APPENDIX 8

TRAFFIC IMPACT ASSESSMENT
REVIOUSLY SUBMITTED FOR THE SECOND PLANNING APPLICATION (A/YL/289)

LIST OF CONTENTS

1.	INTRODUCTION	••
1.1	Back ground	
1.2	Study Objectives	
2.	THE PROPOSED DEVELOPMENT	
2.1	Site Location	
2.2	Development Proposal	
2.3	Provision of Internal Transport Facilities	
	•	
3.	EXISTING TRAFFIC CONDITION	
3.1	Existing Road Network	
3.2	Critical Junctions	
3.3	Public Transport Services in the Vicinity	
0.0		
4.	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT	1
	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT	
4.	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT Design Year	1
4. 4.1	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT	1
4. 4.1 4.2	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT Design Year	1 1 1
4. 4.1 4.2 4.3	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT Design Year	1 1 1
4. 4.1 4.2 4.3 4.4	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT Design Year	1 1 1 1
4. 4.1 4.2 4.3 4.4 4.5	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT Design Year	1 1 1 1 1
4. 4.1 4.2 4.3 4.4 4.5 4.6	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT. Design Year. Traffic Forecast Reference Traffic Flow in Year 2028 Traffic Trips of the Proposed Development Traffic Forecast for Design Year 2028. Operational Assessment	1 1 1 1 1
4. 4.1 4.2 4.3 4.4 4.5 4.6 5.	FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT Design Year Traffic Forecast Reference Traffic Flow in Year 2028 Traffic Trips of the Proposed Development Traffic Forecast for Design Year 2028 Operational Assessment SUMMARY AND CONCLUSION	1 1 1 1 1 1

Appendix 1 – Junction Calculation Sheets

LIST OF TABLES

Table 2.1	Parameters of the Proposed Development	 3
Table 2.2	Examples of Existing RCHE	 4
Table 2.3	Proposed Provisions of Internal Transport Facilities	 5
Table 3.1	Identified Critical Junctions	 7
Table 3.2	Operational Performances of Critical Junctions in 2021	 9
Table 3.4	Queue Length Analysis of Identified Junctions in 2021	 10
Table 3.5	Public Transport Services in the Vicinity of the Proposed Development	 11
Table 4.1	Historical Traffic Data from Annual Traffic Census (ATC)	 12
Table 4.2	2016-Based Planning Data from 2016 to 2026	 13
Table 4.3	Major Planned/ Committed Development in the Vicinity	 14
Table 4.4	Estimated Traffic Trips of the Proposed Development	 13
Table 4.5	Planned Population under the Yuen Long South Development	 14
Table 4.6	Estimated Traffic Trips of the YLS Development (Stage 1)	 14
Table 4.7	In-house Traffic Trip Rates of Proposed Development	 15
Table 4.8	Operational Performance of Critical Junctions in Year 2028	 16
Table 4.9	Queue Length Analysis of Identified Junctions in 2028	 17

LIST OF FIGURES

Figure	1.1	Site Location Plan
Figure	2.1	Ground Floor Plan
Figure	3.1	Key Junctions and Existing Road Network
Figure	3.2	Existing Junction Layout of Ma Tong Road / Tai Tong Road (A)
Figure	3.3	Existing Junction Layout of Tai Tong Road / Shap Pat Heung Road (B)
Figure	3.4	Existing Junction Layout of Shap Pat Heung Road / Fung Ki Road (C)
Figure	3.5	Existing Junction Layout of Shap Pat Heung Road / Tai Kei Leung Road (D)
Figure	3.6	Existing Junction Layout of Shap Pat Heung Interchange (E)
Figure	3.7	2021 Observed Off-peak Traffic Flows
Figure	3.8	2021 Queue Length (AM Off- Peak)
Figure	3.9	2021 Queue Length (PM Off- Peak)
Figure	3.10	Existing Public Transport in the Vicinity
Figure	4.1	Future Adjacent Developments
Figure	4.2	2028 Reference Off- Peak Traffic Flow
Figure	4.3	2028 Development Traffic Flow
Figure	4.4	2028 Design Off- Peak Traffic Flow
Figure	4.5	2028 Reference Queue Length (AM Off- Peak Peak)
Figure	4.6	2028 Reference Queue Length (PM Off- Peak Peak)
Figure	4.7	2028 Design Queue Length (AM Off- Peak Peak)
Figure	4.8	2028 Design Queue Length (PM Off- Peak Peak)
Figure	4.9	Proposed Junction Layout of Shap Pat Heung Interchange (E) (Carried by Yuen Long South development)

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment Revised Final Report (July 2022)

We commit We deliver

心以誠

用

I. INTRODUCTION

1.1 Background

- 1.1.1 The application site is located at Lots nos. 1695 S.E SS. 1 RP, 1695 S.F SS.1, 1695 S.H RP and adjoining Government Land in D.D. 120, Tai Kei Leng, Yuen Long, New Territories. The site location is shown in Figure 1.1.
- 1.1.2 The applicant intends to develop a proposed Residential Care Home for the Elderly (RCHE) and convert an existing Grade 3 historic building, called "Siu Lo" for "House" use. A planning application proposed minor relaxation of building height restriction from 3 to 5 storeys [Planning application no. A/YL/256] had been submitted and approved in year 2020. The applicant intends to apply a new minor relaxation of building height restriction from 3 to 6 storeys.
- 1.1.3 In support of the aforesaid application, a traffic impact assessment is required to review and appraise any possible traffic impact induced by the proposed development on the adjacent road network.
- 1.1.4 CTA Consultants Limited (CTA) was therefore commissioned as the traffic consultant to prepare the Traffic Impact Assessment (TIA) and provide technical justifications in supporting the application from traffic engineering point of view.

