS AND VERGES OR PARTS THEREOF WITHIN THE LIMIT OF WORKS AREA MAY BE TEMPORARILY CLOSED IN PHASES AS AND WHEN REQUIRED.

SLOPE STABILIZATION WORKS MAY BE CARRIED OUT WITHIN THE LIMIT OF WORKS AREA AS AND WHEN REQUIRED.

如有需要,斜坡穩固工程或會在施工區界限之內進行。

帶的部分路段/節圍或其部分或會分階段暫時封閉。

工程名稱 PROJECT TITLE 工務計劃項目第 7817CL 號及 第 7827CL 號(部分) 元朗南發展第一階段工程 及第二階段工程第一期的道路工程

PWP ITEM NOS, 7817CL AND 7827CL (PART) ROAD WORKS UNDER YUEN LONG SOUTH DEVELOPMENT STAGE 1 WORKS AND STAGE 2 WORKS, PHASE 1

圆町夕稲 PIAN TITIE

根據<<道路(工程、使用及補償)條例>> (第370章)而在憲報公布之圖則 PLANS FOR GAZETTING UNDER ROADS (WORKS, USE AND COMPENSATION)
ORDINANCE (CHAPTER 370)

比例 SCALE A1 1:1000 圖則編號 PLAN NO. 60566218/GAZ/LEGEND

辦事處 OFFICE 西拓展處

WEST DEVELOPMENT OFFICE

Appendix D

Queue Length Calculation Sheets

Job Title:	CF46/2020 To	04 Housing De	velopment at Sh	an Pat Heung R	Road			Job No.:		5210095	
Junction:			D/TOWN PARK					Ref. No.:		02.0000	
Scheme:	Existing							Design year:		2021	
								Designed by:	PC	Checked by:	TL
Arm A:	Town Park Ro	oad South WB							•		•
Arm B:	Lam Hau Tsu	en Road NB									
Arm C:	Town Park Ro	oad South EB									
	Town Park R Design Flow Delay (s) Ave. Q (m)	1000 South EB 380(474) 40(29) 47(46)		→	_		·		Town Park Ro Design Flow Delay (s) Ave. Q (m)	N 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			Lam Hau Ts Design Flow Delay (s) Ave. Q (m)	uen Road NB 395(136) 38(54) 47(20)					Ave. Q (III)	20(23)	<u></u>
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	١								
				AM					PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Town Park Rd (S) WB	1	17	120	187	1885	1.2	19	120	176	1930	1.2
LamHau Tsuen Rd NB	1	35	120	395	1900	1.2	15	120	136	1890	1.2
Town Park Rd (S) EB	1	32	120	380	2005	1.2	50	120	474	2015	1.2
. ,											
AM PEAK QUEUE	ENGTH CAL	CULATION									
AW PEAR QUEUE	LENGTH CAL	LULATION	1	Average Arrival							
	Effective Red, r (sec)	Effective Green Ratio, L	Degree of Saturation, X	Rate, M (veh/cycle)			Estimated Delay, d(sec)	Average Queue Length, L1 (m)	Average Queue Length, L2 (m)	Average Queue Length, L3 (m)	Average Queu Length (m)
Town Park Rd (S) WB	103	0.14	0.71	5.2			52	<u> </u>	27	28	28
LamHau Tsuen Rd NB	85	0.29	0.71	11.0			38		47	47	47
Town Park Rd (S) EB	88	0.27	0.71	10.6			40		46	47	47
` ,											
PM PEAK QUEUE I	ENGTH CAL	CULATION				L	<u>l</u>	ı	Į.	L.	
· m · L/ ii · QOLOL ·	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)	<u></u>		Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Town Park Rd (S) WB	101	0.16	0.57	4.9			50	25	25	25	25
LamHau Tsuen Rd NB	105	0.13	0.57	3.8			54	20	20	20	20
Town Park Rd (S) EB	70	0.41	0.57	13.2			29	42	46	46	46
											L
RESULT SUMMAR	Υ			1				Т		T =+c :	
	T D : 5	10 11 1/2					ueue Length (m)				ueue Length (m)
Arm A:	Town Park Road						28				25
Arm B: Arm C:	Lam Hau Tsuen Town Park Road						47 47				20 46
ani O.	TOWIT FAIR RUAC	JOUUII ED				<u> </u>	71			<u> </u>	TV
Effective Red, Effective Green Rati Degree of Saturatior Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	n, e, ngth		n Queue/n -LX) + 3600pX²				by Akcelik's time- celik's time-deper	dependent expre		100) adopted.
In accordance with TPE * Note: The probability of	DM - Volume 4.2.5	5.2			· ·	,	·	•	. ,		
. ,						• •		, 	Date:	31/0	5/2022
									= =:(0)	2 :70	

Job Title:			velopment at Sh					Job No.:		5210095	
Junction:		J TSUEN ROAL	D/TOWN PARK	ROAD SOUTH	(YL112)			Ref. No.:			
Scheme:	Reference							Design year:	DC.	2032	TI
Arm A.	Town Dark Do	ad South WB						Designed by:	PC	Checked by:	TL
Arm A: Arm B:	Lam Hau Tsu										
Arm C:	Town Park Ro										
uni o.	TOWITT GIRTRE	da Coatii Eb									
	Town Park R Design Flow Delay (s) Ave. Q (m)	oad South EB 472(434) 38(32) 52(45)	Lam Hau Ts Design Flow	uen Road NB 275(183)					Town Park Ro Design Flow Delay (s) Ave. Q (m)	N 208(181) 49(50) 30(25)	
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	Delay (s) Ave. Q (m)	45(50) 37(25)					PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor
				-				-	-	'	
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Town Park Rd (S) WB	1	19	120	208	1900	1.2	19	120	181	1930	1.2
_amHau Tsuen Rd NB	1	25	120	275	1895	1.2	20	120	183	1905	1.2
Town Park Rd (S) EB	1	40	120	472	2000	1.2	45	120	434	2010	1.2
AM PEAK QUEUE I	FNGTH CAL	CULATION	•	•			•	•			•
AMIT LAN QUEUE	I	I	l	Average Arrival				l	l		
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Town Park Rd (S) WB	101	0.16	0.70	5.8			49		29	30	30
LamHau Tsuen Rd NB											
	95	0.21	0.70	7.6			45	_,	36	37	37
Town Park Rd (S) EB	80	0.34	0.70	13.1			38	51	52	52	52
PM PEAK QUEUE I	LENGTH CAL	CULATION	<u></u>		<u></u>			<u></u>	<u></u>		
		T		Average Arrival							
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
own Park Rd (S) WB	101	0.16	0.58	5.0			50	25	25	25	25
amHau Tsuen Rd NB	100	0.17	0.58	5.1			50	25	25	25	25
Town Park Rd (S) EB	75	0.37	0.58	12.1			32	42	45	45	45
		1					1			1	1
	<u> </u>	1	l .	I .			1	l .	1	1	l
RESULT SUMMAR	Ť			1				1			
							Queue Length (m)				ueue Length (m
Arm A:	Town Park Road						30				25
Arm B:	Lam Hau Tsuen	Road NB					37				25
Arm C:	Town Park Road	South EB					52				45
Effective Red, Effective Green Rati Degree of Saturatior Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	n, e, ngth		n Queue/n -LX) + 3600pX²,				by Akcelik's time- ccelik's time-deper	dependent expre		100) adopted.
n accordance with TPD Note: The probability o)M - Volume 4.2.5	i.2			· ·	,	·	•	, AJ		
									Date:	31/0	5/2022
								1	2410.	0 170	

Job Title: Junction: Scheme: Arm A: Arm B: Arm C:	J3 - LAM HAU Design Town Park Ro Lam Hau Tsue Town Park Ro	ad South WB an Road NB ad South EB		ap Pat Heung R ROAD SOUTH				Job No.: Ref. No.: Design year: Designed by:	PC	5210095 2032 Checked by:	TL_
Scheme: Arm A: Arm B:	Town Park Ro Lam Hau Tsue Town Park Ro Town Park Ro Town Park Ro Design Flow Delay (s)	ad South WB en Road NB ad South EB			(12.12)			Design year:	PC		TL
Arm A: Arm B:	Town Park Ro Lam Hau Tsue Town Park Ro Town Park Ro Design Flow Delay (s)	en Road NB ad South EB							PC		TL
Arm B:	Town Park Ro Town Park Ro Town Park Ro Design Flow Delay (s)	en Road NB ad South EB	1					Booignod by:		enconed by:	, ,,
Arm B:	Town Park Ro Town Park Ro Town Park Ro Design Flow Delay (s)	en Road NB ad South EB	1								
Arm C:	Town Park Ro Town Park Ro Design Flow Delay (s)	oad South EB oad South EB 488(449)	1								
	Town Park R Design Flow Delay (s)	oad South EB 488(449)	1								
	Design Flow Delay (s)	488(449)	1								
	Design Flow Delay (s)	488(449)	1								
	71101 (2 (111)	36(33) 55(47)		→	_	_			Town Park Ro	N , and South WB	1
							,		Design Flow	208(181)	1
									Delay (s)	52(51)	
					_	_			Ave. Q (m)	31(26)	
					I	<u>l</u>			•		
			Lam Hau Ts	uen Road NB				•			_
			Design Flow	297(195)	II ↑						
			Delay (s)	46(50)							
			Ave. Q (m)	40(27)]]	I					
			ì, '	` ′]						
GREEN TIME, CYC	CLE TIME AND	EL OWE DATA									
JREEN HIME, CTC	JE IIWE AND	FLOWS DATA	1	AM					PM		
		F" O	0 1 7		0 ' " 5	DOLLE 1	F" " 0	0 1 7		0 1 " 51	DOLLE 1
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Facto
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Town Park Rd (S) WB	1	18	120	208	1900	1.2	19	120	181	1930	1.2
LamHau Tsuen Rd NB	1	26	120	297	1895	1.2	20	120	195	1905	1.2
Town Park Rd (S) EB	1	40	120	488	2000	1.2	45	120	449	2005	1.2
AM PEAK QUEUE	LENGTH CAL	CIII ATION	ı							ı	
AMIT LAN QUEUE	LENGTHOAL	DOLATION		Average Arrival							
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Town Park Rd (S) WB	102	0.15	0.73	5.8			52		29	31	31
LamHau Tsuen Rd NB	94	0.22	0.73	8.3			46		39	40	40
Town Park Rd (S) EB	80	0.33	0.73	13.6			36		54	55	55
DM DEAK OUTUE	I ENCTU CAL	THE ATION	I	l .	1		1			I	l
PM PEAK QUEUE	LENGIH CAL	JULATION		Average Arrival	 		1				1
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Town Park Rd (S) WB	101	0.16	0.60	5.0			51	26	25	25	26
amHau Tsuen Rd NB		0.17	0.60	5.4			50	27	27	27	27
Town Park Rd (S) EB	75	0.37	0.60	12.5			33	44	47	47	47
OWILEALK KU (S) FK			2.00								
OWII FAIK RU (5) EB		i	İ	<u>I</u>	I .		I			İ	<u> </u>
()					П	AM A	uouo l cnath /\			DM Avecs A	uouo l ancile /
()	RY						ueue Length (m)			PM Average Q	
RESULT SUMMAR		Courth WD					74			. 2	26
RESULT SUMMAR	Town Park Road						31				
RESULT SUMMAR Arm A: Arm B:	Town Park Road	Road NB					40			2	27
RESULT SUMMAR Arm A: Arm B:	Town Park Road	Road NB					40			2	27
RESULT SUMMAR Arm A: Arm B:	Town Park Road	Road NB								2	
RESULT SUMMAR Arm A: Arm B: Arm C:	Town Park Road	Road NB					40			2	27
RESULT SUMMAR	Town Park Road Lam Hau Tsuen Town Park Road	Road NB South EB					40			2	27
RESULT SUMMAR Arm A: Arm B: Arm C: Effective Red, Effective Green Rat Degree of Saturatio	Town Park Road Lam Hau Tsuen Town Park Road tio,	Road NB South EB r = c-g					40		Max. Queue (1 in	2	27
Arm A: Arm B: Arm C: Effective Red, Effective Green Rat Degree of Saturatio	Town Park Road Lam Hau Tsuen Town Park Road tio,	Road NB South EB r = c-g L = g/c					40	ı	Max. Queue (1 in	4	27 47
RESULT SUMMAR Arm A: Arm B: Arm C: Effective Red, Effective Green Rat	Town Park Road Lam Hau Tsuen Town Park Road tio, on, te,	Road NB South EB r = c-g L = g/c X = q/(SL)					40		Max. Queue (1 in	4	27 47
RESULT SUMMAR Arm A: Arm B: Arm C: Effective Red, Effective Green Rat Degree of Saturatio Average Arrival Rat Maximum Queue Lo	Town Park Road Lam Hau Tsuen Town Park Road tio, on, te,	Road NB South EB r = c-g L = g/c X = q/(SL) M = qc/3600p = 6 * Maximun	n Queue/n	/2g(1-X) - 0.65(c	/(q/3600p)²\^(1/3		40 55		,	4	27 47
RESULT SUMMAR Arm A: Arm B: Arm C: Effective Red, Effective Green Rat Degree of Saturatio Average Arrival Rat Maximum Queue Le Estimated Delay,	Town Park Road Lam Hau Tsuen Town Park Road tio, on, te, ength	Road NB South EB r = c-g L = g/c X = q/(SL) M = qc/3600p = 6 * Maximun d = c(1-L) ² /2(1	n Queue/n -LX) + 3600pX²,			*)*X^(2+5L) OR	40 55 by Akcelik's time-c	dependent expre	ession if X>X'	4	27 47
RESULT SUMMAR Im A: Im B: Im C: Iffective Red, Iffective Green Rat legree of Saturatio average Arrival Rat Maximum Queue Le Istimated Delay, average Queue Ler	Town Park Road Lam Hau Tsuen Town Park Road tio, nn, te, ength	Road NB South EB r = c-g L = g/c X = q/(SL) M = qc/3600p = 6 * Maximun d = c(1-L)²/2(1 L1 = 6q(r/2+d)	n Queue/n -LX) + 3600pX²,			*)*X^(2+5L) OR	40 55	dependent expre	ession if X>X'	4	27 47
rm A: rm B: rm C: ffective Red, fffective Green Rat legree of Saturatio verage Arrival Rat laximum Queue Le stimated Delay, verage Queue Ler accordance with TPR	Town Park Road Lam Hau Tsuen Town Park Road tio, nn, te, ength DM - Volume 4.2.5	Road NB South EB r = c-g L = g/c X = q/(SL) M = qc/3600p 6 * Maximun d = c(1-L)²/2(1 L1 = 6q(r/2+d) .2	n Queue/n -LX) + 3600pX², /3600pn OR L2	= 6qr/3600pn w	hichever the gre	8)*X^(2+5L) OR ater, OR L3 (Akı	by Akcelik's time-celik's time-depen	dependent expre dent expression	ession if X>X'	4	27 47
rm A: rm B: rm C: ffective Red, ffective Green Rat legree of Saturatio verage Arrival Rat laximum Queue Le stimated Delay, verage Queue Ler	Town Park Road Lam Hau Tsuen Town Park Road tio, nn, te, ength DM - Volume 4.2.5	Road NB South EB r = c-g L = g/c X = q/(SL) M = qc/3600p 6 * Maximun d = c(1-L)²/2(1 L1 = 6q(r/2+d) .2	n Queue/n -LX) + 3600pX², /3600pn OR L2	= 6qr/3600pn w	hichever the gre	8)*X^(2+5L) OR ater, OR L3 (Akı	by Akcelik's time-celik's time-depen	dependent expre dent expression	ession if X>X'	100	27 47

