

Proposed Minor Relaxation of Plot Ratio Restriction for Permitted Flat and Proposed Shop and Services Uses at Lots 4614 and 4615 RP in D.D. 116, Lots 1753 S.B ss.3 (Part), 1753 S.B RP (Part), 1756 S.A (Part), 1756 RP (Part), 1757, 1758 RP and 1760 RP in D.D. 120, and Adjoining Government Land, Tai Kei Leng, Yuen Long, New Territories

Sewerage Impact Assessment (Revision C)

December 2023

This page left intentionally blank for pagination.

Issue and Revision Record

Revision	Date	Originator	Checker	Approver	Description
Α	Aug 2023	Edith CHOW	May TSE	May TSE	For Submission
В	Oct 2023	Edith CHOW	May TSE	May TSE	For Submission
С	Dec 2023	Edith CHOW	May TSE	May TSE	For Submission

Document reference: 601364736 | 072 | C |

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

1	Intro	duction	1
	1.1	Background	1
	1.2	Key Development Parameters	1
	1.3	Objectives of Report	1
	1.4	Structure of the Report	2
2		nodology and Design Parameters for Sewerage Impact	3
	2.1	General Approach	3
	2.2	Methodology	3
	2.3	Design Parameters and Assumptions	4
	2.4	Planned Population and Employee Data of the Proposed Development	6
3		ting Sewerage and Estimation of Sewage Flow for the Existing dition	7
	3.1	Existing Sewerage System	7
	3.2	Estimated Sewage Flow from the Existing Site Area	7
4	Estir	mation of Sewage Flow for the Proposed Development	8
	4.1	Estimated Sewage Flow for the Proposed Development	8
5	Sew	erage Impact Assessment and Sewage Discharge Arrangement	9
	5.1	Sewage Discharge Arrangement	9
	5.2	Sewerage Impact Assessment	9
6	Con	clusion	11
Apr	endic	es	12

1 Introduction

1.1 Background

- 1.1.1 Mott MacDonald Hong Kong Limited (hereinafter as "MMHK") was commissioned by the Applicant to prepare a Sewerage Impact Assessment (SIA) in support of the proposed minor relaxation of statutory planning control of plot rate of PR3.5 up to PR4.287 for additional residential development and small retail service application abutting Tai Tong Road and Tai Shu Ha Road East, Yuen Long. The location of the development is shown in Appendix A.
- 1.1.2 This report will demonstrate that the additional flats of 55 together with the planned residential development is feasible in terms of its impact on the sewerage system.

1.2 Key Development Parameters

1.2.1 The location and layout of the proposed development is provided in **Appendices A** and **B** and the Development data is given in **Table 1.1** and **Table 1.2** below:-

Table 1.1: Data of the Proposed Residential Development

	•				
Items	Details				
Area	Approximately 2,540 m ²				
Proposed Domestic GFA	10,668 m ²				
Proposed Plot Ratio	4.287 (minor relaxation of DPR0.6 and NDPR0.087above permitted 3.5)				
No. of Blocks	1				
Nos. of Units	Approximately 345 (including 55 additional flats)				
Anticipated Intake Year	2028				

Table 1.2: Data of the Proposed Retail Building

Items	Details
Area	Approximately 220 m ²
No. of Blocks	1
No. of storey	1
Anticipated Completion Year	2028

1.3 Objectives of Report

1.3.1 This SIA report aims to identify the existing and planned sewerage systems in vicinity of the proposed development, to assess the sewerage impacts arising from the proposed development and to identify the required sewerage works, if required, to support the development.

1.4 Structure of the Report

1.4.1 This SIA report contains the following sections in addition to this introduction (Section 1):-

Section 2 – Methodology and Design Parameters for Sewerage Impact Assessment

Covers the approach of the SIA and the parameters used in the assessment.

Section 3 – Existing Sewerage and Estimation of Sewage Flow for the Existing Condition

Discuss the sewage flow under the existing condition and the existing sewerage system.

Section 4 – Estimation of Sewage Flow for the Proposed Development

Discuss the sewage flow generated from the Development.

Section 5 - Sewerage Impact Assessment and Sewage Discharge Arrangement

Discuss the sewerage impact arising from the Development and the potential sewage disposal option for the Development.

Section 6 - Conclusion

Summarise the findings and conclude the sewerage impact arising from the Development.

2 Methodology and Design Parameters for Sewerage Impact Assessment

2.1 General Approach

2.1.1 The SIA is carried out to identify and assess if there are any potential adverse sewerage impacts arising from the proposed development.

2.2 Methodology

Assessment Approach

- 2.2.1 The following approach and methodology have been adopted in this sewerage impact assessment:-
 - Carry out desktop study to collect the relevant information for the assessment. Relevant information for the assessment collected included drainage record plans from Drainage Services Department (DSD) and information as listed in Section 2.2.3;
 - Estimate the sewage flow generated from the existing site and the proposed development; and
 - Assess the sewerage impacts arising from the proposed development and formulate option to mitigate the sewerage impacts identified. Sewage disposal arrangement for the proposed development will also be proposed.
- 2.2.2 For the existing and proposed sewerage in vicinity of the proposed development, Colebrook-White equation has been used to assess the hydraulic conditions of the sewerage network.

Design Standards, Guidelines and Reference

- 2.2.3 The sewage flow generated from the proposed development is estimated based on the following standards, guidelines and references for the sewerage design:-
 - Sewerage Manual published by Drainage Services Department (DSD);
 - Guidelines for Estimating Sewage Flows (GESF) for Sewerage Infrastructure published by Environmental Protection Department (EPD); and
 - Commercial and Industrial Floor Space Utilisation Survey conducted by Planning Department (PlanD).

2.3 Design Parameters and Assumptions

Unit Flow Factors

2.3.1 The category of the components of the Unit Flow Factors adopted in the assessment are indicated in **Table 2.1**.

Table 2.1: Unit Flow Factors

Scenario	Category / Use Unit		Unit Flow Factor	
For existing	(R2)		0.27	(i)
developments and proposed	J4 Wholesale & Retail	m³/d per employee	0.28	(ii)
development	J10 Restaurants & Hotels	m ³ /d per employee	1.58	(iii)
	J11 Community, Social & Personal Services	sonal m³/d per employee		(iv)

- According to the Guidelines for Estimating Sewage Flows (GESF) issued by EPD, unit flow factor for private housing unit (R2) are 0.27 m³/d.
- (ii) According to the Guidelines for Estimating Sewage Flows (GESF) issued by EPD, unit flow factor for Wholesale & Retail (J4) is 0.28 m³/h/d.
- (iii) According to the Guidelines for Estimating Sewage Flows (GESF) issued by EPD, unit flow factor for Restaurants & Hotels (J10) is 1.58 m³/h/d.
- (iv) According to the Guidelines for Estimating Sewage Flows (GESF) issued by EPD, unit flow factor for Community, Social & Personal Services (J11) is 0.28 m³/h/d.

Catchment Inflow Factors

- 2.3.2 The Catchment Inflow Factors (PCIF) cater for the net overall ingress of water or wastewater to the sewerage system. They are catchment-dependent and applicable to major sewerage facilities of a catchment. It is not applicable to new catchments which have no connection from existing sewerage system which are deemed to be free from misconnections and pipe defects. Therefore, the PCIF is not applicable in estimating the total flows from the new development project.
- 2.3.3 With reference to EPD Technical Paper Guidelines for Estimating Sewage Flows for Sewage Infrastructure Planning (GESF) Table T-4, for the existing sewerage system in Yuen Long, the Poir of 1.0 for catchments will be adopted.

Peaking Factors

2.3.4 Peaking factors cater for seasonal / diurnal fluctuation and normal amount of infiltration and inflow. The peaking factors shall be in accordance with Table T-5 of the GESF and are shown in Table 2.2.