1.2 Study Objectives

- 1.2.1 Main objectives of this study are listed below:
 - To assess the existing and proposed traffic arrangement & provision of internal transport facilities at the subject site;
 - To assess the existing traffic condition in the vicinity of the proposed development;
 - To estimate traffic trips related to the proposed development;
 - To carry out forecasts about traffic demand of the adjacent road network in design year 2028;
 - To appraise any possible traffic impact induced by the proposed development

21120HK/ Revised Final Report (July 2022)

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment

Revised Final Report (July 2022)

mal Report (July 2022) We commit We deliver 誠

心以

on the adjacent road network;

 To recommend traffic improvement measures to alleviate any foreseeable traffic problem to the surrounding road network, if any.

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment Revised Final Report (July 2022)

We commit We deliver

心以誠

用

2. THE PROPOSED DEVELOPMENT

2.1 Site Location

2.1.1 The application site is located at Lots nos. 1695 S.E SS. 1 RP, 1695 S.F SS.1, 1695 S.H RP and adjoining Government Land in D.D. 120, Tai Kei Leng, Yuen Long, New Territories. The site location is shown in Figure 1.1.

2.2 Development Proposal

2.2.1 Parameters of the proposed development are listed in Table 2.1.

Table 2.1 Parameters of the Proposed Development

	Proposed Scheme	Approved scheme (A/YL/256)
Proposed Use	Residential Care Home for the Elderly (RCHE)	Residential Care Home for the Elderly (RCHE)
Site Area	About 1,953 m ²	About 1,714.229 m ²
Total Accountable GFA	About 5,768 m ² (excluding car park GFA)	About 4,267 m ²
No. of Storeys	6	5 (include 1 basement)
No. of Beds	281 (or within a range of 260 – 300)	170

- 2.2.2 It is anticipated that the proposed development will be commissioned in year 2025. Therefore, design year 2028 (i.e. 3 years after the planned commencement year of the proposed development) is adopted for the Traffic Impact Assessment.
- 2.2.3 The proposed RCHE will operate 24 hours a day with 3 shifts of workers, the working hour hours are:
 - (i) 7am to 3pm,
 - (ii) 3pm to 10pm, and
 - (iii) 10pm to 7am.

Thus, trips by the staffs actually would not occur at the morning peak hour

誠

We commit We deliver

用

Ü

O

2.2.4 It is understood that Hong Kong workers mainly go to works by public transport. Bus stops are provided near the proposed development which is convenience for the staff to travel by public transport. Moreover, staffs will not be allowed to use the parking spaces unless authorization is obtained from the management. Thus, most of the staff would be controlled to use public transport for their mode of transport.

2.3 Provision of Internal Transport Facilities

2.3.1 It is revealed that there is no parking standard for "Residential Home for Elderly" in HKPSG, therefore, the parking provision of other existing RCHEs has been referenced and are summarized in Table 2.2 below:

Table 2.2 Examples of Existing RCHE

Name of RCHE	Location	No. of beds	No. of Staff	Observed no. of Parking Provision	Parking Facilities ⁽¹⁾⁽²⁾⁽³⁾ (Category 1/2/3)
Assemblies of God Holy Light Church Aged Home	91 Sung Ching Sun Tsuen, Tai Tong Road, Yuen Long	60	19	Nil	Category 1
Chinese Christian Worker's Fellowship Wah Hei Elderly Home (Comet Mansion	G/F & M/F, Shop 27, Comet Mansion, 45- 67 Fung Cheung Road, Yuen Long	105	29	Nil	Category 1
Pok Oil Hospital Jockey Club Care and Attention Home	Lot 1392 & 837 R.P. in D.D. 115, Au Tau, Yuen Long	213	124	Nil	Category 2
Po Leung Kuk Tin Yan Home for the Elderly cum Green Joy Day Care Centre for the Elderly	3/F and 4/F, Ancillary Facilities Block, Tin Yan Estate, Tin Shui Wai	106	74	Nil	Category 2
Yan Oi Tong Tin Ka Ping Care and Attention Home	G/F & 1/F, Wah Ping House, Long Ping Estate, Yuen Long	85	51	Nil	Category 2
T.W.G.Hs. Y. C. Liang Memorial Home for the Elderly	G/F & 1/F, Yiu Yat House, Tin Yiu Estate, Tin Shui Wai	88	47	Nil	Category 1
Caritas Ying Shui Home	3/F, Ying Shui House, Shui Pin Wai Estate, Yuen Long	75	47	Nil	Category 2
Salvation Army Kam Tin Residence for Senior Citizens (The)	103 Kam Tin Road, Yuen Long	150	81	1 car parking space + 1 light bus parking spaces	Category 3
Pok Oi Hospital Yeung Chun Pui Care and Attention Home	58 Sha Chau Lei Tsuen, Ha Tsuen, Yuen Long	143	92	2 car parking spaces + 1 light bus parking spaces	Category 3
Pok Oi Hospital Tai	G/F-3/F & KW307,	109	75	Nil	Category 2

Parking Facilities (1)(2)(3) Observed no. of No. of No. of Name of RCHE Location Parking beds Staff Provision (Category 1/2/3) Kwan Care & Shui Kwok House, Attention Home Tin Shui Estate, Tin Shui Wai, Yuen Long Ching Chung Taoist Association of Hong 1 car parking 57 Sha Chau Lei Kong Limited Ching space + 1 light Chuen, Ping Ha 120 Category 3 bus parking Chung Care and Road, Yuen Long Attention Home for spaces the Aged

Note: (1) Category 1 refers to homes with nil provision of car parking spaces within the Site and no public car parking spaces can be found in the close proximity.

- (2) Category 2 refers to homes with nil provision of car parking spaces within the Site but may use the public car parking spaces of nearby car park.
- (3) Category 3 refers to homes with provision of car parking spaces within the Site.