Job Title:				ap Pat Heung R				Job No.:		5210095	
Junction:	J5 - SHAP PA	T HEUNG ROA	AD/KUNG UM R	OAD/KIU HING	ROAD (YL109)			Ref. No.:			
Scheme:	Existing							Design year:		2021	
								Designed by:	PC	Checked by:	TL
Arm A:	Shap Pat Heu										
Arm B:	Kung Um Roa										
Arm C:	Shap Pat Heu										
Arm D:	Kiu Hing Road	SB									
		ung Road EB					Kiu Hing Design Flow Delay (s) Ave. Q (m)	Road SB 144(142) 190(157) 56(49)		N×	
	Design Flow Delay (s) Ave. Q (m)	276(218) 144(134) 87(66)					,		Shap Pat Heu Design Flow	Ing Road WB 420(434)]
			V.va. I lan	Dood ND]				Delay (s) Ave. Q (m)	118(100) 112(104)	
			Design Flow Delay (s) Ave. Q (m)	Road NB 538(551) 102(87) 126(117)							
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	l								
				AM					PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	1	41	182	420	1960	1.2	44	182	434	1935	1.2
Kung Um Road NB	1	55	182	538	1885	1.2	57	182	551	1890	1.2
SPH Road EB	1	27	182	276	1965	1.2	22	182	218	1920	1.2
Kiu Hing Road SB	1	15	182	144	1900	1.2	14	182	142	1915	1.2
AM PEAK QUEUE	ENGTH CAL	CIII ATION		•			•	•	•		•
AMIT LAN QUEUE	I	DOLATION		Average Arrival			1				
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	141	0.23	0.95	17.7			118		82	112	112
Kung Um Road NB	127	0.30	0.95	22.7			102		95	126	126
SPH Road EB	155	0.15	0.95	11.6			144		59	87	87
Kiu Hing Road SB	167	0.08	0.95	6.1			190		33	56	56
PM PEAK QUEUE	ENGTH CALC	NIII ATION		ı	1		1	ı	I .	I.	I
PINI PEAK QUEUE	LENGTH CALC	ULATION		Average Arrival	1		1	ı	ı		1
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
CDH De-4 MD	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	138	0.24	0.93	18.3			100		83	104	104
Kung Um Road NB	125	0.31	0.93	23.2			87		96	117	117
SPH Road EB Kiu Hing Road SB	160 168	0.12 0.08	0.93 0.93	9.2 6.0			134 157		48 33	66 49	66 49
Niu i iiiiy Nuau SD	100	0.00	0.53	0.0			107		JJ	43	43
RESULT SUMMAR	Y			ı				ı			
<u> </u>	loi p	D 114/2				AM Average Qu					ueue Length (m)
Arm A:	Shap Pat Heung						12				04
Arm B:	Kung Um Road I						26				17
Arm C:	Shap Pat Heung						7				66
Arm D:	Kiu Hing Road S	В				5	6			<u> </u>	49
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPE	o, n, e, ngth gth,	L1 = 6q(r/2+d)	-LX) + 3600pX ² /			3)*X^(2+5L) OR t ater, OR L3 (Akc		dependent expre		100) adopted.
* Note: The probability			ritical value are 5%	6 & 1% for 1 in 20	& 1 in 100 cases res	spectively (TPDM V	.4.2. Table 2.5.2.4 8	§ 2.5.2.5)			
									Date:	31/0	5/2022
* Remarks											

Job Title:				ap Pat Heung R				Job No.:		5210095	
Junction:	J5 - SHAP PA	T HEUNG ROA	AD/KUNG UM R	Road/Kiu Hing	ROAD (YL109)			Ref. No.:			
Scheme:	Design							Design year:		2032	
								Designed by:	PC	Checked by:	TL
Arm A:	Shap Pat Heu										
Arm B:	Kung Um Roa										
Arm C:	Shap Pat Heu										
Arm D:	Kiu Hing Road	l SB									
	Shap Pat He Design Flow	ung Road EB 420(258)				\downarrow	Kiu Hing Design Flow Delay (s) Ave. Q (m)	Road SB 148(189) 102(93) 39(47)		N ×	
	Delay (s) Ave. Q (m)	69(84) 83(59)		\longrightarrow					Shap Pat Heu Design Flow Delay (s)	492(540) 68(62)	
			Kung Um Design Flow Delay (s) Ave. Q (m)	Foad NB 508(638) 69(66) 52(62)	1				Ave. Q (m)	50(52)]
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	ı				1				
				AM	, ,			1	PM		1
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	2	37	182	492	3710	1.2	44	182	540	3715	1.2
Kung Um Road NB	2	36	182	508	3760	1.2	42	182	638	3760	1.2
SPH Road EB	1	48	182	420	1965	1.2	30	182	258	1925	1.2
Kiu Hing Road SB	1	17	182	148	1930	1.2	22	182	189	1930	1.2
AM PEAK QUEUE	LENGTH CAL	CIII ATION			l l			1	I.		
AWI FEAR QUEUE	LENGTH CAL	I		Average Arrival	1			I	I		1
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	145	0.20	0.66	20.7			68	48	50	50	50
Kung Um Road NB	146	0.20	0.69	21.4			69	50	52	52	52
SPH Road EB	134	0.26	0.81	17.7			69	- 00	78	83	83
Kiu Hing Road SB	165	0.10	0.81	6.2			102		34	39	39
			0.01	V.L			102	I .	Ų,		
PM PEAK QUEUE	LENGTH CALC	CULATION		I Averege Arrivel	, ,			1	1		1
	Effective Red,		Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
CDIT D 414/D	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	138	0.24	0.60	22.8			62	49	52	52	52
Kung Um Road NB	140	0.23	0.74	26.9			66		62	62	62
SPH Road EB Kiu Hing Road SB	152 160	0.17 0.12	0.81 0.81	10.9 8.0			84 93		54 42	59 47	59 47
NIU FIIIIY ROAD SB	UOU	U.1Z	U.O I	0.0			90		42	4/	41
RESULT SUMMAR	Υ										
						AM Average Q	ueue Length (m)			PM Average Q	ueue Length (m)
Arm A:	Shap Pat Heung						50				52
Arm B:	Kung Um Road N						52			'	62
Arm C:	Shap Pat Heung		_				33				59
Arm D:	Kiu Hing Road S	В				3	39			1	47
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPE	o, n, e, ength gth, o <i>M - Volume 4.2.</i> 5	L1 = 6q(r/2+d)	-LX) + 3600pX²/ /3600pn OR L2	= 6qr/3600pn v	hichever the gre	ater, OR L3 (Ako	oy Akcelik's time- celik's time-deper	dependent expre dent expression		100) adopted.
* Note: The probability of	of maximum queu	e exceeding the c	ritical value are 5%	6 & 1% for 1 in 20	& 1 in 100 cases re:	spectively (TPDM V	4.4.2. Table 2.5.2.4	§ 2.5.2.5)			
				· · · · · · · · · · · · · · · · · · ·				, , , , , , , , , , , , , , , , , , ,	Date:	31/0	5/2022
* Remarks											

Job Title:				ap Pat Heung R	oad			Job No.:		5210095	
Junction:	J7 - SHAP PA	T HEUNG ROA	ad/tai tong r	OAD (YL100)				Ref. No.:			
Scheme:	Existing							Design year:		2021	
								Designed by:	PC	Checked by:	TL
Arm A:	Shap Pat Heu										
Arm B:	Tai Tong Road	NB									
Arm C:	Shap Pat Heu										
Arm D:	Tai Tong Road	I SB									
		ung Road EB					Tai Tong Design Flow Delay (s) Ave. Q (m)	Road SB 487(542) 51(50) 72(77)		N,	
	Design Flow Delay (s) Ave. Q (m)	579(524) 50(53) 43(40)							Shap Pat Heu Design Flow	ing Road WB 480(558)]
					7				Delay (s) Ave. Q (m)	56(54) 76(86)	
			Tai Tong Design Flow Delay (s) Ave. Q (m)	Road NB 578(525) 41(45) 74(68)						1	1
GREEN TIME, CYC	LE TIME AND	FLOWS DATA									
				AM	, ,			1	PM	1	1
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	1	15	128	480	6045	1.2	17	128	558	6055	1.2
Tai Tong Road NB	1	37	128	578	2790	1.2	34	128	525	2805	1.2
SPH Road EB	2	21	128	579	5915	1.2	17	128	524	5915	1.2
Tai Tong Road SB	1	22	128	487	3955	1.2	25	128	542	3935	1.2
AM PEAK QUEUE	ENGTH CAL	LII ATION		•			•	•	•	•	•
AMIT LAN QUEUE	I	JOLATION		Average Arrival	l l						
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	113	0.11	0.70	14.2			56	75	76	76	76
Tai Tong Road NB	91	0.29	0.72	17.1			41		73	74	74
SPH Road EB	107	0.16	0.60	17.2			50	42	43	43	43
Tai Tong Road SB	106	0.17	0.72	14.4			51		72	72	72
	ENCTUCAL	HILATION		<u>I</u>	ı l		1	<u>I</u>	<u> </u>	<u> </u>	<u> </u>
PM PEAK QUEUE	LENGIH CALC	JULATIUN		Average Arrival	 		1	ı	I	1	1
	Effective Red, r (sec)	Effective Green Ratio, L	Degree of Saturation, X	Rate, M (veh/cycle)			Estimated Delay, d(sec)	Average Queue Length, L1 (m)	Average Queue Length, L2 (m)	Average Queue Length, L3 (m)	Average Queue Length (m)
SPH Road WB	111	0.13	0.69	16.5			54	85	86	86	86
Tai Tong Road NB	94	0.13	0.69	15.6			45	67	68	68	68
SPH Road EB	111	0.27	0.70	15.5			53	40	40	40	40
Tai Tong Road SB	103	0.13	0.00	16.1			50	76	77	77	77
		0.20	0.70	10.1			50	.0	- 11	I ''	
RESULT SUMMAR	Υ			ı				ı		T	
	I						ueue Length (m)				ueue Length (m)
Arm A:	Shap Pat Heung						'6			<u> </u>	36
Arm B:	Tai Tong Road N						4				68
Arm C:	Shap Pat Heung						13				40
Arm D:	Tai Tong Road S	В				7	2			<u> </u>	77
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPE	o, n, e, ngth gth,	L1 = 6q(r/2+d)	-LX) + 3600pX ² /				oy Akcelik's time- selik's time-deper	dependent expre		100) adopted.
* Note: The probability			ritical value are 5%	6 & 1% for 1 in 20 a	& 1 in 100 cases res	spectively (TPDM V	.4.2. Table 2.5.2.4 8	& 2.5.2.5)			
* Remarks									Date:	15/07	7/2022
REMARKS											