Table 2.2: Peaking Factors for Various Population Ranges

Population Range	Peaking Factor (including stormwater allowance) for facility with existing upstream sewerage	Peaking Factor (excluding stormwater allowance) for facility with new upstream sewerage
(a) Sewers		
< 1,000	8	6
1,000 – 5,000	6	5
5,000 – 10,000	5	4
10,000 – 50,000	4	3
> 50,000	Max (7.3/N ^{0.15} , 2.4)	Max (6/N ^{0.0175} , 1.6)
(b) Sewage Treatment	Works, Preliminary Treatment Works and P	umping Stations
< 10,000	4	3
10,000 – 25,000	3.5	2.5
25,000 - 50,000	3	2
> 50,000	Max (3.9/N ^{0.065} , 2.4)	Max (2.6/N ^{0.065} , 1.6)

Note:

N = Contributing population in thousands

$$Contributing \ Population = \frac{Calculated \ total \ average \ flow \ (m^3/day)}{0.27 \ (m^3/person/day)}$$

2.3.5 Peaking factors (excluding stormwater allowance) are applicable to planning sewerage facilities flow from new upstream sewerage systems which essentially have no misconnections and defects for infiltration. Thus, peaking factor excluding stormwater allowance has been used for the proposed sewers. For existing sewers, peaking factor including stormwater allowance has been adopted.

Roughness

2.3.6 For the proposed sewerage network, polyethylene pipe will be used. A roughness value of 1.5 mm, similar to uPVC material pipe under poor slimed condition in accordance with Sewerage Manual – Table 5, has been adopted for polyethylene pipe. For existing clayware sewer, a roughness value of 3mm for slimed sewer in poor condition has been adopted.

2.4 Planned Population and Employee Data of the Proposed Development

2.4.1 The development parameters and design population of the proposed development are shown in Table 2.3 and Table 2.4 below. The layout plan of the proposed development could be referred to Appendix A1.

Table 2.3: Design Parameters for the Proposed Development

Development Parameters	
Site Area (m²)	About 2,540
Proposed Domestic Plot Ratio	4.2
Proposed No. of Units	About 345
Estimated Population (i)	966
Non-Domestic Facilities (m²)	About 220 (Retail and Restaurant)

Remarks:

(i) The population is estimated with the average number of occupants, 2.8 occupants per unit for Yuen Long according to 2021 Population Census.

Table 2.4: Estimated Employee Number and Serving Population for the Development

Туре	Category / Use	Population / No. of Staff
Proposed Residential Development		
Residential	R2	966
Residential - Employee	J11	18 ^{(i) (ii)}
Proposed Retail Building		
Retail - Employee (v)	J4	4 ⁽ⁱⁱⁱ⁾
Restaurant - Employee (v)	J10	6 ^(iv)

Remarks:-

- (i) It is assumed there would be 2 security guards and 2 managing staffs for housing block.
- (ii) For the club house, it is assumed there would be 3.3 workers per GFA (in 100 m²) for Community, Social & Personal Services according to Figure 9: Worker Density by Industry Group of "Commercial and Industrial Floor Space Utilization Survey" published by Plannings Department.
- (iii) It is assumed there would be 3.5 workers per GFA (in 100 m²) for Retail Trade according to Figure 9: Worker Density by Industry Group of "Commercial and Industrial Floor Space Utilization Survey" published by Plannings Department.
- (iv) It is assumed there would be 5.1 workers per GFA (in 100 m²) for Restaurants according to Figure 9: Worker Density by Industry Group of "Commercial and Industrial Floor Space Utilization Survey" published by Plannings Department.
- (V) It is assumed that 50% of the GFA of the Retail Building is retail and 50% of the GFA of the Retail Building is restaurant.

3 Existing Sewerage and Estimation of Sewage Flow for the Existing Condition

3.1 Existing Sewerage System

- 3.1.1 There is no existing public sewerage system serving the Site. Based on sewerage record from DSD, there is a 200mm to 450mm diameter sewage pipeline located along Tai Tong Road (ID: FWD1042941, FWD1043890 and FWD1043891) at the north of the proposed site. The existing sewage pipeline along Tai Tong Road collects sewage from The Brand (via Existing Manhole FMH1035400) and joins with another set of 200mm to 300mm diameter sewage pipeline along Shap Pat Heung Road at existing manhole FMH1036051. The sewage collected by two sets of sewage pipeline along Tai Tong Road and along Shap Pat Heung Road will be discharged to 750mm diameter sewers along Shap Pat Heung Road via a 300mm diameter sewer (ID: FWD1043910) and a 450mm diameter sewer (ID: FWD1043909).
- 3.1.2 According to drawings from Building Department, there is a sewage treatment plant within Sereno Verde to handle and treat the sewage generated from Sereno Verde. The treated effluent from Sereno Verde is then discharged to the existing channel next to Tai Shu Ha Road East. It is also observed that the sewage generated from Reach Summit is discharged to existing manhole FMH1064703 for discharge based on drawings from Building Department.
- 3.1.3 The existing sewerage system near to the proposed development is shown in AppendixB. The catchments of existing sewerage system are presented in Appendix B1.

3.2 Estimated Sewage Flow from the Existing Site Area

3.2.1 At present, the site area is a paved car park with no sewerage facilities. Thus, no sewage flow generation is expected under existing condition within the site area.

4 Estimation of Sewage Flow for the Proposed Development

4.1 Estimated Sewage Flow for the Proposed Development

4.1.1 Based on the Development parameters and sewage unit flow factors as mentioned in Section 2, the estimated Average Dry Weather Flow (ADWF) for the proposed development with associated facilities is approximately 276.5 m³/day. Details of the sewage flow estimation are given in **Table 4.1** below.

Table 4.1: Sewage Flow Estimation for Proposed Development

Туре	Population / No. of Staff (nos.)	Unit Flow Factor (m³/h/d)	Average Dry Weather Flow (m³/d)
Proposed Residential Develo	pment		
Residential (R2)	966	0.27	260.82
Residential - Employee (J11)	18	0.28	5.04
		Sub-total =	265.86
Proposed Retail Building			
Retail - Employee (J4)	4	0.28	1.12
Restaurant – Employee (J10)	6	1.58	9.48
		Sub-total =	10.60
		Total =	276.46

5 Sewerage Impact Assessment and Sewage Discharge Arrangement

5.1 Sewage Discharge Arrangement

- 5.1.1 As discussed in Section 3, there is a 200mm to 450mm diameter sewage pipeline located along Tai Tong Road at the north of the proposed site.
- 5.1.2 Also, as mentioned in Section 4, the ADWF generated from the proposed development is 276.46 m³/d. The sewage generated from the proposed residential development is proposed to be discharged to the proposed manhole FMH-01 and the sewage generated from the retail building will be discharged to the proposed manhole FMH-02.
- 5.1.3 For conveying the sewage flow from the Development to the existing manhole FMH1035400, new polyethylene sewers of 250 mm diameter are proposed to collect sewage from the proposed development to the existing manhole FMH1035400 via proposed pipes FMD-P1, FMD-P2 and FMD-P3. The proposed sewage discharge arrangement refers to Appendix C.

5.2 Sewerage Impact Assessment

The hydraulic capacities of the proposed sewers for the proposed development have been assessed using Colebrook-White equation. The results are summarised in Table
5.1 below and details of the calculation are attached in Appendix D.

Table 5.1: Hydraulic Capacities of Existing Sewers along Tai Tong Road under Existing and Proposed Flow Condition

Upstream Manhole	Downstream Manhole	Pipe Size (mm)	Utilization under Existing Condition	Utilization under Proposed Condition	Utilization under Proposed Condition with upgrading works	
Sewerage Netwo	ork along Tai Tong	Road (Sub-catch	ment 1)			
FMH1035400*	FMH1035401	200	9%	<mark>94</mark> %^	46%^	
FMH1035401	FMH1036053	450	7%	11%	11%	
FMH1036053	FMH1036051	450	27%	42%	42%	
Sewerage Netwo	ork along Shap Pa	t Heung Road (Su	b-catchment 2)			
FMH1060002	FMH1060022	250	10%	10%	10%	
FMH1060022	FMH1060023	250	12%	12%	12%	
FMH1060023	FMH1060024	250	11%	11%	11%	
FMH1060024	FMH1060062	250	9%	9%	9%	
FMH1060062	FMH1060063	250	7%	7%	7%	
FMH1060063	FMH1036052	200	10%	10%	10%	
FMH1036052	FMH1036051	300	7%	7%	7%	
300mm and 450mm diameter sewers (ID: FWD1043910 & FWD1043909) along Shap Pat Heung Road (Sub-catchments 1 & 2)						
FMH1036051	FMH1036050	300	26%	41%	41%	
FMH1036051	FMH1036049	450	12%	18%	18%	
Remark: -					_	