Proposed Internal Transport Facilities Provision

2.3.2 With reference to Table 2.2 above, only one to two private parking spaces are provided by other RCHE. Taking reference to Salvation Army Kam Tin Residence for Senior Citizens (The), it has 1 car parking space and 1 light bus parking spaces for 150 beds are sufficient for their daily operation needs. Taking into consideration that 260 to 300 beds will be provided in our proposed development, double the parking provision should be sufficient for the daily operation needs of the proposed development. The internal transport facilities provisions are proposed and summarized as Table 2.3 below:

Table 2.3 Proposed Provisions of Internal Transport Facilities

Туре	Proposed Dimensions	Proposed Number of Spaces
Private Cars	5m(L) x 2.5m(W) x min.2.4m(H)	1
Private Cars for Disabilities	5m(L) x 3.5m(W) x min.2.4m(H)	1
Light bus	8m(L) x 3m(W) x min.3.3m(H)	2

Note: The provision of PV parking space for disabilities is determined by referring to "Parking for persons with disabilities" stipulated in the latest HKPSG that 1 accessible parking space should be provided for 1-50 parking spaces

Conservation of a Grade	3	Historic	Building	in	Yuen	Long	Siu	Lo
			Traffi	c I	mpact	Asse	ssm	ent

Revised Final Report (July 2022)

We commit We deliver

Ü

以

2.3.3 The ground floor layout plans of the proposed development showing the proposed internal transport provision is shown in **Figures 2.1**.

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment Revised Final Report (July 2022)

We commit We deliver

心以誠

用

3. EXISTING TRAFFIC CONDITION

3.1 Existing Road Network

- 3.1.1 Shap Pat Heung Road is a duel two-lane two-way primary distributor. It is the major road connecting Shap Pat Heung Interchange and Yuen Long Highway.
- 3.1.2 Tai Tong Road is a two-lane two-way district distributor connecting Man Tong Road and Shap Pat Heung Road. It is the only access road connecting the proposed development. It serves for the traffic travelling North and South in vicinity.
- 3.1.3 Yuen Long Highway is expressway connecting which form as a section of New Territories Circular Road. It is the major road connects Yuen Long with other area in New Territories.

3.2 Critical Junctions

3.2.1 Five junctions are identified to be critical for the Traffic Impact Assessment due to the proposed development. Relevant details are listed in Table 3.1 and shown in Figure 3.1. Existing junction layouts are tabulated in Figures 3.2 to Figure 3.6 respectively.

Table 3.1 Identified Critical Junctions

Ref.	Junction	Туре	Figure No.
A	Ma Tong Road / Tai Tong Road	Signalized	3.2
В	Tai Tong Road / Shap Pat Heung Road	Signalized	3.3
С	Shap Pat Heung Road / Fung Ki Road	Signalized	3.4
D	Shap Pat Heung Road / Tai Kei Leung Road	Signalized	3.5
Е	Shap Pat Heung Interchange	Roundabout	3.6

3.2.2 It is revealed that people would visit RCHE mainly during off-peak from 10 am to 5 pm rather than at peak hours. The assessment of the impact due to the proposed development will therefore base on the traffic flow determine from off-peak.

We commit We deliver

13

以

誠

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment Revised Final Report (July 2022)

We commit We deliver

2022) deliver 誠

用

Ü

Table 3.3 Queue Length Analysis of Identified Junctions in 2021

		Method of		Length of	Observed Q (n	ueue Length n)
Ref.	Junction	Control	Direction	Segment	Existing	Scenario
				(m)	AM Off- Peak	PM Off- Peak
	Shap Pat		Ma Tong Road (WB)	260	30	24
Α	Heung Road /	Priority	Tai Tong Road (NB)	290	42	42
A	Tai Shu Ha	Fliolity	Ma Tong Road (EB)	350	18	18
	Road East		Tai Tong Road (SB)	240	36	36
	Tai Tong Road		Shap Pat Heung Road (WB)	150	30	36
В	/ Shap Pat	Signalized	Tai Tong Road (NB)	160	24	18
	Heung Road	Signanzea	Shap Pat Heung Road (EB)	230	18	24
		1	Tai Tong Road (SB)	290	36	36
			Shap Pat Heung Road (WB)	230	30	36
С	Shap Pat Heung Road /	ung Road / Signalized	The Access Road of The Reach (NB)	40	0	0
	Fung Ki Road		Shap Pat Heung Road (EB)	250	18	24
]	Fung Ki Road (SB)	180	30	48
	Shap Pat		Shap Pat Heung Road (SB)	280	36	24
D	Heung Road /	Signalized	Shap Pat Heung Road (NB)	90	30	24
	Tai Kei Leung Road	Signanzea	Tai Kei Leng Road (EB) (RT)	400	48	18
	Shap Pat		Yuen Long Highway (WB)	770	12	12
E	Heung	Roundabout	Yuen Long Highway (EB)	590	30	30
	Interchange		Shap Pat Heung Road (SB)	90	30	30

3.2.7 The assessment results in Table 3.3 indicate that all queues are queuing within the allowable road segments during the peak hours.

3.3 Public Transport Services in the Vicinity

3.3.1 Numerous road-based public transport services, for instance, franchised buses and GMB are also provided in vicinity of the proposed development. Details of the current services of franchised buses and GMB routes within the catchment area of 500 meters are listed in Table 3.5 and shown in Figure 3.8.

3.2.3	In order to study the existing traffic condition of the above critical junctions, traffic
	survey in the form of manual-classified count was conducted for the critical junctions
	during the off-peak periods on a typical weekday on 16 December 2021 from $10:00$
	AM to 12:00 noon and 15:00 PM to 17:00 PM respectively. The survey provides most
	up-to-date details of the traffic condition within the study area under normal operation.
	Based on the observed traffic flows, it reveals that peak of Off-peak hour occurred
	from 11:00 AM to 12:00 noon, 16:00 PM to 17:00 PM respectively.

3.2.4 The 2021 traffic flows are presented in **Figure 3.7**. The operational performances of the critical junctions are listed in **Table 3.2** below.