Job Title:				ap Pat Heung R	oad			Job No.:		5210095	
Junction:		T HEUNG ROA	ad/tai tong r	OAD (YL100)				Ref. No.:			
Scheme:	Reference							Design year:		2032	
								Designed by:	PC	Checked by:	TL
Arm A:	Shap Pat Heu										
Arm B:	Tai Tong Road	I NB									
Arm C:	Shap Pat Heu										
Arm D:	Tai Tong Road	I SB									
		ung Road EB				\downarrow	Tai Tong Design Flow Delay (s) Ave. Q (m)	Road SB 537(537) 50(50) 78(79)		N	
	Design Flow Delay (s) Ave. Q (m)	595(543) 51(54) 44(42)		→			←		Shap Pat Heu Design Flow	445(548)	
			Tai Tong Design Flow	Road NB 539(533)		Γ			Delay (s) Ave. Q (m)	57(54) 72(84)	
			Delay (s) Ave. Q (m)	42(42) 69(69)							
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	ı				,				
				AM				ı	PM	1	1
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	1	13	128	445	6030	1.2	17	128	548	6035	1.2
Tai Tong Road NB	1	37	128	539	2595	1.2	36	128	533	2600	1.2
SPH Road EB	2	21	128	595	5915	1.2	17	128	543	5915	1.2
Tai Tong Road SB	1	24	128	537	3975	1.2	24	128	537	3960	1.2
AM DEAK OUTUE	ENOTH OAL	NIII ATION									
AM PEAK QUEUE	LENGTH CALC	ULATION		Average Arrival	1		1	1		1	1
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	115	0.10	0.72	13.2			57	0, (,	71	72	72
Tai Tong Road NB	91	0.29	0.73	16.0			42		68	69	69
SPH Road EB	107	0.16	0.62	17.6			51	43	44	44	44
Tai Tong Road SB	104	0.19	0.73	15.9			50		78	78	78
			00	10.0							
PM PEAK QUEUE	LENGIH CALO	ULATION		Average Arrival	, , , , , , , , , , , , , , , , , , , 		1	T		T	1
	Effective Red, r (sec)	Effective Green Ratio, L	Degree of Saturation, X	Rate, M (veh/cycle)			Estimated Delay, d(sec)	Average Queue Length, L1 (m)	Average Queue Length, L2 (m)	Average Queue Length, L3 (m)	Average Queue Length (m)
SPH Road WB	111	0.13	0.68	16.2			54	83	84	84	84
Tai Tong Road NB	92	0.18	0.73	15.8			42	30	68	69	69
SPH Road EB	111	0.13	0.69	16.1			54	41	42	42	42
Tai Tong Road SB	104	0.19	0.73	15.9			50		78	79	79
		•	-	l	<u> </u>		1	l .	-	1	<u> </u>
RESULT SUMMAR	Ţ				1	AM Averege O	iqua Lanath (m)	1		DM Avorage O	uouo Lonath (m)
Arm A:	Shap Pat Heung	Road WR				AM Average Qu	2				ueue Length (m)
Arm B:	Tai Tong Road N						9			<u> </u>	69
Arm C:	Shap Pat Heung						4				42
Arm D:	Tai Tong Road S						8				12 79
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPL	o, n, e, ngth gth, o <i>M - Volume 4.2.</i> 5	L1 = 6q(r/2+d)	-LX) + 3600pX²/ /3600pn OR L2	= 6qr/3600pn w	hichever the gre	t)*X^(2+5L) OR t	elik's time-deper	dependent exprendent expression		100) adopted.
* Note: The probability	of maximum queu	e exceeding the c	ritical value are 5%	6 & 1% for 1 in 20 a	& 1 in 100 cases res	spectively (TPDM V	.4.2. Table 2.5.2.4	§ 2.5.2.5)			
* Remarks									Date:	15/07	7/2022
CHIDAIKS											

Job Title:	CE46/2020 TO	04 Housing Dev	velopment at Sh	ap Pat Heung R	Road			Job No.:		5210095	
Junction:	J7 - SHAP PA	T HEUNG ROA	ad/tai tong f	ROAD (YL100)				Ref. No.:			
Scheme:	Design							Design year:		2032	
								Designed by:	PC	Checked by:	TL
Arm A:	Shap Pat Heu										
Arm B:	Tai Tong Road										
Arm C: Arm D:	Shap Pat Heu Tai Tong Road	ng Road EB									
AIIII D.	Tal Tong Road	J 3D			•						
	Shap Pat He Design Flow	ung Road EB 646(571)				\downarrow	Tai Tong Design Flow Delay (s) Ave. Q (m)	Road SB 537(537) 52(51) 80(80)		N	
	Design Flow Delay (s)	50(54)									
	Ave. Q (m)	48(44)		\longrightarrow							
	Ave. Q (III)	40(44)									
			Tai Tong	Road NB 539(533)	1	Γ	—		Shap Pat Heu Design Flow Delay (s) Ave. Q (m)	ng Road WB 482(584) 56(53) 77(89)	
			Delay (s) Ave. Q (m)	44(44) 71(71)							
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	1	A 1 4			1		DM		
			ı	AM					PM	I	1
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	1	14	128	482	6035	1.2	18	128	584	6040	1.2
Tai Tong Road NB	1	35	128	539	2595	1.2	35	128	533	2600	1.2
SPH Road EB	2	22	128 128	646 537	5915 3975	1.2	18 23	128 128	571 537	5915 3960	1.2 1.2
Tai Tong Road SB	•		120	557	3975	1.2	23	120	557	3900	1.2
AM PEAK QUEUE I	LENGTH CAL	CULATION									
	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	114	0.11	0.73	14.3			56	Longar, ET (III)	76	77	77
Tai Tong Road NB	93	0.27	0.76	16.0			44		69	71	71
SPH Road EB	106	0.17	0.64	19.1			50	46	48	48	48
Tai Tong Road SB	105	0.18	0.76	15.9			52		78	80	80
PM PEAK QUEUE I	I ENGTH CAL	CIII ATION	l	ı			1			ı	
I WIFLAN QUEUE I	LLING I II CALL	JOLATION		Average Arrival							
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	110	0.14	0.68	17.3			53	88	89	89	89
Tai Tong Road NB	93	0.27	0.75	15.8	-		44	40	69	71	71
SPH Road EB	110	0.14	0.69	16.9			54	43	44	44	44
Tai Tong Road SB	105	0.18	0.75	15.9			51		78	80	80
RESULT SUMMAR	Y										
							tueue Length (m)				ueue Length (m)
Arm A:	Shap Pat Heung						77				39
Arm B:	Tai Tong Road N						71				71
Arm C:	Shap Pat Heung						48				14
Arm D:	Tai Tong Road S	SB					80				30
Effective Red, Effective Green Ration	,	r = c-g L = g/c X = q/(SL)						ļ	Max. Queue (1 in	100) adopted.
Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPD	e, ength ngth,	L1 = 6q(r/2+d)	-LX) + 3600pX ²				by Akcelik's time- celik's time-depen				
Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPD	e, ength ngth, DM - Volume 4.2.5	= 6 * Maximun d = $c(1-L)^2/2(1$ L1 = 6q($r/2+d$)	-LX) + 3600pX²,/3600pn OR L2	= 6qr/3600pn v	vhichever the gre	ater, OR L3 (Ak	celik's time-depen	ident expression			
Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	e, ength ngth, DM - Volume 4.2.5	= 6 * Maximun d = $c(1-L)^2/2(1$ L1 = 6q($r/2+d$)	-LX) + 3600pX²,/3600pn OR L2	= 6qr/3600pn v	vhichever the gre	ater, OR L3 (Ak	celik's time-depen	ident expression		15/07	7/2022

Remarks A Queue length for left turn movement is more significant. Queue length for the left turn movement is shown.

J8_QL_signal.xlsm 2021_OBS

Job Title:	CF46/2020 To	04 Housing De	velopment at Sh	an Pat Heung R	nad			Job No.:		5210095	
Junction:			PAT HEUNG RO					Ref. No.:		0210000	
Scheme:	Reference				(*==*/			Design year:		2032	
								Designed by:	PC	Checked by:	TL
Arm A:	Shap Pat Heu	ing Road WB									•
Arm B:	Access Road										
Arm C:	Shap Pat Heu	ing Road EB									
Arm D:	Fung Ki Road	SB ^									
							Design Flow Delay (s)	Road SB ^ 567(840) 20(12)		N	
	· · ·		1			*	Ave. Q (m)	54(60)			
	Shap Pat He Design Flow	eung Road EB 799(704)			J						
	Delay (s)	44(50)									
	Ave. Q (m)	54(51)									
	` ′	` ′									
			•						Shap Pat Heu Design Flow Delay (s)	760(1023) 31(22)	
					7				Ave. Q (m)	44(48)	
			Access	Road NB	ı I					I	J
			Design Flow Delay (s) Ave. Q (m)	155(110) 51(62) 8(6)							
					<u>'</u> ∥ '						
GREEN TIME, CYC	CLE TIME AND	FLOWS DATA	١								
			I	AM	I	I		I	PM	ı	I
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	2	45	128	760	5850	1.2	61	128	1023	5845	1.2
Access Road NB	3	18	128	155	2900	1.2	9	128	110	2850	1.2
SPH Road EB	2	30	128	799	5900	1.2	23	128	704	5900	1.2
Fung Ki Road SB ^	1	60	128	567	5790	1.2	76	128	840	5755	1.2
AM PEAK QUEUE	LENGTH CAL	CULATION					•				
	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queu
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	83	0.35	0.37	22.5			31	38	44	44	44
Access Road NB	110	0.14	0.38	4.6			51	8	8	8	8
SPH Road EB	98	0.24	0.57	23.7			44	51	54	54	54
Fung Ki Road SB ^	68	0.47	0.21	16.8			20	43	54	54	54
PM PEAK QUEUE	LENGTH CAL	CULATION									
	Effective Red, r (sec)	Effective Green Ratio, L	Degree of Saturation, X	Average Arrival Rate, M (veh/cycle)			Estimated Delay, d(sec)	Average Queue Length, L1 (m)	Average Queue Length, L2 (m)	Average Queue Length, L3 (m)	Average Queu Length (m)
SPH Road WB	67	0.48	0.37	30.3			22	39	48	48	48
Access Road NB	119	0.07	0.56	3.3			62	6	6	6	6
SPH Road EB	105	0.18	0.67	20.9			50	50	51	51	51
Fung Ki Road SB ^	52	0.60	0.24	24.9			12	45	60	60	60
RESULT SUMMAR	RY										
	•	5					ueue Length (m)				ueue Length (m)
Arm A:	Shap Pat Heung Access Road No						44				18
Arm B: Arm C:	Shap Pat Heung						8 54				6 51
Arm D:	Fung Ki Road S						54 54				60
Effective Red,	<u> </u>	r = c-g		<u> </u>		<u> </u>		<u> </u>		1	
Effective Green Ra Degree of Saturatio Average Arrival Rat Maximum Queue Lo Estimated Delay,	n, le, ength		n Queue/n -LX) + 3600pX²,				by Akcelik's time-	dependent expre		100) adopted.
Average Queue Let In accordance with TP. * Note: The probability	DM - Volume 4.2.5	5.2			· ·	,	celik's time-deper	•	, if X>X')		
посе. тпе рговавшту	от тахітит үйей	ie exceeding tile (anucai vaiue are 3%	o ox 170 IUI I III ZU (x i III 100 Cases re	opectively (TPDM	v.+.2. rable 2.0.2.4 (x 2.U.Z.U)	Date:	15/07	7/2022
* Remarks		for left turn moven							Dale.	15/0/	,

^{*} Remarks ^ Queue length for left turn movement is more significant. Queue length for the left turn movement is shown.