Upstream Downstrea Manhole Manhole	n Pipe Size (mm)	Utilization under Existing Condition	Utilization under Proposed Condition	Utilization under Proposed Condition with upgrading works
---------------------------------------	---------------------	---	---	---

^{1. *} The downstream existing manhole connected to the proposed pipe (i.e. FMD-P1, FMD-P2 and FMD-P3)

- Based on the hydraulic calculation, the existing sewers along Tai Tong Road and Shap Pat Heung Road are below 50% except the 200mm sewer between manholes FMH1035400 and FMH1035401 which is about 94% and the sewers are capable of discharging sewage flow generated from the proposed Development. In light of the high utilization under the proposed condition for the 200mm diameter sewer between manholes FMH1035400 and FMH1035401 (ID: FWD1042941), it is proposed to upgrade the existing sewer from 200mm to 250mm in diameter. After the proposed upgrading works, the utilization of the existing sewer FWD1042941 will be decreased from 94% to 46%.
- 5.2.3 For the proposed sewers (PE pipes) connecting the proposed Development to the existing sewers along Tai Tong Road, the hydraulic result is summarised in Table 5.2 below and details of the calculation are attached in Appendix D. A reduction in flow area has also been added to check for the proposed sewers for future rehabilitation if necessary.

Table 5.2: Hydraulic Capacities of Proposed Sewers to Sewers along Tai Tong Road under Proposed Flow Condition

Upstream Manhole	Downstream Node	Pipe Size (mm)	Utilization under Proposed Flow Condition	Utilization under Proposed Flow Condition with Flow Area Reduced for Rehabilitation
FMH-01*	FMH-02	250	50%	57%
FMH-02 [@]	FMH-03	250	<mark>48%</mark>	55%
FMH-03	FMH1035400	<mark>250</mark>	<mark>48%</mark>	<mark>55%</mark>

Remark: -

5.2.4 Based on the hydraulic calculation, the sewage flow from the proposed development is well within the capacity of the existing and proposed sewage pipelines with utilisation below or equal to 57% even taking account of reduced size for proposed sewers taking account of future rehabilitation. Thus, it is considered that there is no adverse sewerage impact arising from the Development. The construction of the proposed sewers (i.e. FMD-P1, FMD-P2 and FMD-P3) and proposed upgraded pipe (i.e. FWD1042941) will be carried out by the project proponent.

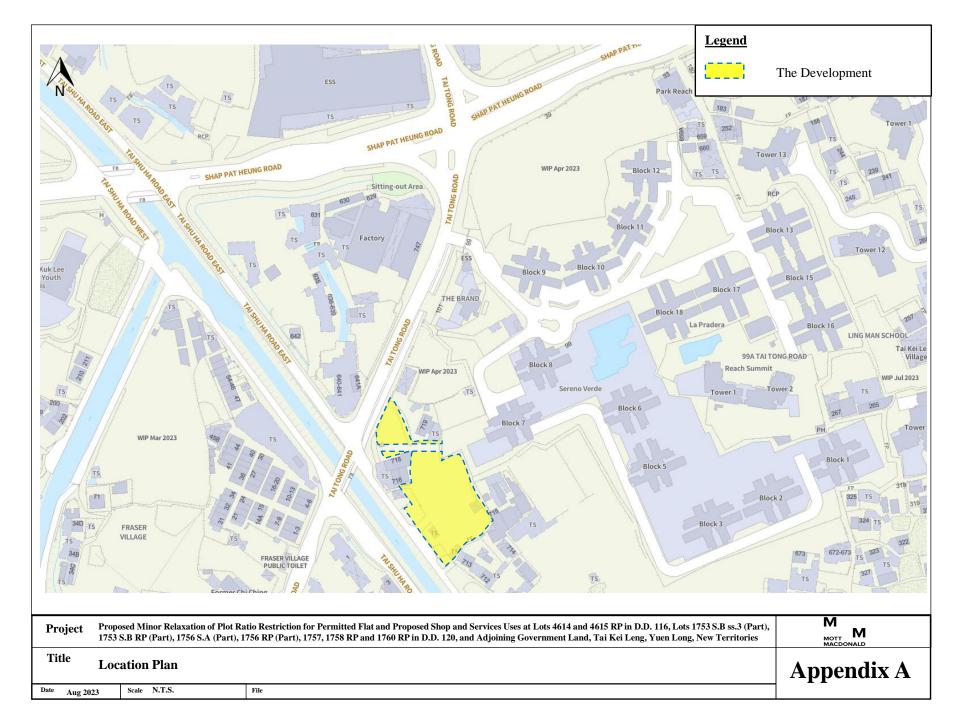
^{2. @} For FMD1002480, it consists of two 200mm pipes. it is assumed that the cumulative peak sewage flow is equally divided between 2 pipes.

^{3. ^} In light of the high utilization under the proposed condition for the sewer between manholes FMH1035400 and FMH1035401 (ID: FWD1042941), it is proposed that to upgrade that existing sewer from 200mm to 250mm in diameter.

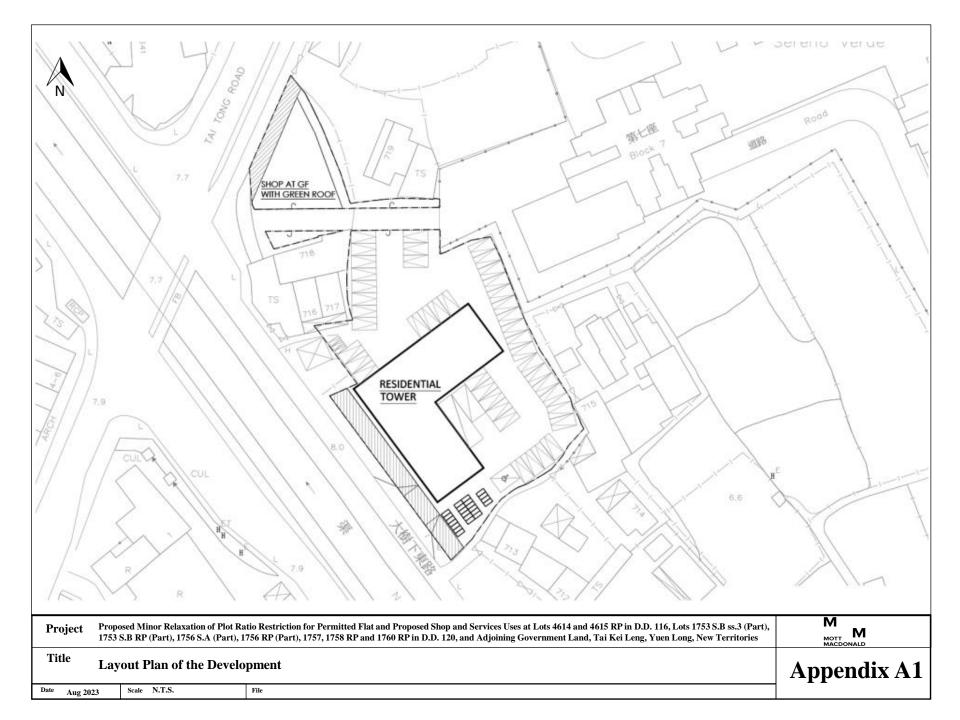
^{1. *} The discharge manhole for the proposed residential development.

^{2. @} The discharge manhole for the proposed retail building.