Table 3.2 Operational Performances of Critical Junctions in 2021

D. C	Y	Method	Year 2021 RC/DFC (1)		
Ref.	Junction	of Control	AM Off-Peak	PM Off-Peak	
A	Ma Tong Road / Tai Tong Road	Signalized	+40%	+39%	
В	Tai Tong Road / Shap Pat Heung Road	Signalized	+55%	+44%	
С	Shap Pat Heung Road / Fung Ki Road	Signalized	>+100%	+98%	
D	Shap Pat Heung Road / Tai Kei Leung Road	Signalized	+98%	>+100%	
Е	Shap Pat Heung Interchange	Roundabout	0.62	0.69	

Notes: (1) RC = Reserve Capacity for Signal Junction;

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

- 3.2.5 The assessment results in **Table 3.2** indicate that all critical junctions are at present operating with ample capacities during the off-peak hours.
- 3.2.6 Queue length assessment has been carried out shown in **Figures 3.8** and **3.9** and summarized in **Table 3.3** below.

Revised Final Report (July 2022)

We commit We deliver

13

以

誠

Table 3.5 Public Transport Services in the Vicinity of the Proposed Development

Service	Route	Origin - Destination	Frequency (mins)
Evanshis ad Pus	68E	Yuen Long Park – Tsing Yi Railway Station Bus Terminus	15 - 30
Franchised Bus	68F	Yuen Long Park – Park Yoho (Circular)	30
	K66	Tai Tong – Long Ping	4 - 15
GMB	39	Kung Um - Yuen Long (Fung Cheung Road)	5 - 8
GMB	73 ⁽¹⁾	Long Ping Station (Ma Wang Road) – Sung Shan San Tsuen	10 - 15

Note: (1) Morning peak hour service

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment

Revised Final Report (July 2022)

<u>2)</u> 以 ver 誠

用

Ü

We commit We deliver

4. FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT

4.1 Design Year

4.1.1 It is anticipated that the proposed development would be completed in 2025 tentatively with full intended operation. In order to assess the possible traffic impacts to the local road network due to the proposed development, year 2028 (i.e. 3 years after completion) has been adopted as the design year for this study.

4.2 Traffic Forecast

4.2.1 To estimate the reference traffic flow in year 2028 (without the proposed development) in the local road network, an appropriate growth factor has to be identified for the area in the first instance. The following approaches have been adopted to derive the growth factor for the Area of Influence.

Historical Trend

4.2.2 Numerous traffic-count stations are located in the vicinity of the proposed development. The traffic counts reported in the Annual Traffic Census (ATC), which is published by Transport Department, over a period of five years, i.e. 2015 to 2019 are summarized in Table 4.1.

Table 4.1 Historical Traffic Data from Annual Traffic Census (ATC)

ATC		I	Annual Aver	age Daily Tr	affic (AADT)	Avg. Annual
	Road Name	2015	2016	2017	2018	2019	Growth Rate
5711	Shap Pat Heung Rd (From Shap Pat Heung INT to Tai Tong Rd)	23,020	21,960	21,810*	22,500*	23,400*	0.41%
	Total	23,020	21,960	21,810	22,500	23,400	+0.41%

Note: *AADT estimated by Growth factor

We commit We deliver

誠

Revised Final Report (July 2022) We commit We deliver

Planning Data

4.2.3 Reference has also been made to the latest 2016-Based Territorial Population Employment Data Matrices (TPEDM) planning data published by the Planning Department in December 2019 for projection of population and employment within the study district. The average annual growth rates in terms of population and employment from 2021 to 2026 are tabulated in Table 4.2.

Table 4.2 2016-Based Planning Data from 2021 to 2026

	Yuen Long District											
Data	Ye	Year										
Data	2021	2026	Growth Rate									
Population	175,200	180,000	+0.54%									
Employment	68,000	69,100	+0.32%									
Total	243,200	249,100	+0.48%									

Adopted Growth Rate

- 4.2.4 A.A.D.T. of ATC indicates that the traffic flow of the local road network has an average annual growth rate of +0.41% from year 2015 to year 2019.
- 4.2.5 Whilst, the planning data indicates that the population and employment of the study area are expected to grow with an average annual growth rate of +0.48%.
- 4.2.6 As a conservative approach, annual growth rate +1% p.a. which is used in previous TIA is adopted. It is deemed sufficient to allow for any unexpected future growth as a result of some changes in land use or development in the study area.

Reference Traffic Flow in Year 2028

4.3.1 The year 2028 reference traffic flow is estimated by applying the adopted growth rate to the year 2021 adopted traffic flow.

Adjacent New Developments

4.3.2 Additional traffic generation and attraction of major committed/planned developments in the vicinity have been estimated and superimposed onto the road network to derive the year 2028 reference traffic flow. The committed/planned developments in the vicinity are summarized and illustrated in Table 4.3 and Figure 4.1.

Table 4.3 Major Planned/ Committed Development in the Vicinity

Application No.	Proposed Use	Development Parameters
A/YL/252 (Yuen Long Baptist Church Redevelopment)	Kindergarten and Church	16 classrooms for Kindergarten 1 for Special Education 680 seats for Church
Youth Hostel Development at Ma Tin Pok	Youth Hostel	1,248 Units
Lot 4041 in DD120 (A/YL/185)	Residential	16 Units
Atrium (Lot 4056 in DD120)	Residential	313 Units
A/YL/263	RCHE	380 beds
A/YL/276	RCHE	197 beds

4.3.3 Based on the TIA reports of the vicinity developments, the trip generated and attracted by the proposed development in vicinity are summarized in the Table 4.4.

Table 4.4 – Estimated Traffic Trips of the Proposed Development

			Traffic	Trips		
Application No.		AM	Peak	PM Peak		
		Gen.	Att.	Gen.	Att.	
A/YL/252						
(Yuen Long Baptist Ch Redevelopment) (1)		42	53	45	13	
Youth Hostel at Ma Tin		31	29	23	26	
Lot 4041 in DD120 (A/YL	/185) ⁽²⁾	5	3	3	4	
Atrium	Trip Rate (60 m ²)	0.08633	0.06835	0.04317	0.05755	
(Lot 4056 in DD120) ⁽³⁾	Traffic Trips	22	13	9	12	
A/YL/263 ⁽¹⁾		33	26	16	22	
A/YL/276 ⁽¹⁾		17	13	9	11	

¹⁾ According its TIA

²⁾ According to TIA of A/YL/261

³⁾ Trip rate of 60m² flat size in TPDM is used as conservative approach

Revised Final Report (July 2022)

We commit We deliver

Ü

以

誠

Q

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment Revised Final Report (July 2022)

We commit We deliver

心以誠

用

4.4 Traffic Trips of the Proposed Development

- 4.4.1 It is noted that traffic rates of both generation and attraction for proposed development uses are not specified in the latest Transport Planning & Design Manual (TPDM).
- 4.4.2 The estimation of traffic trips related to the proposed development is based on inhouse surveys carried out at Tung Wah Group of Hospitals Wong Cho Tong Social Service Building and summarized in the Table 4.7.