J8_QL_signal.xlsm 2032_REF

Access Road No. Design page: 2032 The control of the contr	Job Title:	CE46/2020 TO	04 Housing Dev	velopment at Sh	ap Pat Heung R	oad			Job No.:	l	5210095	
Stage Pell Noting Road VIVE	Junction:										02.0000	
March Marc	Scheme:										2032	
## B. Access Road NB ## C. Shap Part Haung Road EB ## C. Shap Par		- · · J								PC		TL
ME S. Access Float NS March Arm A:	Shap Pat Heu	ng Road WB								<u> </u>		
Fung Ni Road Sig	Arm B:	Access Road	NB									
Fung Ki Road SS A	Arm C:	Shap Pat Heu	ng Road EB									
Stap Pal Heuray Road E8 Design Flaw 650/730 De	Arm D:	Fung Ki Road	SB ^									
Design Flow 155(110) Design Flow 155(1		Design Flow Delay (s)	850(732) 42(49)		→			Design Flow Delay (s)	567(840) 21(13)	Design Flow Delay (s)	ung Road WB 797(1059) 31(22)	
Number of Lanes, in Gester Green, Cycle Time, Design Flow, Saturation Flow, PCU Factor, Effective Green, Cycle Time, g (sec) c (sec) q (pouthr) S (pouthr) p (sec) c (sec) q (pouthr) S (pouthr) p (sec) c (sec) q (pouthr) S (pouthr) p (sec) c (sec) q (pouthr) S (pouthr) p (sec) c (sec) q (pouthr) S (pouthr) p (sec) c (sec) q (pouthr) S (pouthr) p (sec) c (sec) q (sec) c (sec) q (pouthr) p (sec) c (sec) q	ODEEN TIME OVER	LE TIME AND	EL ONIO DAT	Design Flow Delay (s) Ave. Q (m)	155(110) 51(62)	1				Ave. Q (m)	46(49)]
Number of Lanse, n g(sec) c(sec)	GREEN TIME, CYC	LE TIME AND	FLOWS DATA	1	Λ.Μ.			1		DM		
PH Road WB		Number of	Effective Green,	Cycle Time,		Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,		Saturation Flow,	PCU Factor,
PH Road WB		Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
PHR Road EB	SPH Road WB	2										1.2
MPEAK QUEUE LENGTH CALCULATION Effective Green Rate, Degree of Flood SB ^ 128 567 5790 1.2 76 128 840 5755 1.2	Access Road NB	3		128	155	2900	1.2	9	128	110	2850	1.2
MPEAK QUEUE LENGTH CALCULATION Effective Red Effective Green Degree of r(sec) Ratio, L. Saturation, X. M (verloycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L3 (m) Langth L3 (m) L3 (SPH Road EB	2	32	128	850	5900	1.2	24	128	732	5900	1.2
Effective Red	Fung Ki Road SB ^	1	58	128	567	5790	1.2	76	128	840	5755	1.2
Effective Red	VM DEVK UTIETIE I	ENGTH CAL	CIII ATION								1	1
Effective Red, Effective Green Degree of Ratie, Called Ratio, Called R	AM PEAK QUEUE	ENGTH CAL	JULATION		Average Arrival			1		I	1	T
PHR Road WB					Rate,					-	-	Average Queue Length (m)
PH Road EB 96	SPH Road WB		0.35	0.39	23.6					46		46
March Case	Access Road NB	110	0.14	0.39	4.6			51	8	8	8	8
MPEAK QUEUE LENGTH CALCULATION	SPH Road EB	96	0.25	0.57	25.2			42	53	57	57	57
Effective Red, Effective Green Degree of Ratio, L Saturation, X M (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Le	Fung Ki Road SB ^	70	0.45	0.22	16.8			21	44	55	55	55
Effective Red, Effective Green Degree of Ratio, L Saturation, X M (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Le	PM PEAK QUEUE I	FNGTH CALC	CUI ATION		I.	ll				l.	1	
Effective Red, Effective Green Degree of Rate, Saturation, X M (verloycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L2 (m) Length, L3 (m) Length L3 (m) Length L3 (m) Length L3 (m) Length L3 (m) Length L3 (m) Langth L3 (m) L3	I WIT LAN QUEUE	LINGTHOAL	DOLATION		Average Arrival			1		l	1	
PH Road WB 67 0.48 0.38 31.4 22 41 49 49 49 62 62 65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Effective Red,	Effective Green					Estimated	Average Queue	Average Queue	Average Queue	Average Queue
Coess Road NB				Saturation, X					Length, L1 (m)			Length (m)
PH Road EB	SPH Road WB							_			+	49
Shap Pat Heung Road WB Shap Pat Heung Road WB Shap Pat Heung Road BB Shap Pat Heung Road	Access Road NB							_				6
Support Summary Shap Pat Heung Road WB Ad6 Ad9	SPH Road EB							_				53
AM Average Queue Length (m) PM Average Queue Length max Shap Pat Heung Road WB 46 49	Fung Ki Road SB ^	52	0.59	0.25	24.9			13	45	61	61	61
Max. Shap Pat Heung Road WB 46 49 49 49 46 49 49 46 49 49	RESULT SUMMAR	Υ										
MB Access Road NB 8 6 6 mm C: Shap Pat Heung Road EB 57 53 53 mm D: Fung Ki Road SB ^ 55 61 61 61 61 61 61 61							AM Average Q	tueue Length (m)			PM Average C	ueue Length (m)
The C: Shap Pat Heung Road EB 57 53 61	Arm A:	Shap Pat Heung	Road WB					46				49
## D: Fung Ki Road SB ^ 55 61 ### Cettive Red,	Arm B:											
ffective Red, $r = c-g$ ffective Green Ratio, $L = g/c$ verage of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Max. Queue (1 in 100) adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation $X = q/(SL)$ Adopted segree of Saturation	Arm C:											
ffective Green Ratio, $L = g/c$ egree of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted verage Arrival Rate, $M = qc/3600p$ laximum Queue Length $= 6 * Maximum Queue/n$ $= 6 * Maximum Queu$	Arm D:	Fung Ki Road SE	3 ^		<u>L</u>			55	<u></u>			61
Note: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5) Date: 15/07/2022	Degree of Saturatior Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	o, ı, ı, ngth gth,	$\begin{split} L &= g/c \\ X &= q/(SL) \\ M &= qc/3600p \\ &= 6 * Maximun \\ d &= c(1-L)^2/2(1 \\ L1 &= 6q(r/2+d) \end{split}$	-LX) + 3600pX ² /					dependent expre	ession if X>X'	100) adopted.
				ritical value are 5%	% & 1% for 1 in 20 &	§ 1 in 100 cases res	spectively (TPDM \	V.4.2. Table 2.5.2.4 8	2.5.2.5)			
										Date	: 15/0	7/2022

^{*} Remarks ^ Queue length for left turn movement is more significant. Queue length for the left turn movement is shown.

J8_QL_signal.xlsm 2032_DES

Job Title:	CE46/2020 TO	04 Housing De	velopment at Sh	nap Pat Heung	Road			Job No.:		5210095	5		
			HAP PAT HEUN					Ref. No.:		2021			
	Existing			,				Design year:		2021			
	J							Designed by:	PC	Checked by:	TL		
Arm A:	Shap Pat Heu	ng Road WB									•		
Arm B:	Tai Kei Leng F	Road NB											
Arm C:	Shap Pat Heu												
	Shap Pat He Design Flow Delay (s) Ave. Q (m)	ung Road EB 1066(1107) 261(15) 205(35)		→			—		Shap Pat Heu Design Flow Delay (s) Ave. Q (m)	N 731(932) 13(13) 24(30)			
			Design Flow Delay (s) Ave. Q (m)	ng Road NB 558(526) 147(38) 75(31)									
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	4				_						
			ı	AM				ı	PM				
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,		
SPH Road WB	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p		
	2	72	120	731	3525	1.2	74	120	932	3525	1.2		
Tai Kei Leng Road NB	2	23^	120	558	2875	1.2	36	120	526	2875	1.2		
SPH Road EB	2	39^	120	1066	2920	1.2	74	120	1107	2920	1.2		
AM PEAK QUEUE L	LENGTH CAL	CULATION											
				Average Arrival									
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queu		
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)		
SPH Road WB	48	0.60	0.35	20.3			13	19	24	24	24		
Tai Kei Leng Road NB	97	0.19	1.02	15.5			147		38	75	75		
SPH Road EB	81	0.33	1.11	29.6			261		60	205	205		
PM PEAK QUEUE L	ENGTH CAL	CIII ATION	I.	I.			ı	I.		1			
LAN QULUE L	LLING III UAL	SSERTION		Average Arrival			1	1					
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queu		
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)		
SPH Road WB	46	0.62	0.43	25.9			13	23	30	30	30		
Tai Kei Leng Road NB	84	0.30	0.61	14.6			38	29	31	31	31		
SPH Road EB	46	0.62	0.61	30.8			15	29	35	35	35		
RESULT SUMMARY	Y	1	ı	1				1	<u> </u>				
						AM Average Qu	ueue Length (m)			PM Average Q	eue Length (m)		
Arm A:	Shap Pat Heung	Road WB					24				0		
	Tai Kei Leng Ro					7	'5			3	1		
	Shap Pat Heung					2	05			3	5		
		-											
Effective Red, Effective Green Ration Degree of Saturation Average Arrival Rate Maximum Queue Lei Estimated Delay, Average Queue Leng In accordance with TPD	o, n, e, ngth gth,	L1 = 6q(r/2+d)	n Queue/n -LX) + 3600pX²		c/(q/3600p)²)^(1/ whichever the gr			e-dependent exp		100) adopted.		
In accordance with TPD * Note: The probability o			critical value are 5	% & 1% for 1 in 2	1 & 1 in 100 cases	asnactivaly (TDNM	1 V 4 2 Tahla 2 5 2	1825251					
Note. The probability 0	л тахітит quet	ie exceeding the	unicai value are 5	70 Ox 170 TOF 1 IN 2	o a i iii i uu cases i	espectively (TPDM	v.4.2. 1 dDIE 2.5.2.	4 0x 2.U.2.O)	D. I		/0000		
									Date:	08/03	/2023		
* Remarks													

[^] Reduced effective green time based on site observation

Job Title:			velopment at Sh	Job No.:	5210095						
Junction:		ENG ROAD/SI	HAP PAT HEUN	G ROAD (YL84)			Ref. No.:			
Scheme:	Reference							Design year:	D0	2032	T1
A A -	Ob an Datillan							Designed by:	PC	Checked by:	TL
Arm A: Arm B:	Shap Pat Heu Tai Kei Leng F										
Arm C:	Shap Pat Heu	ng Road FR									
AIII O.	Onap i at rieu	ing road LD									
	Shap Pat He Design Flow Delay (s) Ave. Q (m)	aung Road EB 1099(1244) 20(21) 46(53)	Tai Kei Ler	→ →	1	Γ	←		Shap Pat Het Design Flow Delay (s) Ave. Q (m)	N 710(832) 18(20) 30(35)	
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	Design Flow Delay (s) Ave. Q (m)	709(822) 30(31) 38(44)							
, , , , , , , , , , , , , , , , , , , ,			_	AM				_	PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
SPH Road WB	2	68	128	710	3525	1.2	67	128	832	3525	1.2
Tai Kei Leng Road NB	2	50	128	709	3645	1.2	51	128	822	3645	1.2
SPH Road EB	2	68	128	1099	4170	1.2	67	128	1244	4170	1.2
<i>y</i> 1111000 25	_	- 55	.20					.20			
MARCAL OUTUE	ENOTH OAL	OUI ATION									
AM PEAK QUEUE	LENGTH CAL	CULATION	ı	Average Arrival				ı	ı	1	
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	60	0.53	0.38	21.0			18	24	30	30	30
Tai Kei Leng Road NB	78	0.39	0.50	21.0			30	34	38	38	38
SPH Road EB	60	0.53	0.50	32.6			20	38	46	46	46
PM PEAK QUEUE I	LENGTH CAL	CULATION									
				Average Arrival							
	Effective Red,	Effective Green	Degree of	Rate,]		Estimated	Average Queue	Average Queue	Average Queue	Average Que
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
SPH Road WB	61	0.53	0.45	24.7			20	29	35	35	35
Γai Kei Leng Road NB	77	0.40	0.57	24.4			31	40	44	44	44
SPH Road EB	61	0.53	0.57	36.9		_	21	45	53	53	53
RESULT SUMMAR	Y										
		-			· ·		Queue Length (m)				ueue Length (n
Arm A:	Shap Pat Heung						30				35
Arm B:	Tai Kei Leng Ro						38				44
Arm C:	Shap Pat Heung	Road EB					46				53
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	n, e, ngth		n Queue/n -LX) + 3600pX²,				by Akcelik's time- celik's time-deper	dependent expre		100) adopted.
n accordance with TPE Note: The probability o)M - Volume 4.2.5	i.2			· ·	,	·	•	i, ii /		
<u> </u>	•	-						l	Date:	15/0	7/2022
									Date.	10/0	