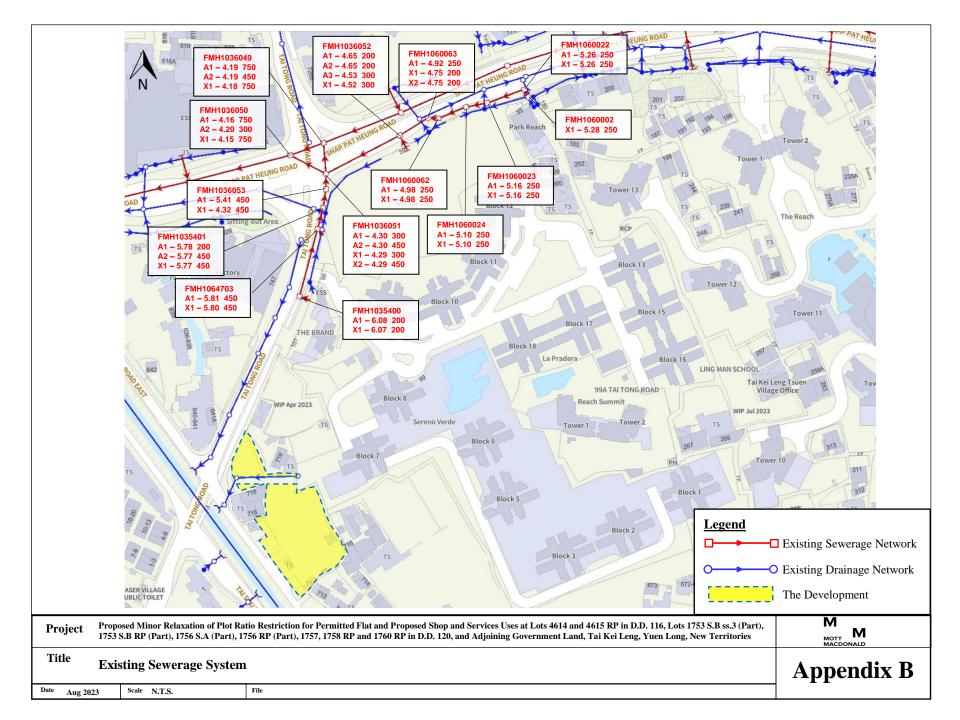
6 Conclusion

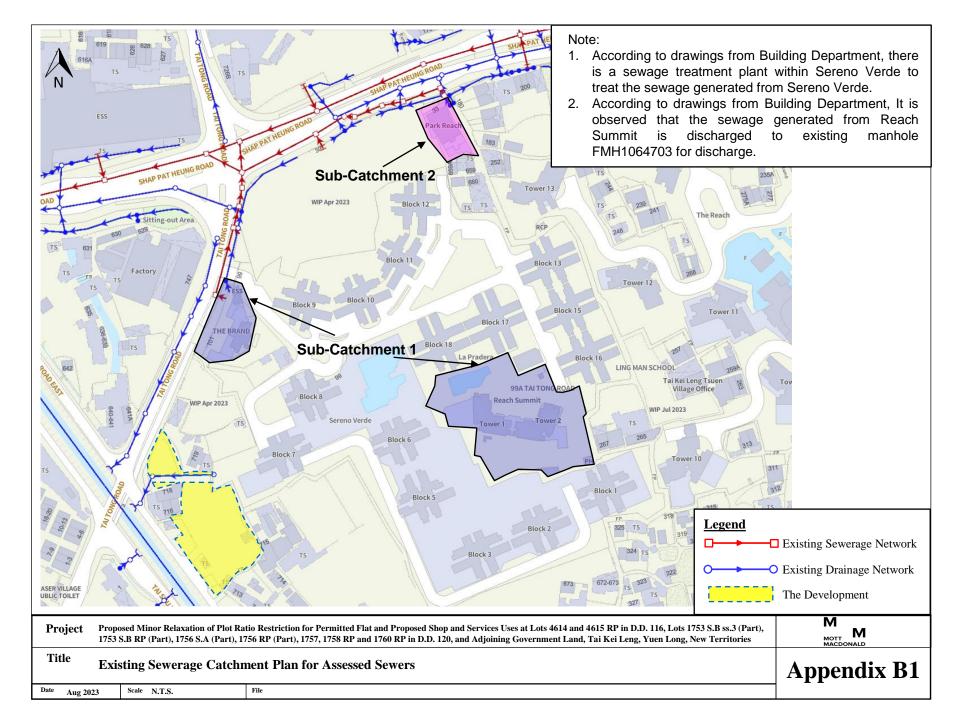

- 6.1.1 The estimated Average Dry Weather Flow (ADWF) for the proposed whole development is approximately 276.5 m³/day. The sewage generated will be discharged at a proposed manhole FMH-01. Sewage flow is then conveyed by three proposed 250mm sewers (PE pipes) connecting the existing manhole FMH1035400, and then to 200mm to 450mm diameter sewage pipeline along Tai Tong Road and Shap Pat Heung Road. In light of the high utilization under the proposed condition for the 200mm diameter sewer between manholes FMH1035400 and FMH1035401 (ID: FWD1042941), it is proposed to upgrade the existing sewer from 200mm to 250mm in diameter. After the proposed upgrading works, the utilization of the existing sewer FWD1042941 will be decreased from 94% to 46%.
- Based on the hydraulic calculation, the sewage flow from the proposed development is within the capacity of the existing and proposed sewage pipelines. However, it should be noted that the additional impact for the 55 flats and 220m² retail building generate sewage flow of 52.2 m³/d only which is 19% of the whole planned development. In view of the nearby development, possible upgrade is anticipated. The minor increase in the sewerage flow of 52.2m³/d is very minor and thus, it is considered that there is no adverse sewerage impact arising from the Development site.

Appendices

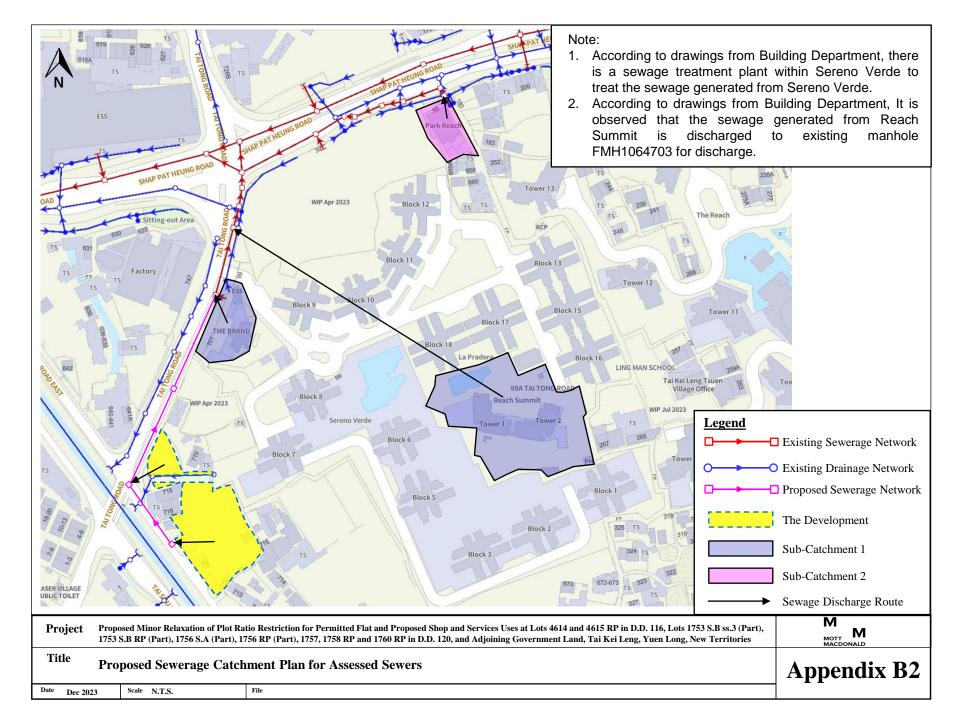

Appendix A	Location Plan of the Development
Appendix A1	Layout Plan of the Development
Appendix B	Existing Sewerage System
Appendix B1	Existing Catchment Plan
Appendix B2	Proposed Catchment Plan
Appendix C	Proposed Sewerage System
Appendix D	Hydraulic Calculation
Appendix E	Distribution of Flow from Existing Manhole FMH1036051 To Existing Sewers FWD1043910 and FWD1043909 Under Existing and Proposed Conditions