Table 4.7 In-house Traffic Trip Rates of Proposed Development

TTo a	Units /	AM	Peak	PM 1	Peak
Use	Parameters	Gen.	Att.	Gen.	Att.
	Trai	ffic Trip Rate			
TWGHs Wong Cho Tong Social Service Building – IN/OUT of Building	(pcu/hr)	14	11	14	11
TWGHs Wong Cho Tong Social Service Building – Loading/Unloading activities of Building	(pcu/hr)	10	8	10	8
Total Trip	(pcu/hr)	24	19	24	19
Adopted Traffic Trip Rates (278beds)	(pcu/hr/bed)	0.08633	0.06835	0.04317	0.05755
	T	raffic Trips			
Estimated Traffic Trips (300 beds) ⁽¹⁾	(pcu/hr)	26	21	13	17

¹⁾ Upper range of no. of beds is adopted as conservative approach.

4.5 Traffic Forecast for Design Year 2028

4.5.1 The net traffic trips of the proposed development, which is shown in Figure 4.3, is then superimposed onto the year 2028 reference traffic flow (without the proposed development) as shown in Figure 4.2 to derive the year 2028 design traffic flow (with the proposed development).

4.5.2 The traffic flow during AM and PM peak periods in the design year 2028 (with the proposed development) are shown in Figure 4.4.

Table 4.5 Planned Population under the Yuen Long South Development

4.3.4 Besides, Yuen Long South (YLS) Development has also been considered. The

consider in our assessment as other stages are beyond our design year.

population intake year of YLS Development will be in stages. The design year of our development is Year 2028, therefore only Stage 1 of YLS Development would be

Development	Population	Popu	Employment	
Stage	Intake year	Public	Private	Places
Stage 1	2028	13,222	35(VRT)	780
Existing 1	oopulation	-	2,400	-

Note: (1) VRT - Village Removal Terms

- (2) Source: Yuen Long District Council Committees Meetings Discussion Papers 14/2020 and "Planning and Engineering Study for Housing Sites in Yuen Long South – Investigation Final Traffic and Transport Impact Assessment Report (June 2020)"
- 4.3.5 Based on the DC paper and TIA reports of the YLS developments, the trip generated and attracted by the YLS developments (Stage 1) are estimated and summarized in the Table 4.6.

Table 4.6 – Estimated Traffic Trips of the YLS Development (Stage 1)

				Traffic T	rip Rate			Traffic Trips					
Land Use	ι	Inits	AM Peak PM Pe			Peak	Trip Rate Unit	AM I	Peak	PM I	Peak		
			Gen.	Att.	Gen.	Att.		Gen.	Att.	Gen.	Att.		
Residential – Public (50sqm)	4,320	flats	0.048	0.028	0.024	0.035	pcu/hr/flat	207	121	104	151		
Commercial	16,620	GFA (m ²)	0.129	0.153	0.236	0.262	pcu/hr/ 100m ² GFA	21	25	39	44		
Kindergarten	12	classroom	2.2	2.4	2.3	2.1	pcu/hr/ classroom	27	29	28	26		
GIC	14,210	GFA (m ²)	0.235	0.235	0.115	0.115	pcu/hr/ 100m ² GFA	34	34	17	17		
	·		Total	·				289	209	188	238		

Note: (1) Reference to Yuen Long District Council Committees Meetings Discussion Papers

14/2020 and "Planning and Engineering Study for Housing Sites in Yuen Long South –

Investigation Final Traffic and Transport Impact Assessment Report (June 2020)"

4.3.6 The 2028 reference traffic flows are presented in Figure 4.2.

2028 Reference			Adopted Growth		
Flows (without	_ 2021		Factor	_	Adjacent
proposed	Adopted Flows	A	i.e. +1 % p.a. for 7	-	Developments
development)			vears		

We commit We deliver

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo

用

Ü

We commit We deliver

Operational Assessment

4.6.1 To assess traffic impacts due to the proposed development, operational assessment of the critical junctions identified in Chapter 3 are carried out for both reference (without the proposed development) and design (with the proposed development) scenarios in year 2028. The results are summarized in Table 4.8.

Table 4.8 Operational Performance of Critical Junctions in Year 2028

				Year RC/D					
Ref.	f. Junction	Method of Control	Refer Scen (Without th Develo	ario ne Proposed	Des Scer (With the Develo	ario Proposed			
			AM Off-Peak	PM Off-Peak	AM Off-Peak	PM Off-Peak			
Α	Ma Tong Road / Tai Tong Road	Signalized	+29%	+29%	+29%	+28%			
В	Tai Tong Road / Shap Pat Heung Road	Signalized	+20%	+16%	+18%	+15%			
С	Shap Pat Heung Road / Fung Ki Road	Signalized	+90%	+74%	+85%	+73%			
D	Shap Pat Heung Road / Tai Kei Leung Road	Signalized	+67%	+75%	+66%	+74%			
Е	Shap Pat Heung Interchange	Roundabout	0.73	0.79	0.73	0.79			

Notes: (1) RC = Reserve Capacity for Signal Junction;

DFC = Design Ratio of Flow to Capacity for Priority Junction/Roundabout

(2) Junction Improvement scheme would be carried out on Junction E under Yuen Long South Development project (PWP Item Nos. 7817CL and 7827CL(part)). Please refer to Figure 4.9

- 4.6.2 The assessment result in Table 4.6 reveals that all Junctions operate with ample capacities in both reference and design scenarios in year 2028.
- 4.6.3 Queue length assessment has been carried out shown in Figures 4.5 to 4.8 and summarized in Table 4.9 below.