Design year Design Desig	Job Title:			velopment at Sh	Job No.:	5210095							
A. Step Piet Heuray Road PE	Junction:		ENG ROAD/SI	HAP PAT HEUN	G ROAD (YL84	.)				0000			
N. Sup Pit Houring Road FB	Scheme:	Design										_	
Tal Kai Lang Road EB		0. 5							Designed by:	PC	Checked by:	TL	
Step Pat Heuring Road EB	Arm A:												
Shap Plet Heurig Book EB	Arm B: Arm C:												
Sing Pat Houng Road EB Design From 110(2) Tal Kiel Largy Road MB Design From 747(868) Design From 747(86	AIII C.	Shap Fat neu	ng Road Eb										
Sing Pat Houng Road EB Design From 110(2) Tal Kiel Largy Road MB Design From 747(868) Design From 747(86													
Sing Pat Houng Road EB Design From 110(2) Tal Kiel Largy Road MB Design From 747(868) Design From 747(86											N_ ,		
Design From 1150(1272) Design From 1150(1272) Design From A7(55) Design From A7(55) Design From A7(65) Design From A7(65) Design From A7(65) Design From A7(665) Design From											*		
Design From 1150(1272) Design From 1150(1272) Design From A7(55) Design From A7(55) Design From A7(65) Design From A7(65) Design From A7(65) Design From A7(665) Design From													
Design From 1150(1272) Design From 1150(1272) Design From A7(55) Design From A7(55) Design From A7(65) Design From A7(65) Design From A7(65) Design From A7(665) Design From													
Design From 1150(1272) Design From 1150(1272) Design From A7(55) Design From A7(55) Design From A7(65) Design From A7(65) Design From A7(65) Design From A7(665) Design From		Ober Det He	D	1									
Shap Pat Heurg Road WB Datage Flow 19(21) 18(19) We O (10) 31(30) We O (10)													
Ave. Q (m)													
Tall Kel Leng Road NB Design Flow 7/19(82) Desty (8) 10(19) Avr. 9 (70) 31(30) Avr. 9 (70)					\longrightarrow								
Tail Kell Leng Road NB Design Flow 7709(822) Design Flow		` '	` '									_	
Tal Kel Leng Road NB Design Toy (9022) Ave. Q (m) 31(30)													
Tail Keil Leng Road NB Design Flow 700(922) Design Flow 31(30) Ave Q (m) 319(32) Ave Q (m) 39(44) 39								\leftarrow					
Tal Kel Leng Road NB Design Flow 709(822) Design (s) 31(32) Ave. Q (m) 38(44)												_	
Design Flow 709(822) Design Flow 31(32) Design Flow 38(44) Design Flow										AVE. Q (III)	31(30)	1	
Design Flow 709(822) Design Flow 31(32) Design Flow 38(44) Design Flow				Tai Kei Ler	ng Road NB	1				<u> </u>	1	_	
Average Armyal Filestive Red, Effective Red, Effe] ↑							
PART PART				- , , ,		. I							
Number of Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Cycle Time, Design Flow, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Cycle Time, Design Flow, Design Flow, Design Flow, PCU Factor. Design Flow, PCU Factor. PCU Facto				Ave. Q (m)	39(44)	∄							
Number of Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Cycle Time, Design Flow, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Cycle Time, Design Flow, Design Flow, Design Flow, PCU Factor. Design Flow, PCU Factor. PCU Facto						∐ '							
Number of Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Effective Green, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Cycle Time, Design Flow, Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Subtration Flow, PCU Factor. Cycle Time, Design Flow, Cycle Time, Design Flow, Design Flow, Design Flow, PCU Factor. Design Flow, PCU Factor. PCU Facto							•						
Number of Effective Green, Cycle Time, Celegic	GREEN TIME, CYC	LE TIME AND	FLOWS DATA	\	ΛM			1		DM			
Lanes, n g (sec) c (sec) q (pculhr) S (pculhr) p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) c (sec) q (pculhr) S (pculhr) p p g (sec) p p p g (sec) p p p p p p p p p		Number of	Effective Creen	Cuelo Timo		Coturation Flour	DCII Fastar	Effective Cross	Cuelo Timo		Caturation Flour	DCI L Factor	
Road WB					-					-	'		
Real Leng Road NB 2	CDLI Dood W/D												
Road EB													
Effective Red, Effective Green Degree of Ratio, L. Saturation, X. M. (veh/cycle) Delay, d(sec) Length, L1 (m) Saturation, X. M. (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m)	SPH Road EB												
Effective Red, Effective Green Degree of Ratio, L. Saturation, X. M. (veh/cycle) Delay, d(sec) Length, L1 (m) Saturation, X. M. (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m)													
Effective Red, Effective Green Degree of Ratio, L. Saturation, X. M. (veh/cycle) Delay, d(sec) Length, L1 (m) Saturation, X. M. (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m)	AM PEAK QUEUE I	LENGTH CAL	CULATION										
Read WB 59				Daniel of				Falian at a d	A	A O	A	A	
Road WB 59				-					-	-			
Real Eng Road NB 79	SPH Road WB												
Road EB 59 0.54 0.51 34.1 19 39 47 47 47 47	Tai Kei Leng Road NB												
Effective Red, Effective Green Degree of Ratio, L Saturation, X M (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m) Length (14 mod WB 60 0.53 0.46 25.7 19 30 36 36 36 36 36 36 44 44	SPH Road EB							19		47	47	47	
Effective Red, Effective Green Degree of Ratio, L Saturation, X M (veh/cycle) Delay, d(sec) Length, L1 (m) Length, L2 (m) Length, L3 (m) Length (14 mod WB 60 0.53 0.46 25.7 19 30 36 36 36 36 36 36 44 44													
Effective Red Effective Green Degree of Rate, Rate, Rate, Control Saturation, X M (veh/cycle) Saturation, X Saturation, X M (veh/cycle) Saturation, X Saturation,	PM PEAK QUEUE I	LENGTH CAL	CULATION										
Road WB 60 0.53 0.46 25.7 19 30 36 36 36 36 36 36 36		Effective Dod	Effective Creen	Degree of				Estimated	Average Ouers	Average Ouers	Average Ouerra	Averses Over	
Road WB 60 0.53 0.46 25.7 19 30 36 36 36 36 36 36 36				-						-	-	-	
Rei Leng Road NB 78 0.39 0.58 24.4 32 40 44 44 44 44 44 44 4	SPH Road WB								. , ,				
Road EB 60 0.53 0.58 37.7 21 45 53 53 53	Tai Kei Leng Road NB											<u> </u>	
AA: Shap Pat Heung Road WB 31 36 BE: Tai Kei Leng Road NB 39 444 IC: Shap Pat Heung Road EB 47 53 ective Red, r = c-g sective Green Ratio, L = g/c gree of Saturation, X = q/(SL) Max. Queue (1 in 100) adopted. For age Arrival Rate, M = qc/3600p simulated Delay, d = c(1-L)²/2(1-LX) + 3600pX²/2q(1-X) - 0.65(c/(q/3600p)²)^(1/3)*X^(2+5L) OR by Akcelik's time-dependent expression if X>X' brage Queue Length, L = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, OR L3 (Akcelik's time-dependent expression, if X>X') ccordance with TPDM - Volume 4.2.5.2 te: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)	SPH Road EB							_					
AA: Shap Pat Heung Road WB 31 36 BE: Tai Kei Leng Road NB 39 444 IC: Shap Pat Heung Road EB 47 53 ective Red, r = c-g sective Green Ratio, L = g/c gree of Saturation, X = q/(SL) Max. Queue (1 in 100) adopted. For age Arrival Rate, M = qc/3600p simulated Delay, d = c(1-L)²/2(1-LX) + 3600pX²/2q(1-X) - 0.65(c/(q/3600p)²)^(1/3)*X^(2+5L) OR by Akcelik's time-dependent expression if X>X' brage Queue Length, L = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, OR L3 (Akcelik's time-dependent expression, if X>X') ccordance with TPDM - Volume 4.2.5.2 te: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)													
A: Shap Pat Heung Road WB 31 36 B: Tai Kei Leng Road NB 39 44 C: Shap Pat Heung Road EB 47 53 ective Red,	RESULT SUMMAR	Υ											
B Tai Kei Leng Road NB 39 44 C Shap Pat Heung Road EB 47 53 Stap Pat Heung Road EB 48 Stap Pat Heung Road EB 48 Stap Pat Heung Road EB 53 Stap		loi p	D 114/2					• ,					
C: Shap Pat Heung Road EB 47 53 active Red, r = c-g bective Green Ratio, L = g/c gree of Saturation, X = q/(SL) Max. Queue (1 in 100) adopted. bective Green Ratio, L = g/c gree of Saturation, X = q/(SL) Max. Queue (1 in 100) adopted. bective Green Ratio, L = g/c gree of Saturation, X = q/(SL) Max. Queue (1 in 100) adopted. bective Green Ratio, L = g/c gree of Saturation, X = q/(SL) Max. Queue (1 in 100) adopted. bective Green Ratio, L = g/c gree of Saturation, X = q/(SL) bective Green Ratio, L = g/c gree of Saturation, X = q/(SL) bective Green Ratio, L = g/c gr	Arm A: Arm B:												
exctive Red, $r = c \cdot g$ Exctive Green Ratio, $L = g/c$ Express of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted. For age Arrival Rate, $M = qc/3600p$ Eximum Queue Length $G = G \cdot M$ Aximum Queue/n Eximum Queue Length $G = G \cdot M$ Aximum Queue/n Eximated Delay, $G = G \cdot M$	Arm C:												
active Green Ratio, $L = g/c$ gree of Saturation, $X = q/(SL)$ $X = q$							'						
active Green Ratio, $L = g/c$ gree of Saturation, $X = q/(SL)$ $X = q$		l			l						L		
gree of Saturation, $X = q/(SL)$ Max. Queue (1 in 100) adopted. For age Arrival Rate, $M = qc/3600p$ aximum Queue Length imated Delay, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > X'$ by a rage Queue Length, $X > C(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression, if $X > C(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X)	Effective Red,												
Firegrey Arrival Rate, $M = qc/3600p$ aximum Queue Length $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^4(1/3)^*X^4(2+5L)$ OR by Akcelik's time-dependent expression if X>X' L1 = $6q(r/2+d)/3600p$ OR L2 = $6qr/3600p$ whichever the greater, OR L3 (Akcelik's time-dependent expression, if X>X') coordance with TPDM - Volume 4.2.5.2 tet: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)		,								May Ougus /1 :-	100) adopted	
ximum Queue Length imated Delay, d = 6 * Maximum Queue/n imated Delay, d = c(1-L)²/2(1-LX) + 3600pX²/2q(1-X) - 0.65(c/(q/3600p)²)^(1/3)*X^(2+5L) OR by Akcelik's time-dependent expression if X>X' table Length, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, OR L3 (Akcelik's time-dependent expression, if X>X') ccordance with TPDM - Volume 4.2.5.2 te: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)										ıvıax. Queue (1 III	100	, auopieu.	
imated Delay, $d = c(1-L)^2/2(1-LX) + 3600pX^2/2q(1-X) - 0.65(c/(q/3600p)^2)^1/(1/3)^2X^2(2+5L) OR by Akcelik's time-dependent expression if X>X' strage Queue Length, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn or L2 = 6qr/3600pn whichever the greater, L1 = 6q(r/2+d)/3600pn or L2 = 6qr/3600pn or L2 = 6qr/$													
erage Queue Length, L1 = 6q(r/2+d)/3600pn OR L2 = 6qr/3600pn whichever the greater, OR L3 (Akcelik's time-dependent expression, if X>X') ccordance with TPDM - Volume 4.2.5.2 bits: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)	Estimated Delay,	J			/2q(1-X) - 0.65(d	c/(q/3600p)²)^(1/3	3)*X^(2+5L) OR	by Akcelik's time-	dependent expre	ession if X>X'			
ote: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)		gth,											
ote: The probability of maximum queue exceeding the critical value are 5% & 1% for 1 in 20 & 1 in 100 cases respectively (TPDM V.4.2. Table 2.5.2.4 & 2.5.2.5)	n accordance with TPD	M - Volume 4.2.5	.2										
Date 15/07/2022				ritical value are 5%	& 1% for 1 in 20	& 1 in 100 cases re	spectively (TPDM \	V.4.2. Table 2.5.2.4 8	§ 2.5.2.5)				
Date. IGNOTIZAZZ										Date:	15/0	7/2022	