Appendix A

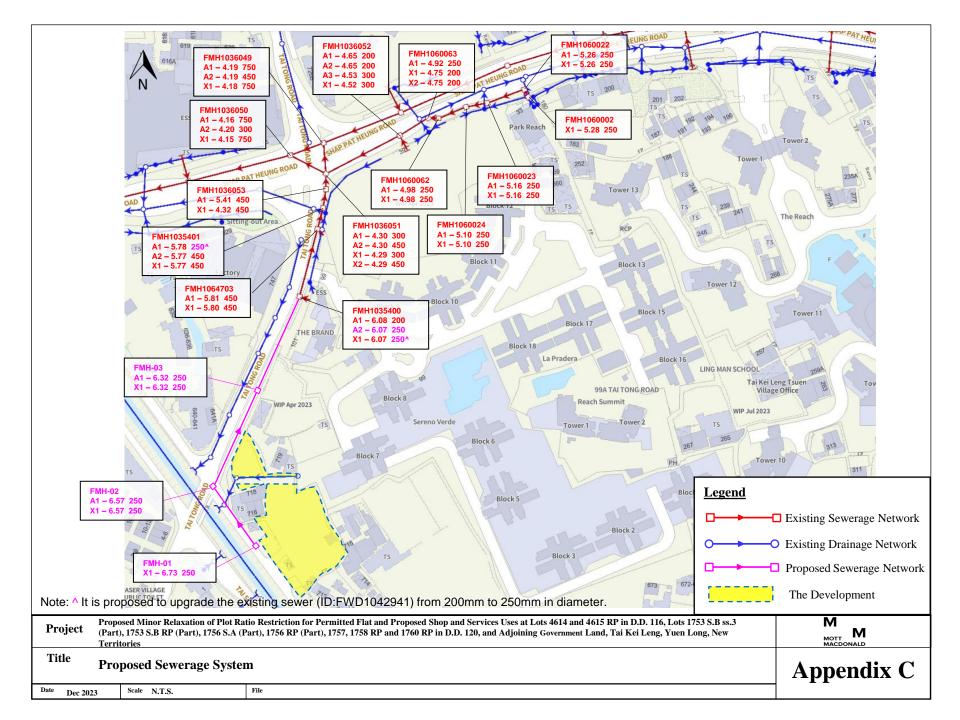

Location Plan of the Development


Appendix A1 Layout Plan for the Development

Appendix B Existing Sewerage System



Appendix B1 Existing Catchment Plan



Appendix B2

Proposed Catchment Plan

Appendix C Proposed Sewerage System

Appendix D Hydraulic Calculation

Appendix D.1 - Sewage Flow for Existing Condition Sub-Catchment 1

The Brand

Estimated No. of Flats = Average Household Size = Population = Global Unit Flow Factors = Sewage Flow (ADWF) =	Residential 28 2.8 79 0.27 21.33 0.25	Flats Persons per Flat Persons m³/d per person m³/d //s	According to 2021 Population Census, average household size in Yuen Long is 2.8 persons per flat. Domestic Flow Private Housing (R2)
Reach Summit Estimated No. of Flats = Average Household Size = Population = Global Unit Flow Factors = Sewage Flow (ADWF) =	Residential 504 2.8 1412 0.27 381.24 4.41	Flats Persons per Flat Persons m³/d per person m³/d Vs	According to 2021 Population Census, average household size in Yuen Long is 2.8 persons per flat. Domestic Flow Private Housing (R2)
Reach Summit Swimming Pool Pool Volume = Turnover Rate = Surface Loading Rate of Filter = Filter Areas Required = Backwash Duration = Backwash Flow Rate = Average Design Flow for swimming pool backwashing = Instant peak flow = Sub-Catchment 2 Park Reach	Swimming Pool 264 6 48 0.92 3 30 1.38 0.02 27.50 7.64	m³ hrs m³/m²/hr m² min/day m³/m²/hr m³/day l/s m³/tay	Assumed 1.2m deep $Filteration \ Rate = 48 \ m^3/m^2/h$
Estimated No. of Flats = Average Household Size = Population = Global Unit Flow Factors = Sewage Flow (ADWF) =	Residential 63 2.8 177 0.27 47.79 0.55	Flats Persons per Flat Persons m³/d per person m³/d t/s	According to 2021 Population Census, average household size in Yuen Long is 2.8 persons per flat. Domestic Flow Private Housing (R2)

Appendix D.2 - Sewage Flow for Proposed Condition

Sewage Flow from proposed residential and retail development

Estimated No. of Flats = Average Household Size = Population = Global Unit Flow Factors = Sewage Flow (ADWF) =	Residential Building 345 2.8 966 0.27 260.82 3.02	Flats Persons per Flat Persons m³/d per person m³/d l/s	According to 2021 Population Census, average household size in Yuen Long is 2.8 persons per flat. Domestic Flow Private Housing (R2)
Population = J11 Community, Social & Personal Services- Global Unit Flow Factors = Sewage flow =	Residential Building 4 0.28 1.12 0.01	Persons m³/d per employee m³/d 	It is assumed there would be 2 security guards and 2 managing staffs for housing block.
Estimated GFA of Building = Population = J11 Community, Social & Personal Services- Global Unit Flow Factors = Sewage flow =	Clubhouse 420.00 14 0.28 3.92 0.05	m² Persons m³/d per employee m³/d l/s	It is assumed there would be 3.3 workers per GFA (in 100 m2) for Community, Social & Personal Services according to Figure 9: Worker Density by Industry Group of *Commercial and Industrial Floor Space Utilization Survey" published by Plannings Department.
Sewage Discharge to Estimated GFA of Building = Population = J4 Wholesale & Retail - Global Unit Flow Factors = Sewage flow = Sewage Discharge to	FMH-01 Retail Building 220.00 8 0.28 2.24 0.03 FMH-02	m ² Persons m³/d per employee m³/d l/s	It is assumed there would be 3.5 workers per GFA (in 100 m2) for Retail Trade according to Figure 9: Worker Density by Industry Group of "Commercial and Industrial Floor Space Utilization Survey" published by Plannings Department.

Appendix D.3 - Sewer Pipeline Information and Culmulative Peak Sewage Flow Calculation (Existing Condition)

Peaking Factor based on Factor:

Including Stormwater

Foulwater Drains Capacity Design Check (By Colebrook White Equation)

where V = velocity (m/s)

g = 9.81 (ms⁻²)

R = hydraulic radius (m)

s = Slope of pipe / hydraulic gradient v = kinematic viscosity (m²/s)

Ks = pipe roughness (mm)

Assumptions:

For circular pipes flowing full,

$$V = -\sqrt{(8gDs)}\log(\frac{Ks}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}})$$

For partially full pipes or pipes with non-circular cross-sections,

$$V = -\sqrt{(32 \, gRs \,)} \log(\frac{ks}{14.8R} + \frac{1.255 \, v}{R\sqrt{(32 \, gRs \,)}})$$

Population Range	Peaking Factor (including stormwater allowance) for facility with existing upstream sewerage	Peaking Factor (excluding stormwater allowance) for facility with new upstream sewerage
(a) For sewers		
<1,000	8	6
1,000 - 5,000	6	5
5,000 - 10,000	5	4
10,000 - 50,000	4	3
>50,000	$Max \left(\frac{7.3}{N^{0.15}}, 2.4 \right)$	$Max \left(\frac{6}{N^{8175}}, 1.6 \right)$
(b) Sewage Treatment Wo	orks, Preliminary Treatment Work	s and Pumping Stations
<10,000	4	3
10,000 - 25,000	3.5	2.5
25,000 - 50,000	3	2
>50,000	$Max \left(\frac{3.9}{N^{0.865}}, 2.4 \right)$	$\operatorname{Max}\left(\frac{2.6}{N^{8565}}, 1.6\right)$

Pipe roughness for Proposed PE Pipeline =

1.5 mm

3 mm

(Similar roughness value of uPVC material pipe under poor slimed condition in accordance with Sewerage Manual - Table 5 has been adopted for polyethylene pipe) (Refer to Sewerage Manual Part 1 - Table 5: Clayware)

Pipe roughness for Existing Sewage Pipeline (<=600 dia.) =

Transitional flow and water at 15 degree celsius, i.e. kinematic viscosity is 1.14 x 10 ⁻⁶ m²/s

Hydraulic Calculation and Utilisation for 200mm to 450mm Existing Sewers along Tai Tong Road