	Table 4.7	Queue E	light Analysis of Identi	10 41 0 4111		ılated Qu	ene Lengt	h (m)		
Ref.	Junction	Method of Control	l Direction Se		Refer Seer (With Prop Develo	rence pario out the osed pment)	Design Scenario (With the Proposed Development) AM Off- Peak Peak			
			Ma Tong Road (WB)	260	36	30	36	30		
			Tai Tong Road (NB) (STR & LT)	290	42	48	48	48		
	Shap Pat		Tai Tong Road (NB) (RT)	290	6	6	6	6		
A	Heung Road / Tai Shu Ha	Priority	Ma Tong Road (EB) (LT)	350	18	12	18	18		
	Road East		Ma Tong Road (EB) (STR & RT)	350	18	24	18	24		
			Tai Tong Road (SB) (STR & LT)		42	42	42	42		
			Tai Tong Road (SB) (RT)	240	12	18	12	18		
			Shap Pat Heung Road (WB) (STR & RT)	150	48	54	48	54		
			Shap Pat Heung Road (WB) (LT)	150	18	18	18	18		
В	Tai Tong Road / Shap Pat	Signalized	Tai Tong Road (NB) (STR & LT & RT)	160	36	36	36	36		
	Heung Road		Shap Pat Heung Road (EB) (STR)	230	36	36	36	36		
			Shap Pat Heung Road (EB) (LT)	230	12	18	12	18		
			Tai Tong Road (SB) (STR & LT & RT)	290	42	42	42	42		
			Shap Pat Heung Road (WB) (RT)	230	36	48	36	48		
			Shap Pat Heung Road (WB) (STR & LT)	230	42	42	42	42		
	Shap Pat		The Access Road of The Reach (NB) (LT)	40	0	0	0	0		
С	Heung Road / Fung Ki Road	Signalized	The Access Road of The Reach (NB) (STR & RT)	40	0	6	0	6		
			Shap Pat Heung Road (EB) (LT)	250	18	24	18	24		
			Shap Pat Heung Road (EB) (STR)	250	36	36	36	36		
			Fung Ki Road (SB) (LT)	180	36	42	36	42		
			Fung Ki Road (SB) (STR & RT)	180	6	12	6	12		
	Shap Pat		Shap Pat Heung Road (SB)	280	30	30	30	30		
D	Heung Road /	Signalized	Shap Pat Heung Road (NB)	90	24	24	24	24		
	Tai Kei Leung Road		Tai Kei Leng Road (EB) (RT)	400	24	24	24	24		
_	Shap Pat	D 11	Yuen Long Highway (WB)	770	18	24	18	18		

Table 4.9 Queue Length Analysis of Identified Junctions in 2028

4.6.4 The assessment results in Table 4.7 indicate that all queues are queuing within the allowable road segments during the peak hours. The traffic generated by the proposed development would induce insignificant impact on the surrounding road network. Therefore, the application is supported from the traffic points of view.

590

Yuen Long Highway (EB)

Shap Pat Heung Road (SB)