Job Title:	CE46/2020 TO	04 Housing Dev	velopment at Sh	ap Pat Heung R	load			Job No.:		5210095	
Junction:		ONG TAI YUK	ROAD/MA TIN I	ROAD (YL101)				Ref. No.:			
Scheme:	Reference							Design year:	D0	2032	
	M T D U	A/D						Designed by:	PC	Checked by:	TL
Arm A: Arm B:	Ma Tin Road \	<u>vв</u> i Yuk Road NB									
Arm C:	Ma Tin Road E	R									
Arm D:		i Yuk Road SB									
	Ma Tin I	Road FB	I				Yuen Long Ta Design Flow Delay (s) Ave. Q (m)	i Yuk Road SB 468(445) 52(47) 34(30)		N_ +	
	Design Flow	587(483)			_						
	Delay (s)	46(45)									
	Ave. Q (m)	40(32)		\longrightarrow							
			Yuen Long Ta Design Flow	Yuk Road NB 608(537)	1 .	Γ			Ma Tin R Design Flow Delay (s) Ave. Q (m)	272(328) 54(50) 21(23)	
ODEEN TIME OVO	LE TIME AND	EL CIMO DATA	Delay (s) Ave. Q (m)	48(46) 42(36)							
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	l .	AM			F		PM		
		·· · · ·	0 1 7			50115	5" " 0	0 1 7		0 5.	DOLLE .
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Ma Tin Road WB YL Tai Yuk Road NB	2 2	16 28	128 128	272 608	3725 3980	1.2 1.2	17 24	120 120	328 537	3735 3985	1.2 1.2
Ma Tin Road EB	2	29	128	587	3830	1.2	25	120	483	3830	1.2
YL Tai Yuk Road SB	2	22	128	468	3860	1.2	22	120	445	3745	1.2
	FNOTU OAL	NUL ATION						-			
AM PEAK QUEUE	LENGTH CAL	JULATION		Average Arrival	1					1	T
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Ma Tin Road WB	112	0.13	0.58	8.1			54	21	21	21	21
YL Tai Yuk Road NB	100	0.22	0.69	18.0			48	41	42	42	42
Ma Tin Road EB YL Tai Yuk Road SB	99 106	0.23 0.17	0.67 0.69	17.4 13.9			46 52	39 34	40 34	40 34	40 34
			0.09	10.9			JZ	34	34	34	34
PM PEAK QUEUE I	LENGTH CALO	JULATION		Average Arrival	 		T			1	1
	Effective Red,		Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
Mo Tip Dood MD	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Ma Tin Road WB YL Tai Yuk Road NB	103 96	0.14 0.20	0.62 0.66	9.1 14.9			50 46	23 35	23 36	23 36	23 36
Ma Tin Road EB	95	0.20	0.61	13.4			45	31	32	32	32
YL Tai Yuk Road SB	98	0.18	0.65	12.4			47	30	30	30	30
RESULT SUMMAR	Y	1	i.	il			1	r .		1	1
LEGGET GOMMAN						AM Average Q	ueue Length (m)			PM Average Q	ueue Length (m)
Arm A:	Ma Tin Road WE						21				23
Arm B:	Yuen Long Tai Y						12				36
Arm C:	Ma Tin Road EB						10			1	32
Arm D:	Yuen Long Tai Y	uk Koad SB					34			<u> </u>	30
Effective Red, Effective Green Rati Degree of Saturatior Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	n, e, ngth gth,	L1 = 6q(r/2+d)	-LX) + 3600pX ² /				by Akcelik's time- celik's time-deper	dependent expre		100) adopted.
In accordance with TPD * Note: The probability of			ritical value are 5%	6 & 1% for 1 in 20	& 1 in 100 cases res	spectively (TPDM V	/.4.2. Table 2.5.2.4 8	§ 2.5.2.5)			
p. 3200y C	9000					,, (5 •	2101217	/	Date:	15/07	7/2022
* Remarks									Dato.	10,01	

J11_QL_signal.xlsm 2032_REF

Job Title:			velopment at Sh		load			Job No.:		5210095	
Junction:		ONG TAI YUK	ROAD/MA TIN I	ROAD (YL101)				Ref. No.:			
Scheme:	Design							Design year:	D0	2032	T .
	M T D U	A/D						Designed by:	PC	Checked by:	TL
Arm A: Arm B:	Ma Tin Road \	<u>ив</u> i Yuk Road NB									
Arm C:	Ma Tin Road E	-R									
Arm D:		i Yuk Road SB									
	Ma Tin I	Dood FD	1				Yuen Long Ta Design Flow Delay (s) Ave. Q (m)	i Yuk Road SB 468(445) 52(47) 34(30)		N_ 	
	Design Flow	Road EB 587(483)			_						
	Design Flow Delay (s)	46(45)		_							
	Ave. Q (m)	40(32)		\longrightarrow							
		11(12)									
			Design Flow	i Yuk Road NB 608(537)	1 ↑	Γ	<u> </u>		Ma Tin R Design Flow Delay (s) Ave. Q (m)	272(328) 54(50) 21(23)	
CDEEN TIME CVC	I E TIME AND	EL OWE DATA	Delay (s) Ave. Q (m)	48(46) 42(36)							
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	1	AM			1		PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Ma Tin Road WB	2	16	128	272	3725	1.2	17	120	328	3735	1.2
YL Tai Yuk Road NB	2	28	128	608	3980	1.2	24	120	537	3985	1.2
Ma Tin Road EB	2	29 22	128	587	3830	1.2	25	120	483	3830	1.2
YL Tai Yuk Road SB	2	22	128	468	3860	1.2	22	120	445	3745	1.2
AM PEAK QUEUE I	LENGTH CAL	CULATION		L Averege Arrivel							
	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Ma Tin Road WB	112	0.13	0.58	8.1			54	21	21	21	21
YL Tai Yuk Road NB	100	0.22	0.69	18.0			48	41	42	42	42
Ma Tin Road EB	99	0.23	0.67	17.4			46	39	40	40	40
YL Tai Yuk Road SB	106	0.17	0.69	13.9			52	34	34	34	34
PM PEAK QUEUE I	ENGTH CALC	CULATION									
	Effective Red,		Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
Ma Tin Road WB	r (sec) 103	Ratio, L 0.14	Saturation, X 0.62	M (veh/cycle) 9.1			Delay, d(sec) 50	Length, L1 (m) 23	Length, L2 (m) 23	Length, L3 (m) 23	Length (m) 23
YL Tai Yuk Road NB	96	0.14	0.66	14.9	1		46	35	36	36	36
Ma Tin Road EB	95	0.20	0.61	13.4			45	31	32	32	32
YL Tai Yuk Road SB	98	0.18	0.65	12.4			47	30	30	30	30
RESULT SUMMAR	Υ	ī.	r	r			1	r .		1	<u>. </u>
							ueue Length (m)				ueue Length (m)
Arm A: Arm B:	Ma Tin Road WE Yuen Long Tai Y						21 12				23 36
Arm C:	Ma Tin Road EB						1 2 10				32
Arm D:	Yuen Long Tai Y						34				30
Effective Red, Effective Green Rati Degree of Saturatior Average Arrival Rate Maximum Queue Le Estimated Delay,),),	r = c-g L = g/c X = q/(SL) M = qc/3600p = 6 * Maximun d = c(1-1) ² /2/1		 2a(1-X) - 0 65/	√(a/36∩0a\²\∧/1/3	{\}*X^{(2+5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	by Akcelik's time-		Max. Queue (1 in	100) adopted.
Average Queue Len In accordance with TPD	M - Volume 4.2.5	L1 = 6q(r/2+d)	/3600pn OR L2	= 6qr/3600pn v	whichever the gre	ater, OR L3 (Ako	celik's time-deper	ident expression			
* Note: The probability of	of maximum queu	e exceeding the c	ritical value are 5%	6 & 1% for 1 in 20	& 1 in 100 cases res	spectively (TPDM V	7.4.2. Table 2.5.2.4 8	\$ 2.5.2.5)			
									Date:	15/0	7/2022
* Remarks											

J11_QL_signal.xlsm 2032_DES

Job Title:	CE46/2020 TO	04 Housing Dev	elopment at Sh	ap Pat Heung R	oad			Job No.: 5210095				
Junction:	J12 - YUEN L	ONG TAI YUK	ROAD/KAU YU	KROAD (YL51)				Ref. No.:				
Scheme:	Existing							Design year:		2021		
								Designed by:	PC	Checked by:	TL	
Arm A:	Kau Yuk Road	I WB ^										
Arm B:	Yuen Long Ta	i Yuk Road NB	*									
Arm C:	YL Tai Yuk Ro	ad SB '										
										N A		
							Yl Tai Yul	Road SB'	1	N_ _		
							Design Flow	518(385)		ŗ		
							Delay (s)	29(29)				
							Ave. Q (m)	53(36)				
						*	Ave. Q (III)	33(30)				
								<u>l</u>	J			
									Kau Yuk F	Dood M/D A	1	
							\leftarrow		Design Flow	444(475)		
									Delay (s)	39(29)		
									Ave. Q (m)	52(41)		
		i	Vuon Lara T	Vult Daad ND *	₁					1	J	
			Yuen Long Tai		·							
			Design Flow	721(649)	 1							
			Delay (s)	23(22)	∤ ∥	J						
			Ave. Q (m)	58(45)	{							
					<u> </u>							
GREEN TIME, CYC	LE TIME AND	FLOWS DATA										
,				AM					PM			
	Number of	Effective Green,	Cycle Time,		Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,		Saturation Flow,	PCU Factor,	
		i i		Design Flow,		PCU Facior,	· ·		Design Flow,		PCU Factor,	
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	
Kau Yuk Road WB ^	1	46	130	444	1870	1.2	38	100	475	1870	1.2	
YL Tai Yuk Road NB *	1	72	130	721	1935	1.2	50	100	649	1935	1.2	
Tai Yuk Road SB '	1	57	130	518	2085	1.2	33	100	385	2085	1.2	
AM PEAK QUEUE I	ENGTH CAL	CIII ATION					•	•				
ANTI LAN QUEUE	I DAL	JOLATION		Average Arrival	1		1	l		1		
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue	
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)	
Kau Yuk Road WB ^	84	0.35	0.67	13.4			39	50	52	52	52	
YL Tai Yuk Road NB *	58	0.55	0.67	21.7			23	52	58	58	58	
Tai Yuk Road SB '	73	0.44	0.57	15.6			29	47	53	53	53	
DM DEAK SHELLE	ENOTE OAT	NIII ATION			I		1	I .	I	1	1	
PM PEAK QUEUE I	LENGIH CAL	ULATION		Average Arrival	1		1	Г	Г	1	1	
	Effective Red	Effective Green	Degree of				Estimated	Average Oueue	Average Oueue	Average Oueue	Average Oueue	
		Ratio, L	Degree of Saturation, X	Rate, M (veh/cycle)			Delay, d(sec)	Average Queue Length, L1 (m)	Average Queue Length, L2 (m)	Length, L3 (m)	Average Queue Length (m)	
Kau Yuk Road WB ^	r (sec) 62		0.67	11.0			29	40	41	41	41	
YL Tai Yuk Road WB *		0.38								+		
	50	0.50	0.67	15.0			22	42	45	45	45	
Tai Yuk Road SB '	67	0.33	0.55	8.9			29	34	36	36	36	
RESULT SUMMARY	Υ			- <u></u>			·		·			
						AM Average C	tueue Length (m)			PM Average C	ueue Length (m)	
Arm A:	Kau Yuk Road V	/B ^					52				41	
Arm B:	Yuen Long Tai Y						58				45	
Arm C:	YL Tai Yuk Road						53				36	
										1		
	<u> </u>							I		<u> </u>		
Effective Red,		r = c-g										
Effective Green Ratio	0.	L = g/c										
Degree of Saturation		X = q/(SL)							Max. Queue (1 in	100) adopted.	
Average Arrival Rate		M = qc/3600p						,			,	
Maximum Queue Le		= 6 * Maximum	n Queue/n									
Estimated Delay,	9"'			2a(1-X) - 0.65/a	/(a/3600n)²\^(1/3	3)*X^(2+5I \ OP	by Akcelik's time-	dependent expre	ession if X>Y'			
Average Queue Len	ath						celik's time-deper					
	•	.,	10000pii Oix LZ	oqi/oooopii W	mionever the gre	ator, OIL LO (AK	oonka muc-uchel	idoni expression	, 11 ACA J			
In accordance with TPD												
* Note: The probability of	of maximum queu	e exceeding the c	ritical value are 5%	& 1% for 1 in 20 a	\$ 1 in 100 cases res	spectively (TPDM \	V.4.2. Table 2.5.2.4 8	§ 2.5.2.5)				
									Date	: 15/0	7/2022	
* Remarks					h for the right turn r							

^{*} Remarks

[^] Queue length for right turn movement is more significant. Queue length for the right turn movement is shown.

^{*} Queue length for straight through movement is more significant. Queue length for the straight through movement is shown.

^{&#}x27; Queue length for straight through movement is more significant. Queue length for the straight through movement is shown.