	Pipe Information																Re	sult	
Pipe no.	From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	Culmulative Daily Sewage Flow (l/s)	Catchment Inflow Factor	Culmulative Daily Sewage Flow with Catchment Inflow Factor (l/s)	Contributing Population	Peaking Factor	Instant Peak Flow from Swimming Pool (Vs)	Culmulative Peak Sewage Flow (l/s)	Culmulative Peak Sewage Flow (m³/s)	Pipe Full Flow Capacity (I/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check
Sewerage Network along Tai Tong Road (Sub-catchment 1)																			
FWD1042941	FMH1035400	FMH1035401	200	52.4	6.07	5.78	181	0.25	1.00	0.25	79	8.00	0.00	1.98	0.0020	22	0.70	9%	OK
FWD1043890	FMH1035401	FMH1036053	450	9.8	5.77	5.41	27	4.66	1.00	4.66	1491	6.00	7.64	35.60	0.0356	497	3.12	7%	OK
FWD1043891	FMH1036053	FMH1036051	450	7.9	4.32	4.30	393	4.66	1.00	4.66	1491	6.00	7.64	35.60	0.0356	130	0.82	27%	OK

Hydraulic Calculation and Utilisation for 200mm to 300mm Existing Sewers along Shap Pat Heung Road

	Pipe Information																Re	sult	
Pipe no.	From	To	Size	Length	U.S.	D.S.	Gradient	Culmulative	Catchment	Culmulative Daily	Contributing	Peaking	Instant Peak	Culmulative	Culmulative	B: E !!	D: E !!		
					Invert Level	Invert Level	1 in	Daily Sewage	Inflow	Sewage Flow	Population	Factor	Flow from	Peak Sewage Flow	Peak Sewage Flow	Pipe Full Flow	Pipe Full Flow Velocity	Utilization	Flow Capacity
			(mm)	(m)	(mPD)	(mPD)		Flow	Factor	with Catchment			Swimming Pool	(l/s)	(m³/s)	Capacity (I/s)	(m/s)	(%)	Check
								(l/s)		Inflow Factor (I/s)			(l/s)			' ' '	1 ` ′		
Sewerage Network along Shap Pat Heur	verage Network along Shap Pat Heung Road (Sub-catchment 2)																		
FWD1081043	FMH1060002	FMH1060022	250	3.2	5.28	5.26	159	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	43	0.87	10%	OK
FWD1081044	FMH1060022	FMH1060023	250	21.5	5.26	5.16	215	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	37	0.75	12%	OK
FWD1081062	FMH1060023	FMH1060024	250	11.3	5.16	5.10	189	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	39	0.80	11%	OK
FWD1081063	FMH1060024	FMH1060062	250	15.5	5.10	4.98	129	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	47	0.97	9%	OK
FWD1081064	FMH1060062	FMH1060063	250	4.8	4.98	4.92	80	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	60	1.23	7%	OK
FMD1002480 (1)	FMH1060063	FMH1036052	200	18.9	4.75	4.65	189	0.55	1.00	0.55	177	8.00	0.00	2.21	0.0022	22	0.69	10%	OK
EWD1042902	EMU1026052	EMU1026061	200	47.2	4.50	4.20	215	0.55	1.00	0.55	177	9.00	0.00	4.43	0.0044	60	0.00	70/.	OK

Hydraulic Calculation and Utilisation for downstream 450mm and 300mm pipes of manhole FMH1036051

riyuraulic Galculat	ion and othisa	tion for downstrear	ii 430iiiii aiiu 300	illili pipes oi illa	IIIIOIE FIWITITOSOC) J I									
Pipe no. Sewerage Network along Shap Pat Heun		From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	Peak Discharge from FMH1036051 (2) (l/s)	Peak Discharge from FMH1036051 (2) (m³/s)	Pipe Full Flow Capacity	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check	
Sewerage Network alor	ewerage Network along Shap Pat Heung Road (Downstream of Subcatchments 1 & 2)														
FWD1043910	(2)	FMH1036051	FMH1036050	300	22.3	4.29	4.20	248	14.49	0.0145	56	0.79	26%	OK	
FWD1043909	(2)	FMH1036051	FMH1036049	450	17.0	4.29	4.19	170	24.42	0.0244	199	1.25	12%	OK	

Remark

1. For FMD1002480, it consists of two 200mm pipes. it is assumed that the cumulative peak sewage flow is equally divided between 2 pipes.

2. The peak discharges from existing manhole FMH1036051 to two existing sewers (i.e. FWD1043910 & FWD1043909) are calculated in Appendix E.

Appendix D.4 - Sewer Pipeline Information and Culmulative Peak Sewage Flow Calculation (Proposed Condition)

Peaking Factor based on Factor:

Including Stormwater for Existing Pipes

Not Including Stormwater for Proposed Pipes

Foulwater Drains Capacity Design Check (By Colebrook White Equation)

where V = velocity (m/s)

g = 9.81 (ms⁻²)

R = hydraulic radius (m)

s = Slope of pipe / hydraulic gradient

v = kinematic viscosity (m²/s)

Ks = pipe roughness (mm)

Assumptions:

For circular pipes flowing full,

$$V = -\sqrt{(8gDs)}\log(\frac{Ks}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}})$$

For partially full pipes or pipes with non-circular cross-sections,

$$V = -\sqrt{(32 \, gRs)} \log(\frac{ks}{14.8 \, R} + \frac{1.255 \, v}{R\sqrt{(32 \, gRs)}})$$

Population Range	Peaking Factor (including stormwater allowance) for facility with existing upstream sewerage	Peaking Factor (excluding stormwater allowance) for facility with new upstream sewerage
(a) For sewers		
<1,000	8	6
1,000 - 5,000	6	5
5,000 - 10,000	5	4
10,000 - 50,000	4	3
>50,000	$Max \left(\frac{7.3}{N^{0.15}}, 2.4 \right)$	$Max\left(\frac{6}{N^{0.175}}, 1.6\right)$
(b) Sewage Treatment Wo	orks, Preliminary Treatment Work	s and Pumping Stations
<10,000	4	3
10,000 - 25,000	3.5	2.5
25,000 - 50,000	3	2
>50,000	$Max \left(\frac{3.9}{N^{0.065}}, 2.4 \right)$	$\operatorname{Max}\left(\frac{2.6}{\operatorname{N}^{0.065}}, 1.6\right)$

Pipe roughness for Proposed PE Pipeline =

1.5 mm

(Similar roughness value of uPVC material pipe under poor slimed condition in accordance with Sewerage Manual - Table 5 has been adopted for polyethylene pipe)

Pipe roughness for Existing Sewage Pipeline (<=600 dia.)

3 mm

(Refer to Sewerage Manual Part 1 - Table 5: Clayware)

Transitional flow and water at 15 degree celsius, i.e. kinematic viscosity is 1.14 x 10 $^{-6}$ m $^2/s$

Proposed Sewer From The Development Site

								Pipe	e Information									Re	sult	
Pipe no.	Invert Level Inver										Culmulative Peak Sewage Flow (m³/s)	Pipe Full Flow Capacity (l/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check					
	Proposed Sewer From The Development Site																			
FMD-P1	(2)	FMH-01	FMH-02	250	42.2	6.73	6.57	263	3.08	1.00	3.08	985	6.00	0.00	18.47	0.02	37	0.76	50%	OK
FMD-P2	(3), (4)	FMH-02	FMH-03	250	60.0	6.57	6.32	243	3.20	1.00	3.20	1024	5.00	0.00	18.47	0.02	39	0.79	48%	OK
FMD-P3	(4)	FMH-03	FMH1035400	250	61.6	6.32	6.07	243	3.20	1.00	3.20	1024	5.00	0.00	18.47	0.02	39	0.79	48%	OK

Hydraulic Calculation and Utilisation for 200mm to 450mm Existing Sewers along Tai Tong Road

							Pipe	e Information									Res	sult	
Pipe no.	From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	Culmulative Daily Sewage Flow (I/s)	Catchment Inflow Factor	Culmulative Daily Sewage Flow with Catchment Inflow Factor (I/s)	Contributing Population	Peaking Factor	Instant Peak Flow from Swimming Pool (l/s)	Culmulative Peak Sewage Flow (l/s)	Culmulative Peak Sewage Flow (m³/s)	Pipe Full Flow Capacity (l/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check
Sewerage Network along Tai To	ong Road (Sub-catchmen	nt 1)																	
FWD1042941	FMH1035400	FMH1035401	250	52.4	6.07	5.78	181	3.45	1.00	3.45	1103	6.00	0.00	20.67	0.0207	45	0.91	46%	OK
FWD1043890	FMH1035401	FMH1036053	450	9.8	5.77	5.41	27	7.86	1.00	7.86	2515	6.00	7.64	54.79	0.0548	497	3.12	11%	ОК
FWD1043891	FMH1036053	FMH1036051	450	7.9	4.32	4.30	393	7.86	1.00	7.86	2515	6.00	7.64	54.79	0.0548	130	0.82	42%	OK