Job Title:	CE46/2020 TO	04 Housing Dev	elopment at Sh	ap Pat Heung R		Job No.: 5210095					
Junction:	J12 - YUEN LO	ONG TAI YUK	ROAD/KAU YU	K ROAD (YL51)		Ref. No.:					
Scheme:	Reference							Design year:		2032	
								Designed by:	PC	Checked by:	TL
Arm A:	Kau Yuk Road										
Arm B:	Yuen Long Ta	i Yuk Road NB	*								
Arm C:	YL Tai Yuk Ro	ad SB '									
					ı	I				N A	
							VI Tai Vul	Road SB '	1	N_ _	
										ı	
							Design Flow	424(325)			
							Delay (s)	27(28)			
						Ψ	Ave. Q (m)	43(30)			
						L					
									Kau Yuk R	load WB ^	
							,		Design Flow	370(475)	
									Delay (s)	41(28)	
						_			Ave. Q (m)	46(40)	1
									()	15(15)	1
		I	Yuen Long Tai	Yuk Road NR *	1	1			L .	1	_
			Design Flow	723(627)	1						
			•		-						
			Delay (s)	19(22)	{	1					
			Ave. Q (m)	53(44)	∤ ∎	J					
					ı						
GREEN TIME, CYC	LE TIME AND	FLOWS DATA									
				AM					PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
		i i		-		i oo i actor,	·		_	· ·	1 00 Tactor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Kau Yuk Road WB ^	1	41	130	370	1870	1.2	39	100	475	1870	1.2
YL Tai Yuk Road NB *	1	77	130	723	1935	1.2	49	100	627	1935	1.2
Tai Yuk Road SB '	1	57	130	424	2085	1.2	33	100	325	2085	1.2
AM PEAK QUEUE I	ENGTH CALC	CIII ATION		•			•	•	•	•	
ANTI LAN QUEUE	LINGTH CAL	JOLATION		Average Arrival	1			l		1	
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Kau Yuk Road WB ^	89	0.31	0.63	11.1			41	44	46	46	46
YL Tai Yuk Road NB *	53	0.59	0.63	21.8			19	46	53	53	53
Tai Yuk Road SB '	73	0.39	0.46	12.8			27	38	43	43	43
Tai Tuk Noau SD	73	0.44	0.40	12.0			21	30	43	40	45
PM PEAK QUEUE I	ENGTH CALC	CULATION		L Avers C			T	ı	T	1	
	Effective Ded	Effective Green	Degree of	Average Arrival			Estimated	Average Oueus	Average Ouevo	Average Ouevo	Average Oueus
			Degree of	Rate,				Average Queue	Average Queue		Average Queue
V V D	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Kau Yuk Road WB ^	61	0.39	0.66	11.0			28	39	40	40	40
YL Tai Yuk Road NB *	51	0.49	0.66	14.5			22	41	44	44	44
Tai Yuk Road SB '	67	0.33	0.47	7.5			28	28	30	30	30
	<u></u>									<u> </u>	1
RESULT SUMMAR	Y										
						AM Average 0	Queue Length (m)			PM Average Q	ueue Length (m)
Arm A:	Kau Yuk Road W	/B ^					46			, , ,	40
Arm B:	Yuen Long Tai Y						53			<u> </u>	44
Arm C:	YL Tai Yuk Road						43				30
							*			†	
-				l				l		J.	
Effective Red,		r = c-g									
Effective Green Ratio		L = g/c									
Degree of Saturation		X = q/(SL)							Max. Queue (1 in	100) adopted.
Average Arrival Rate		M = qr(3600p)								100	, adoptod.
Maximum Queue Le		= 6 * Maximum	n Oueue/n								
				12a(1 V) 0 6E/-	//a/36005)2\A/4/	8)*Y^(2 , EI \ OD	by Akaalikla time	danandant ave-	secion if V>V'		
Estimated Delay,							by Akcelik's time-				
Average Queue Len	gtn,	L1 = 6q(r/2+d)	/3600pn OR L2	= bqr/3600pn w	nichever the gre	ater, OR L3 (Ak	kcelik's time-depen	aent expression	i, it X>X')		
In accordance with TPD	M - Volume 4.2.5	.2									
* Note: The probability of			ritical value are 5%	6 & 1% for 1 in 20 8	& 1 in 100 cases re	spectively (TPDM	V.4.2. Table 2.5.2.4 &	§ 2.5.2.5)			
- , , , , , , , , , , , , , , , , , , ,	7-30			= 0				-/	Date:	15/0	7/2022
* Remarks	Λ Ομουα Ισπεμι (or right town	mont is more -!- '	finant Ouer- I	th for the right turn i	movoment iL.	ın.	l	Dale.	13/01	1/4044
			meni is more signi	ncani. Gueue iendi	n ioi me nam idh l	novement is snow	111.				

^{*} Remarks

 $^{^{\}Lambda}\,\text{Queue length for right turn movement is more significant.}\,\,\text{Queue length for the right turn movement is shown}.$

^{*} Queue length for straight through movement is more significant. Queue length for the straight through movement is shown.

^{&#}x27; Queue length for straight through movement is more significant. Queue length for the straight through movement is shown.

Job Title:			elopment at Sh					Job No.:		5210095		
Junction:	J12 - YUEN L	ONG TAI YUK	ROAD/KAU YU	K ROAD (YL51)				Ref. No.: Design year: 2032				
Scheme:	Design									2032		
								Designed by:	PC	Checked by:	TL	
Arm A:	Kau Yuk Road											
Arm B:	Yuen Long Ta	i Yuk Road NB	*									
Arm C:	YL Tai Yuk Ro	ad SB '										
									1	N_ _		
								Road SB '		\top		
							Design Flow	424(325)				
							Delay (s)	27(28)				
						\checkmark	Ave. Q (m)	43(30)				
									J			
					1	L						
									Kau Yuk R	oad WB ^	1	
									Design Flow	370(475)		
							\leftarrow		Delay (s)	41(28)		
						_			Ave. Q (m)	46(40)	1	
									()	- (- /	1	
			Yuen Long Tai	Yuk Road NB *	1						_	
			Design Flow	723(627)	∏ ↑							
			Delay (s)	19(22)	1							
			Ave. Q (m)	53(44)	1							
				` '	1							
GREEN TIME, CYC	I E TIME AND	FI OWS DATA										
GREEK TIME, GTG			•	AM					PM			
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	
		, i	•	-					_	· ·	,	
IC V I D I IMDA	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p	
Kau Yuk Road WB ^	1	41	130	370	1870	1.2	39	100	475	1870	1.2	
YL Tai Yuk Road NB * Tai Yuk Road SB '	1	77 57	130 130	723 424	1935 2085	1.2 1.2	49 33	100 100	627 325	1935 2085	1.2 1.2	
Tal Tuk Road Sb	'	57	130	424	2000	1.2	33	100	323	2005	1.2	
AM PEAK QUEUE I	ENGTH CAL	CULATION		Averege Armyel								
	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue	
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)	
Kau Yuk Road WB ^	89	0.31	0.63	11.1			41	44	46	46	46	
YL Tai Yuk Road NB *	53	0.59	0.63	21.8			19	46	53	53	53	
Tai Yuk Road SB '	73	0.39	0.46	12.8			27	38	43	43	43	
Tur Tur Toda OB	10	0.11	0.10	12.0				00	10	10	-10	
PM PEAK QUEUE L	ENGIH CAL	JULATION		Average Arrival			1	1	I	1	1	
	Effective Red	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue	
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)	
Kau Yuk Road WB ^	61	0.39	0.66	11.0			28	39	40	40	40	
YL Tai Yuk Road NB *	51	0.49	0.66	14.5			22	41	44	44	44	
Tai Yuk Road SB '	67	0.33	0.47	7.5			28	28	30	30	30	
								-				
RESULT SUMMAR	· · · · · · · · · · · · · · · · · · ·	I		1				<u>I</u>	<u>I</u>	1	1	
NEGOLI GUINIAR	1					ΔΜ Δνατασο (Queue Length (m)			PM Average O	ueue Length (m)	
Arm A:	Kau Yuk Road W	/B ^				AIVI AVEIAGE	46				40	
Arm B:	Yuen Long Tai Y						53			<u> </u>	44	
Arm C:	YL Tai Yuk Road						43				30	
	ar ran noac									<u> </u>		
								l		J.		
Effective Red,		r = c-g										
Effective Green Ratio		L = g/c										
Degree of Saturation		X = q/(SL)						I	Max. Queue (1 in	100) adopted.	
Average Arrival Rate		M = qc/3600p							,		•	
Maximum Queue Le		= 6 * Maximun	n Queue/n									
Estimated Delay,	·						by Akcelik's time-					
Average Queue Len							kcelik's time-deper					
In accordance with TPD	-	.2		•	,	,	•		•			
* Note: The probability of			ritical value are 5%	6 & 1% for 1 in 20	& 1 in 100 cases re.	spectively (TPDM	V.4.2. Table 2.5.2.4	§ 2.5.2.5)				
,	7					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		I	Date:	15/07	7/2022	
* Domorks	V Orione Jewath t	or right turn ma:	mont is more si	figant Outside Is-	th for the right turn i	movement is at	ID.	l	Date.	13/01	114044	
* Remarks	Queue length f	or ngni tuni move	meni is more signi	iicarii. Quede lengi	a i ioi ale ngnt tum l	HOVELHELL IS SHOW	nı.					

 $^{^{\}star}$ Queue length for straight through movement is more significant. Queue length for the straight through movement is shown.

 $^{&#}x27; \ Queue \ length \ for \ straight \ through \ movement \ is \ more \ significant. \ Queue \ length \ for \ the \ straight \ through \ movement \ is \ shown.$

Remarks A Queue length for left turn and straight through movements is more significant. Queue length for the left turn and straight through movements is shown

^{*} Queue length of the exclusive bus lane is less significant. The exclusive bus lane has been excluded.

Remarks A Queue length for left turn and straight through movements is more significant. Queue length for the left turn and straight through movements is shown

J13_QL_signal.xlsm 2032_REF

^{*} Queue length of the exclusive bus lane is less significant. The exclusive bus lane has been excluded.

Remarks A Queue length for left turn and straight through movements is more significant. Queue length for the left turn and straight through movements is shown

J13_QL_signal.xlsm 2032_DES

^{*} Queue length of the exclusive bus lane is less significant. The exclusive bus lane has been excluded.

Remarks A Queue length for left turn movement is more significant. Queue length for the left turn movement is shown.

J14_QL_signal.xlsm 2021_OBS

Remarks A Queue length for straight through turn movement is more significant. Queue length for the straight through movement is shown

J14_QL_signal.xlsm 2032_REF

31/05/2022

Remarks A Queue length for straight through turn movement is more significant. Queue length for the straight through movement is shown

J14_QL_signal.xlsm 2032_DES

31/05/2022

Appendix E

Existing Junction Layout Plan

Appendix F Sources of Information

2016 Population Census – Breakdown of Population by Building Group YL0004

2016 Population Census - Breakdown of Population by Building Group YL0006

http://census.centamap.com/hong-kong/Yuen%20Long/CHMA/Shap-Pat-Link Heung/building-group(Shap%20Pat%20Heung)%20Park%20Signature%20Tower%201-6%20(Kung%20Um%20Road%202000's)?field=t_pop&sort=default&detailcode=YL0006 地政總署
 中原地圖

 CENTAMAP
 政府統計處 Census and Statistics Department Lands Department Search -Intellectual Property Rights Disclaimer Introduction & Definitions YL0006:(Shap Pat Heung) Park Signature Tower 1-6 (Kung Um Road 2000's) Buildings:(PARK SIGNATURETOWER 3, PARK SIGNATURETOWER 1, PARK SIGNATURETOWER 2, PARK SIGNATURETOWER 6, PARK SIGNATURETOWER 5 Θ Shap Pat Heung building Demographic Resident population (2) in Building Group Total population @ 30 261 2 157 Sex ratio @ 855 685 S Economic Shap Pat Heung building Working population (2) in Building Group Working population 1 344 15 520 **Employees** 85.2% 88.2% **Employers** 4.6% 3.9% Self-employed and 7.9% unpaid family workers 10.2% Non-working population 2 Non-working population 813 14 741 Students 30.9% 37.9% Non-students # 69.1% 62.1% (# Home-makers,retired persons and others)

2016 Population Census - Mode of Transport by Building Group YL0004

2016 Population Census - Mode of Transport by Building Group YL0006

2016 Population Census – Mode of Transport by New Towns (Students)

B112			g Full-time (ode of Trans				ions in Hong K	ong by Plac	ce of Study,	B. E	ducation	20	17/07/04
Persons A Study, Yea	ttending Ful r and Main N	I-time Co Mode of T	urses in l ransport	Educatio to Place	onal Insti of Study	tutions /	in Hong Ko	ng by Pla	ce of			Download	XI @
			F	Persons /	Attending	Full-tin	ne Courses i	n Educatio	onal Institutio	ns in H	long Kong) (1)	
							Number	of Persor	15				
Y	ear						2	2016					
Main Mode of Transport to Place of Study		On foot only	Mass Transit Railway (Local line) ⁽²⁾	Bus ^(§)	School bus ⁽⁴⁾	Public light bus ^(§)	Private car/ Passenger van	Mass Transit Railway (Light Rail)	Residential coach service	Taxi	Ferry/ Vessel ⁽⁹⁾	Others ⁽⁸⁾	Total
Place of Study - 3 Groups	Place of Study - 22 Groups												
Hong	Central and Western	8 615	19 820	7 590	7 808	2 231	2 360	-	134	419	441	351	49 76
Kong Island	Wan Chai	3 777	10 631	9 427	11 723	1 100	2 510		253	343	514	1 180	41 45
isianu	Eastern	17 246	21 000	12 988	10 282	3 299	2 249		261	436	657	1 704	70 12
	Yau Tsim Mong	5 280 16 818	1 706 35 056	8 722 11 881	10 522 4 168	2 808 3 926	3 411 2 479		288 158	187 511	320 198	286 170	75 36
	Sham Shui Po	19 429	37 155	11 388	9 266	4 069	2 801		235	393	167	107	85 010
Kowloon	Kowloon City	19 021	26 494	23 353	23 766	7 076	9 520		525	936	161	114	110 96
	Wong Tai Sin Kwun	18 632	4 958	8 905	6 292	5 706	1 485	-	190	298	-	19	46 48
	Tong	26 823	16 828	12 774	9 875	8 294	1 432	-	230	303	27	211	76 79
	Kwan O New Town Tsuen	15 521	19 588	4 768	5 462	2 747	1 444	-	114	121	102	133	50 000
	Wan New Town	11 879	2 482	5 644	3 006	4 588	864	-	604	104	74	26	29 27
	Tuen Mun New Town Yuen Long	24 775	5 798	7 177	4 604	946	2 752	20 904	158	292	9	124	67 53
	New Town Tin Shui	7 824	1 596	3 191	4 458	1 654	2 685	3 843	433	113	2	373	26 17
	Wai New Town	17 427	2 036	2 3 1 9	2 076	490	1 121	10 475	259	69	-	148	36 420
	Fanling/ Sheung Shui New Town	14 973	3 426	7 732	4 067	3 358	1 730	-	316	160	24	692	36 47
New Territories	Tai Po New Town	12 921	9 753	6 601	6 832	3 413	2 937	-	523	310	5	358	43 65
	Sha Tin New Town Ma On	17 451	33 262	17 761	10 892	5 858	4 163	-	950	249	102	638	91 32
	Shan New Town	7 404	4 829	2772	2 730	1 276	1 152	-	116	93	25	122	20 519
	Kwai Chung New Town	18 482	7 313	9 679	3 810	5 168	499	-	364	173	69	15	45 57
	Tsing Yi New Town	5 762	4 068	6 170	2 615	1 678	259		200	58	76	77	20 96
	North Lantau New Town	5 017	355	2 403	511	54	45	-	175	-	63	233	8 85
	Other areas in the New Territories	6 119	5 820	5 290	3 285	2 582	1 397	1 466	558	105	480	816	27 91
Total	Total	301 196	272 974	400 525	148 050	72 249	49 295	36 688	7 044	5 674	3 516	7 005	1 094 183