Hydraulic Calculation and Utilisation for 200mm to 300mm Existing Sewers along Shap Pat Heung Road

	Pice Information Result																		
							Pip	e Information									Re	sult	
Pipe no.	From	To	Size	Length	U.S.	D.S.	Gradient	Culmulative	Catchment	Culmulative Daily	Contributing	Peaking	Instant Peak	Culmulative	Culmulative	D:	D: F. II		F1
					Invert Level	Invert Level	1 in	Daily Sewage	Inflow	Sewage Flow	Population	Factor	Flow from	Peak Sewage Flow	Peak Sewage Flow	Pipe Full	Pipe Full Flow Velocity	Utilization	Flow Capacity
			(mm)	(m)	(mPD)	(mPD)		Flow	Factor	with Catchment			Swimming Pool	(l/s)	(m ³ /s)	Flow Capacity (I/s)	(m/s)	(%)	Check
								(l/s)		Inflow Factor (I/s)			(l/s)				()		
Sewerage Network along Shap	werage Network along Shap Pat Heung Road (Sub-catchment 2)																		
FWD1081043	FMH1060002	FMH1060022	250	3.2	5.28	5.26	159	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	43	0.87	10%	OK
FWD1081044	FMH1060022	FMH1060023	250	21.5	5.26	5.16	215	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	37	0.75	12%	OK
FWD1081062	FMH1060023	FMH1060024	250	11.3	5.16	5.10	189	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	39	0.80	11%	OK
FWD1081063	FMH1060024	FMH1060062	250	15.5	5.10	4.98	129	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	47	0.97	9%	OK
FWD1081064	FMH1060062	FMH1060063	250	4.8	4.98	4.92	80	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	60	1.23	7%	OK
FMD1002480 (1)	FMH1060063	FMH1036052	200	18.9	4.75	4.65	189	0.55	1.00	0.55	177	8.00	0.00	2.21	0.0022	22	0.69	10%	OK
FWD1043892	FMH1036052	FMH1036051	300	47.3	4.52	4.30	215	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	60	0.85	7%	OK

Avdraulic Calculation and Utilisation for downstream 450mm and 300mm pines of manhole FMH1036051

nyuraulic Calculat	uon anu u	unsation for downst	ream 450mm and	Soonin pipes or	mannole rivin rus	1 600								
Pipe no.		From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	Peak Discharge from FMH1036051 (4) (l/s)		Pipe Full Flow Capacity (l/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check
severage Network along Shap Pat Heung Road (Downstream of Subcatchments 1 & 2)														
FWD1043910	(5)	FMH1036051	FMH1036050	300	22.3	4.29	4.20	248	22.91	0.0229	56	0.79	41%	OK
FWD1043909	(5)	FMH1036051	FMH1036049	450	17.0	4.29	4.19	170	35.20	0.0352	199	1.25	18%	OK

Remarks:

- 1. For FMD1002480, it consists of two 200mm pipes. it is assumed that the cumulative peak sewage flow is equally divided between 2 pipes.
- 2. The sewage generated from the proposed residential development will be discharged into proposed manhole FMH-01.
- 3. The sewage generated from the proposed retail building will be discharged into proposed manhole FMH-02.
- 4. The cumulative peak sewage flows for FMD-P2 and FMD-P3 are 15.99 i/s. In view of this the upstream sewage flow of those two pipes is 18.47 i/s (i.e. cumulative peak sewage flow of FMD-P1), which is greater than that of FMD-P2 and FMD-P3, cumulative peak sewage flow of 18.47 i/s is adopted for FMD-P2 and FMD-P3.
- 5. The peak discharges from existing manhole FMH1036051 to two existing sewers (i.e. FWD1043910 & FWD1043909) are calculated in Appendix E.

Appendix D.5 - Sewer Pipeline Information and Culmulative Peak Sewage Flow Calculation (Proposed Condition with reduction in pipe area for rehabiliation)

Peaking Factor based on Factor:

Including Stormwater for Existing Pipes

Not Including Stormwater for Proposed Pipes

Foulwater Drains Capacity Design Check (By Colebrook White Equation)

where V = velocity (m/s)

g = 9.81 (ms⁻²)

R = hydraulic radius (m)

s = Slope of pipe / hydraulic gradient

v = kinematic viscosity (m²/s)

Ks = pipe roughness (mm)

Assumptions:

For circular pipes flowing full,

 $V = -\sqrt{(8gDs)}\log(\frac{Ks}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}})$

For partially full pipes or pipes with non-circular cross-sections,

$$V = -\sqrt{(32 \, gRs \,)} \log(\frac{ks}{14.8R} + \frac{1.255 \, v}{R\sqrt{(32 \, gRs \,)}})$$

Pipe roughness for Proposed PE Pipeline =

1.5 mm

(Similar roughness value of uPVC material pipe under poor slimed condition in accordance with Sewerage Manual - Table 5 has been adopted for polyethylene pipe)

Pipe roughness for Existing Sewage Pipeline (<=600 dia.

3 mm

(Refer to Sewerage Manual Part 1 - Table 5: Clayware)

Assumed the lining thickness for rehabiliation is 6mm for 250mm diameter pipe.

2. Transitional flow and water at 15 degree celsius, i.e. kinematic viscosity is 1.14 x 10 ⁻⁶ m²/s

Proposed Sewer From The Development Site

	Pipe Information														Result					
Pipe no.		From	То	Size After Rehabilitation	Length	U.S. Invert Level	D.S. Invert Level	Gradient 1 in	Culmulative Daily Sewage	Catchment Inflow	Culmulative Daily Sewage Flow	Contributing Population	Peaking Factor	Instant Peak Flow from	Culmulative Peak Sewage Flow	Culmulative Peak Sewage Flow	Pipe Full Flow	Pipe Full Flow Velocity	Utilization	Flow Capacity
				(mm)	(m)	(mPD)	(mPD)		Flow (I/s)	Factor	with Catchment Inflow Factor (I/s)			Swimming Pool	(l/s)	(m ³ /s)	Capacity (I/s)	(m/s)	(%)	Check
	(i/s) (inition Pactor (i/s) (ivs) (inition Pactor (i/s) (inition P																			
FMD-P1	(2)	FMH-01	FMH-02	238	42.2	6.73	6.57	263	3.08	1.00	3.08	985	6.00	0.00	18.47	0.02	33	0.73	57%	OK
FMD-P2	(3), (4)	FMH-02	FMH-03	238	60.0	6.57	6.32	243	3.20	1.00	3.20	1024	5.00	0.00	18.47	0.02	34	0.76	55%	OK
FMD-P3	(4)	FMH-03	FMH1035400	238	61.6	6.32	6.07	243	3.20	1.00	3.20	1024	5.00	0.00	18.47	0.02	34	0.76	55%	OK

Hydraulic Calculation and Utilisation for 200mm to 450mm Existing Sewers along Tai Tong Road

	Pipe Information															Result			
Pipe no.	From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	Culmulative Daily Sewage Flow (l/s)	Catchment Inflow Factor	Culmulative Daily Sewage Flow with Catchment Inflow Factor (I/s)	Contributing Population	Peaking Factor	Instant Peak Flow from Swimming Pool (l/s)	Culmulative Peak Sewage Flow (l/s)	Culmulative Peak Sewage Flow (m³/s)	Pipe Full Flow Capacity (l/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check
Sewerage Network along Tai Toi	ng Road (Sub-catchment	11)			•										•	•			
FWD1042941	FMH1035400	FMH1035401	238	52.4	6.07	5.78	181	3.45	1.00	3.45	1103	6.00	0.00	20.67	0.0207	39	0.88	53%	OK
FWD1043890	FMH1035401	FMH1036053	450	9.8	5.77	5.41	27	7.86	1.00	7.86	2515	6.00	7.64	54.79	0.0548	497	3.12	11%	OK
FWD1043891	FMH1036053	FMH1036051	450	7.9	4.32	4.30	393	7.86	1.00	7.86	2515	6.00	7.64	54.79	0.0548	130	0.82	42%	OK

Hydraulic Calculation and Utilisation for 200mm to 300mm Existing Sewers along Shap Pat Heung Road

							Pipe	e Information								Result			
Pipe no.	From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	Culmulative Daily Sewage Flow	Catchment Inflow Factor	Culmulative Daily Sewage Flow with Catchment	Contributing Population	Peaking Factor	Instant Peak Flow from Swimming Pool	Culmulative Peak Sewage Flow (I/s)	Culmulative Peak Sewage Flow (m³/s)	Pipe Full Flow Capacity (l/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check
								(l/s)		Inflow Factor (I/s)			(l/s)						
Sewerage Network along Shap I	at Heung Road (Sub-ca	tchment 2)																	
FWD1081043	FMH1060002	FMH1060022	250	3.2	5.28	5.26	159	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	43	0.87	10%	OK
FWD1081044	FMH1060022	FMH1060023	250	21.5	5.26	5.16	215	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	37	0.75	12%	OK
FWD1081062	FMH1060023	FMH1060024	250	11.3	5.16	5.10	189	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	39	0.80	11%	OK
FWD1081063	FMH1060024	FMH1060062	250	15.5	5.10	4.98	129	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	47	0.97	9%	OK
FWD1081064	FMH1060062	FMH1060063	250	4.8	4.98	4.92	80	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	60	1.23	7%	OK
FMD1002480 (1)	FMH1060063	FMH1036052	200	18.9	4.75	4.65	189	0.55	1.00	0.55	177	8.00	0.00	2.21	0.0022	22	0.69	10%	OK
FWD1043892	FMH1036052	FMH1036051	300	47.3	4.52	4.30	215	0.55	1.00	0.55	177	8.00	0.00	4.43	0.0044	60	0.85	7%	OK

lydraulic Calculation and Utilisation for downstream 450mm and 300mm nines of manhole FMH103605

Hydraulic Calcul	ation and U	tilisation for downst	tream 450mm and	300mm pipes of	manhole FMH103	36051								
Pipe no.		From	То	Size (mm)	Length (m)	U.S. Invert Level (mPD)	D.S. Invert Level (mPD)	Gradient 1 in	from		Pipe Full Flow Capacity (l/s)	Pipe Full Flow Velocity (m/s)	Utilization (%)	Flow Capacity Check
Sewerage Network	along Shap F	at Heung Road (Downs	tream of Subcatchme	ents 1 & 2)										
FWD1043910	(5)	FMH1036051	FMH1036050	300	22.3	4.29	4.20	248	22.91	0.0229	56	0.79	41%	OK
FWD1043909	(5)	FMH1036051	FMH1036049	450	17.0	4.29	4.19	170	35.20	0.0352	199	1.25	18%	OK

Remarks

- 1. For FMD1002480, it consists of two 200mm pipes. it is assumed that the cumulative peak sewage flow is equally divided between 2 pipes.
- 2. The sewage generated from the proposed residential development will be discharged into proposed manhole FMH-01.
- 3. The sewage generated from the proposed retail building will be discharged into proposed manhole FMH-02.
- 4. The cumulative peak sewage flows for FMD-P2 and FMD-P3 are 15.99 Vs. In view of this the upstream sewage flow of those two pipes is 18.47 Vs (i.e. cumulative peak sewage flow of FMD-P1), which is greater than that of FMD-P3, cumulative peak sewage flow of 18.47 Vs is adopted for FMD-P2 and FMD-P3.
- 5. The peak discharges from existing manhole FMH1036051 to two existing sewers (i.e. FWD1043910 & FWD1043909) are calculated in Appendix E.

Appendix E

Distribution of Flow from Existing Manhole FMH1036051 To Existing Sewers FWD1043910 and FWD1043909 Under Existing and Proposed Conditions

Appendix E Peaking Factor based on Factor: Including Stormwater

1.Determine the distribution of flow from existing manhole FMH1036051 to existing sewers FWD1043910 and FWD1043909 under existing condition

Cumulative Daily Sewage Flow with Catchment Inflow Factor from FWD1043891 and FWD1043892 under Existing Condition = 5.21 l/s (from Appendix D.3) Contribution Population = 1668 Peaking Factor = 6 Instant Peak Flow from Swimming Pool from FWD1043891 and FWD1043892 = 7.64 (from Appendix D.3) l/s Cumulative Peak Flow Discharge to Existing Sewers FWD1043910 and FWD1043909 under Existing Condition = 38.91 l/s

1. The hydraulic is designed based on Colebrook-White equation and Wallingford charts.

2. Pipe roughness = 3 (Refer to Sewerage Manual Part 1 - Table 5: Clayware) mm

4. Transitional flow and water at 15 degree Celsius

	Р	ipe Information			Discharge		Сара	city and Velocity Ch	neck	Partial Flow Calculation					
Pipe No.	From	То	Pipe Diameter mm	Gradient 1 in	Design Discharge I/s	Pipe Partial Flow Velocity m/s	Pipe Full Flow Capacity l/s	Pipe Full Flow Velocity m/s	Capacity Check	% utilization	Calculated Proportional Discharge	From Chart Proportional Depth	From Chart Proportional Velocity	Actual Water Depth m	
FWD1043910	FMH1036051	FMH1036050	300	247.8	14.49	0.68	56	0.79	OK	26	0.26	0.351	0.86	0.105	
FWD1043909	FMH1036051	FMH1036049	450	169.8	24.42	0.85	199	1.25	OK	12	0.12	0.233	0.68	0.105	

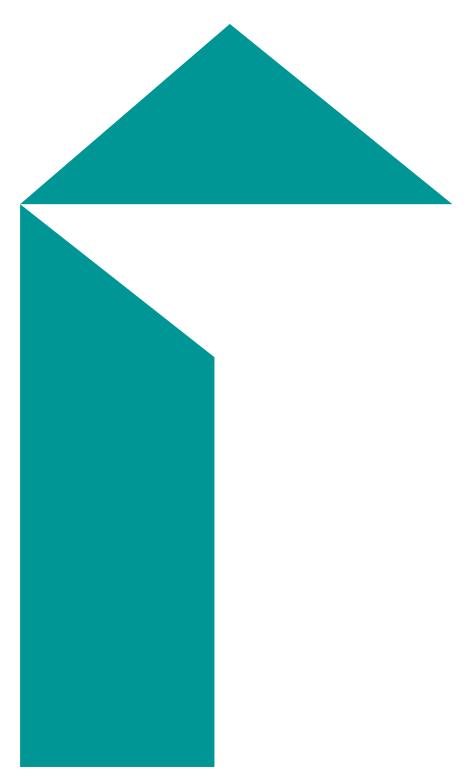
6

2. Determine the distribution of flow from existing manhole FMH1036051 to existing sewers FWD1043910 and FWD1043909 under Proposed condition

Cumulative Daily Sewage Flow with Catchment Inflow Factor from FWD1043891 and FWD1043892 under Proposed Condition = 8.41 l/s (from Appendix D.4) Contribution Population = 2691.6

Peaking Factor =

Instant Peak Flow from Swimming Pool from FWD1043891 and FWD1043892 = 7.64 l/s (from Appendix D.4) Cumulative Peak Flow Discharge to Existing Sewers FWD1043910 and FWD1043909 under Proposed Condition = 58.11 l/s


Assumptions:

1. The hydraulic is designed based on Colebrook-White equation and Wallingford charts.

2. Pipe roughness = (Refer to Sewerage Manual Part 1 - Table 5: Clayware)

4. Transitional flow and water at 15 degree Celsius

	Р	ipe Information			Discharge		Capa	city and Velocity Ch	neck	Partial Flow Calculation					
Pipe No.	From	То	Pipe Diameter mm	Gradient 1 in	Design Discharge I/s	Pipe Partial Flow Velocity m/s	Pipe Full Flow Capacity I/s	Pipe Full Flow Velocity m/s	Capacity Check	% utilization	Calculated Proportional Discharge	From Chart Proportional Depth	From Chart Proportional Velocity	Actual Water Depth m	
FWD1043910	FMH1036051	FMH1036050	300	247.8	22.91	0.75	56	0.79	OK	41	0.41	0.446	0.95	0.134	
FWD1043909	FMH1036051	FMH1036049	450	169.8	35.20	0.96	199	1.25	OK	18	0.18	0.297	0.77	0.134	

mottmac.hk