2016 Population Census – Mode of Transport by New Towns (Workers)

C109		Population with Year and Area o		of Work in Hong	Kong by Main	Mode of Transpo	ort to Place	C. Econor	mic	2017/02/27				
Working Popu Place of Work				Hong Kong	by Main Moo	de of Transpo	ort to		Downl	oad 🗓 🙉				
Year	2016													
Area of Residence	Hong Ko	ong Island	Kov	wloon	New	Towns		s in the New and Marine	To	otal				
	with Fixe	Population ed Place of Hong Kong	with Fixe	Population ed Place of Hong Kong	Fixed Place	pulation with e of Work in Kong	with Fixe	Population ed Place of Hong Kong	Working Population wit Fixed Place of Work in Hong Kong					
	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage				
Main Mode of Transport to Place of Work														
Mass Transit Railway (Local line) ⁽¹⁾	183 462	6.4	396 945	13.9	547 112	19.1	36 638	1.3	1 164 157	40.7				
Bus ⁽²⁾	148 163	5.2	220 391	7.7	389 874	13.6	23 734	0.8	782 162	27.4				
On foot only	58 745	2.1	99 581	3.5	119 541	4.2	8 648	0.3	286 515	10.0				
Public light bus ⁽³⁾	29 587	1.0	73 044	2.6	76 781	2.7	12 437	0.4	191 849	6.7				
Private car/ Passenger van	38 582	1.3	39 033	1.4	82 130	2.9	26 225	0.9	185 970	6.5				
Company bus/ van	10 544	0.4	19 092	0.7	36 773	1.3	1 877	0.1	68 286	2.4				
Mass Transit Railway (Light Rail)	-	-			49 277	1.7	3 245	0.1	52 522	1.8				
Taxi	12 999	0.5	11 788	0.4	9 170	0.3	1 052	§(4)	35 009	1.2				
Residential coach service	3 914	0.1	3 492	0.1	17 691	0.6	3 023	0.1	28 120	1.0				
Ferry/ Vessel	2 894	0.1	3 573	0.1	1 659	0.1	14 803	0.5	22 929	0.8				
Others	16 603	0.6	5 472	0.2	15 347	0.5	3 404	0.1	40 826	1.4				
Total	505 493	17.7	872 411	30.5	1 345 355	47.1	135 086	4.7	2 858 345	100.0				

2021 Population Census – Mode of Transport by New Towns (Students)

B105 P	areone Attanding	Full time Cour	ese in Education	al Institutions	in Hong Kong by	Main Mode of T	raneport to Dia	ne of	2022/02	פרו	
	tudy, Year and A			iai ilisululions	III Florig Kong by	Main Mode of 1	ialisport to Fia	ce oi	2022/02	120	
Persons Attend Transport to Pl					s in Hong Kor	g by Main M	ode of		≜ Download ▼	X Close	
Year 2021											
Area of Residence	Hong Kor	ng Island	Kow	oon	New To	owns	Other Areas Territories		Total		
	Persons Atte time Cou Educational II Hong K	ırses in ıstitutions in	Persons Atte time Cou Educational II Hong K	ırses in ıstitutions in	Persons Atte time Cou Educational Ir Hong K	rses in estitutions in	Persons Attending Full- time Courses in Educational Institutions in Hong Kong (1)		Persons Attending Full- time Courses in Educational Institutions in Hong Kong (1)		
	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage	
Main Mode of Transport to Place of Study											
On foot only	32 379	3.0	91 137	8.	149 116	14.0	8 547	0.8	281 179	26.4	
Mass Transit Railway (Local line) (2)	35 392	3.3	94 773	8.	139 661	13.1	11 197	1.1	281 023	26.4	
Bus (3)	29 976	2.8	64 900	6.	85 594	8.0	10 852	1.0	191 322	18.0	
School bus (4)	28 744	2.7	36 271	3.	53 752	5.1	7 339	0.7	126 106	11.9	
Public light bus	7 805	0.7	23 740	2.	24 975	2.3	7 157	0.7	63 677	6.0	
Private car/ Passenger van	12 968	1.2	13 093	1.	25 335	2.4	12 090	1.1	63 486	6.0	
Mass Transit Railway (Light Rail)	-				30 492	2.9	1 864	0.2	32 356	3.0	
Residential coach service	604	0.1	1 677	0.	4 629	0.4	954	0.1	7 864	0.7	
Taxi	1 834	0.2	2 411	0.	1 911	0.2	283	.s	6 439	0.0	
Ferry/ Vessel	138	§	241		358	.5.	2 352	0.2	3 089	0.3	
Others	2 938	0.3	828	0.	1 947	0.2	1 288	0.1	7 001	0.7	
Total	152 778	14.4	329 071	30.	517 770	48.7	63 923	6.0	1 063 542	100.0	

2021 Population Census – Mode of Transport by New Towns (Workers)

g Kong Island g Population with Place of Work in long Kong r of percentage	Working Pop Fixed Place Hong	loon oulation with	Main Mode of 202 New To Working Pop Fixed Place Hong I	owns ulation with	Other Areas Territories a Working Pop	in the New and Marine ulation with	& Download → Tot Working Pop	
g Population with Place of Work in long Kong	Working Pop Fixed Place Hong Number of	oulation with of Work in Kong	New To Working Pop Fixed Place	owns ulation with of Work in	Territories a Working Pop	and Marine ulation with		
g Population with Place of Work in long Kong	Working Pop Fixed Place Hong Number of	oulation with of Work in Kong	Working Pop	ulation with of Work in	Territories a Working Pop	and Marine ulation with		
Place of Work in long Kong	Fixed Place Hong Number of	of Work in Kong	Fixed Place	of Work in			Working Pop	ulation with
- Dercentage		Percentage		Kong	Fixed Place Hong	of Work in Kong	Working Population with Fixed Place of Work in Hong Kong	
		Joseph	Number of Persons	Percentage	Number of Persons	Percentage	Number of Persons	Percentage
				'				
5 069 7.	0 380 249	14.	541 708	20.4	43 074	1.6	1 150 100	43.
337 4.	0 180 617	6.	354 022	13.3	23 709	0.9	663 685	25
1750 2.	1 94 759	3.	121 173	4.6	8 311	0.3	278 993	10
i 559 1.	3 37 574	1.	88 202	3.3	28 556	1.1	189 891	7.
1 510 0.	8 48 989	1.	63 819	2.4	14 901	0.6	149 219	5.
3 765 0.3	3 15 431	0.	36 826	1.4	2 011	0.1	63 033	2
-			44 255	1.7	1 621	0.1	45 876	1.
641 0.	8 10 667	0.	10 613	0.4	936	§.	37 857	1.
2 860 0.	1 3 324	0.	14 092	0.5	2 041	0.1	22 317	0.
2 420 0.	1 2 651	0.	2 349	0.1	13 655	0.5	21 075	0.
2 299 0.	5 4 812	0.	17 338	0.7	3 063	0.1	37 512	1.
5 4 5 1 2 2 2	5 337 4. 4 750 2. 5 559 1. 1 510 0. 8 765 0	5 337	5 337	5 337	5 337 4.0 180 617 6.3 354 022 13.3 4 750 2.1 94 759 3.3 121 173 4.6 5 559 1.3 37 574 1.3 88 202 3.3 1 510 0.8 48 989 1.3 63 819 2.4 8 765 0.3 15 431 0.3 38 826 1.4	5 337 4.0 180 617 6 354 022 13.3 23 708 4 750 2.1 94 759 3 121 173 4.6 8 311 5 559 1.3 37 574 1 88 202 3.3 28 556 1 510 0.8 48 989 1 63 819 2.4 14 901 8 765 0.3 15 431 0 36 826 1.4 2 011	5 337 4.0 180 617 6 354 022 13.3 23 709 0.9 4 750 2.1 94 759 3 121 173 4.6 8 311 0.3 5 559 1.3 37 574 1.5 88 202 3.3 28 556 1.1 1 510 0.8 48 989 1.5 63 819 2.4 14 901 0.6 8 765 0.3 15 431 0.5 36 826 1.4 2 011 0.1 44 255 1.7 1621 0.1 5 641 0.6 10 667 0.5 10 013 0.4 936 § 2 860 0.1 3 324 0 14 002 0.5 2 041 0.1 2 420 0.1 2 651 0 2 349 0.1 13 055 0.5 2 299 0.5 4 812 0 17 338 0.7 3 083 0.1	5 337 4.0 180 617 6 354 022 13.3 23 709 0.9 663 686 4 750 2.1 94 759 3 121 173 4.6 8 311 0.3 278 993 5 559 1.3 37 574 1 88 202 3.3 28 556 1.1 189 891 1 510 0.8 48 989 1 63 819 2.4 14 901 0.6 149 219 8 765 0.3 15 431 0 36 826 1.4 2 011 0.1 63 033 - 44 255 1.7 1 821 0.1 45 876 5 641 0.6 10 667 0 10 613 0.4 936 \$ 37 857 2 860 0.1 3 324 0 14 092 0.5 2 041 0.1 22 317 2 420 0.1 2 651 0 2 349 0.1 13 865 0.5 21 075 2 299 0.5 4 812 0 17 338 0.7 3 063 0.1 37 512

TCS 2011 - Figure 3.3 (Proportion of Daily Mechanised Trips)

Figure 3.3: Hourty Profiles of Mechanised Trips

Proportion of Daily Mechanised Trips extracted from Figure 3.3

Period	HBW	HBS	HBO	NHB+EB
0000-0559	2%	0%	2%	2%
0600-0659	3%	0%	1%	1%
0700-0759	11%	35%	4%	3%
0800-0859	20%	9%	5%	6%
0900-0959	7%	3%	5%	4%
1000-1159	5%	3%	13%	11%
1200-1359	2%	5%	13%	15%
1400-1559	2%	12%	13%	17%
1600-1659	2%	16%	7%	9%
1700-1759	6%	8%	6%	10%
1800-1859	17%	4%	8%	12%
1900-1959	10%	2%	5%	6%
2000-2159	9%	2%	11%	3%
2200-2359	4%	1%	7%	1%
Daily	100%	100%	100%	100%

2021 Statistics for the Heavy Rail System

Link https://www.legco.gov.hk/yr2022/english/fc/fc/w q/thb-t-e.pdf

Annex

2021 Statistics for the Heavy Rail System (the busiest one hour in the morning per direction for critical links) (Note 1)

		East Rail Line	Tuen Ma Line	Tseung Kwan	Island Line	South Island	Kwun Tong	Tsuen Wan	Disneyland Resort	Tracks sl some se	
				O Line		Line	Line	Line	Line	Tung Chung Line (Note 2)	Airport Express (Note 2 and 3)
1.	Design capacity (6 ppsm) (a)	NA (Note 4)	70 000	85 000	85 000	27 000	85 000	85 000	10 800	66 000	10 000
2.	Maximum carrying capacity when train frequency is maximized (6 ppsm) (b)	NA (Note 4)	70 000	67 600	80 000	27 000	71 400	75 000	9 600	45 000	4 800
3.	Existing carrying capacity (6 ppsm) (c)	73 300	58 800	67 600	80 000	16 800	71 400	75 000	4 300	42 500	3 200
4.	Difference between (a) and (b) (Note 5)	NA	0	17 400	5 000	0	13 600	10 000	1 200	21 000	5 200
5.	Difference between (b) and (c) (Note 6)	NA	11 200	0	0	10 200	0	0	5 300	2 500	1 600
6.	Current patronage (d)	30 100	36 100	43 300	47 800	9 200	40 000	52 200	1 700	23 600	800

Session 9 THB(T) - Page 53