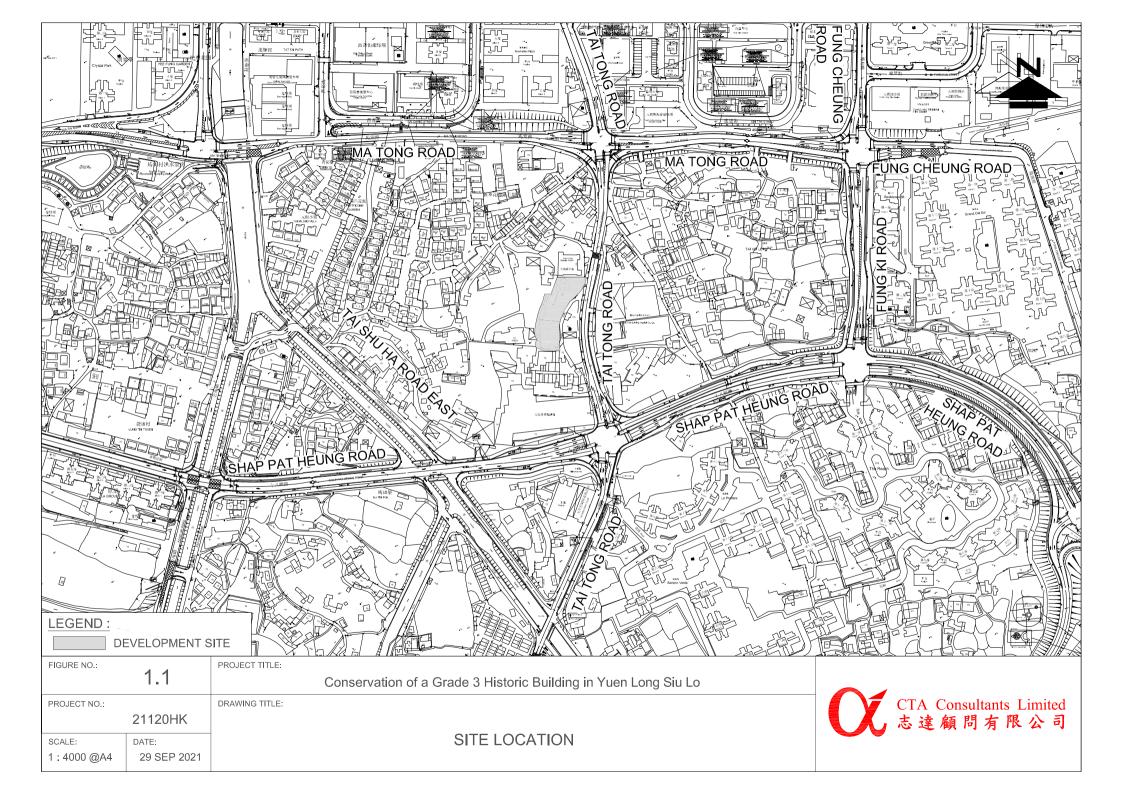
Е Heung

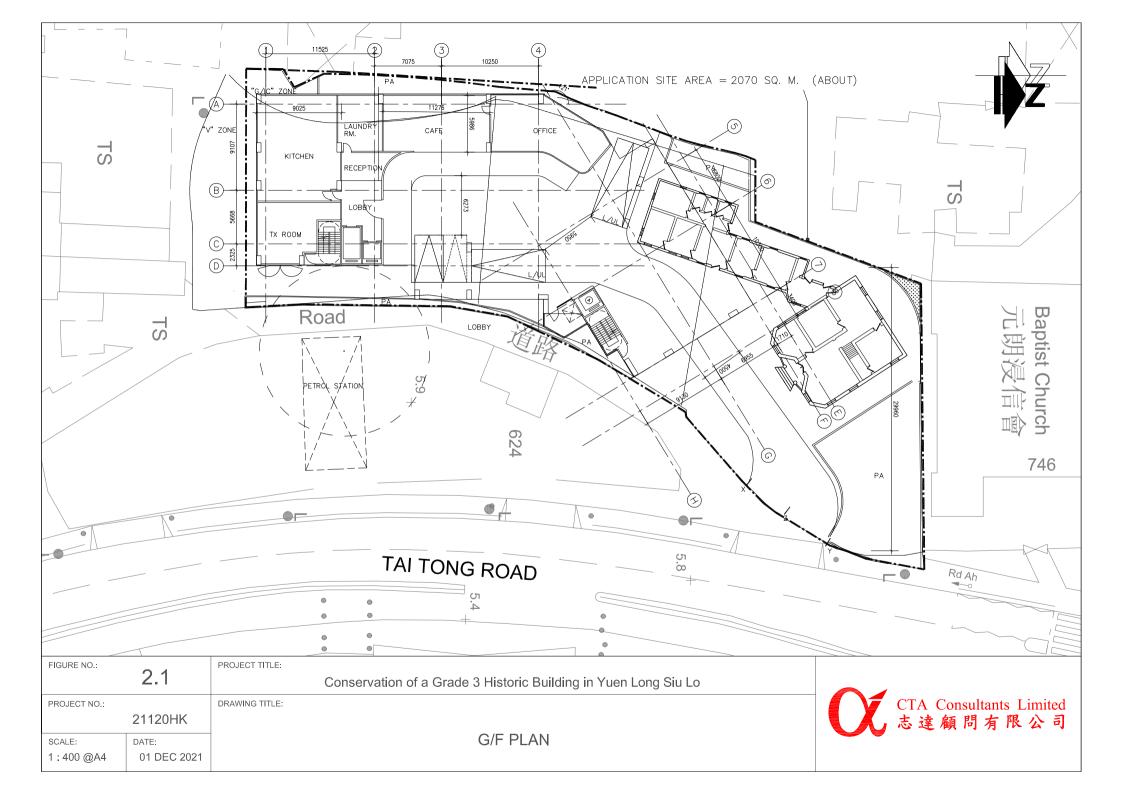
Interchange

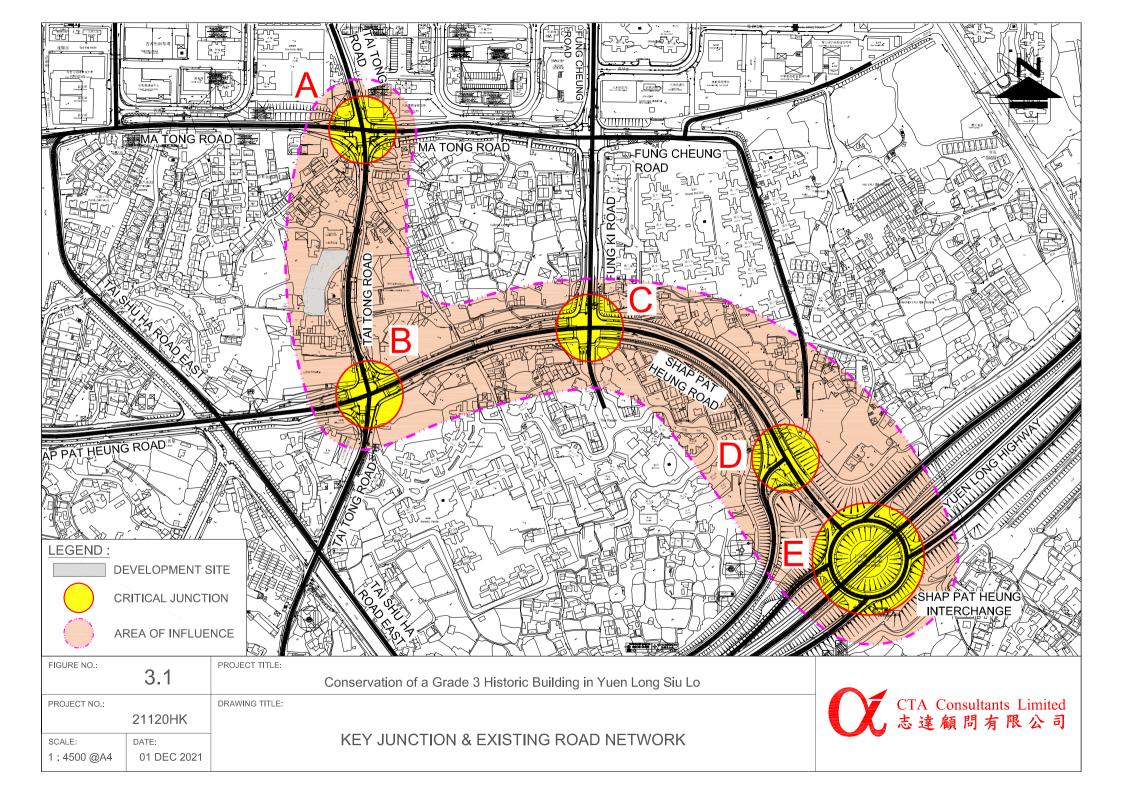
Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment

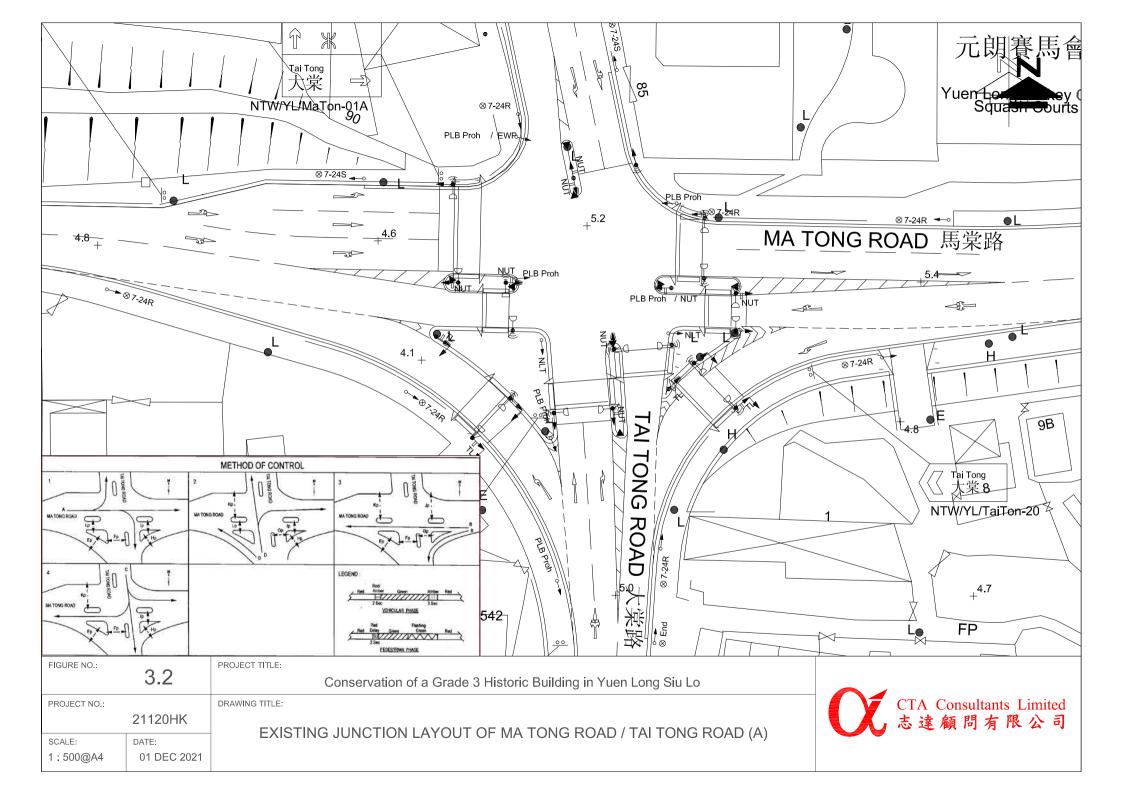
Revised Final Report (July 2022)

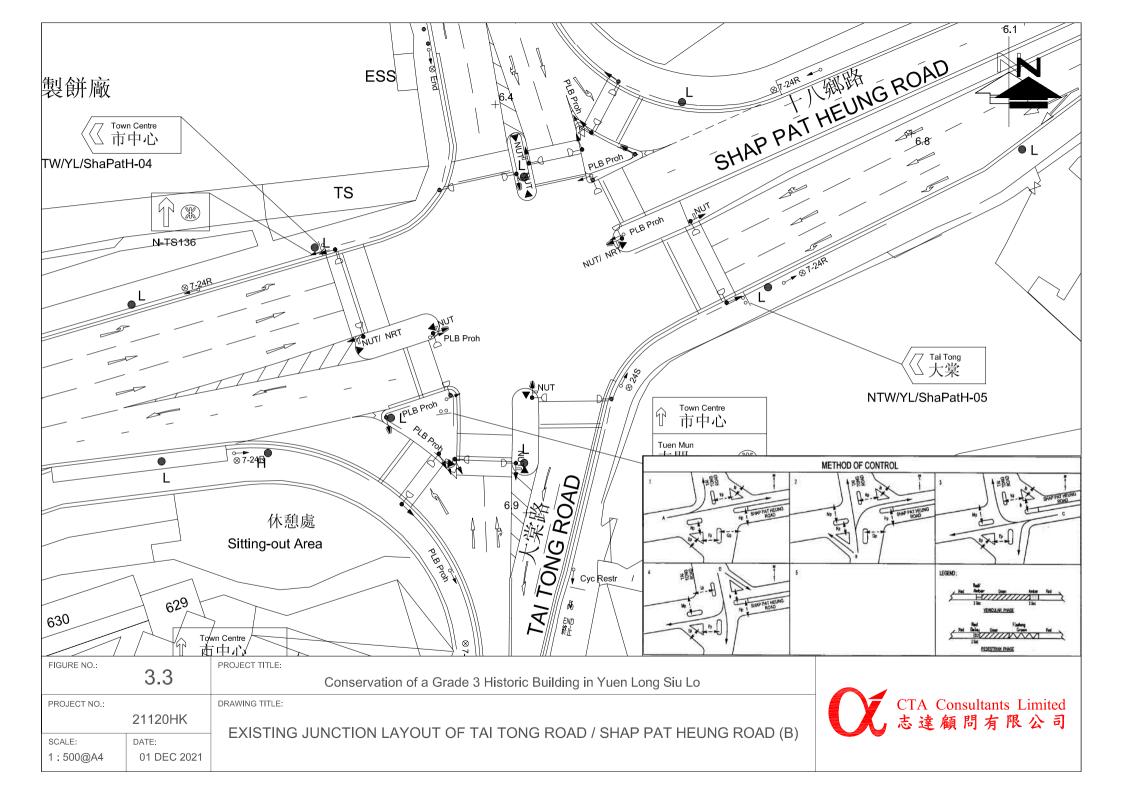
13 以 We commit We deliver 誠

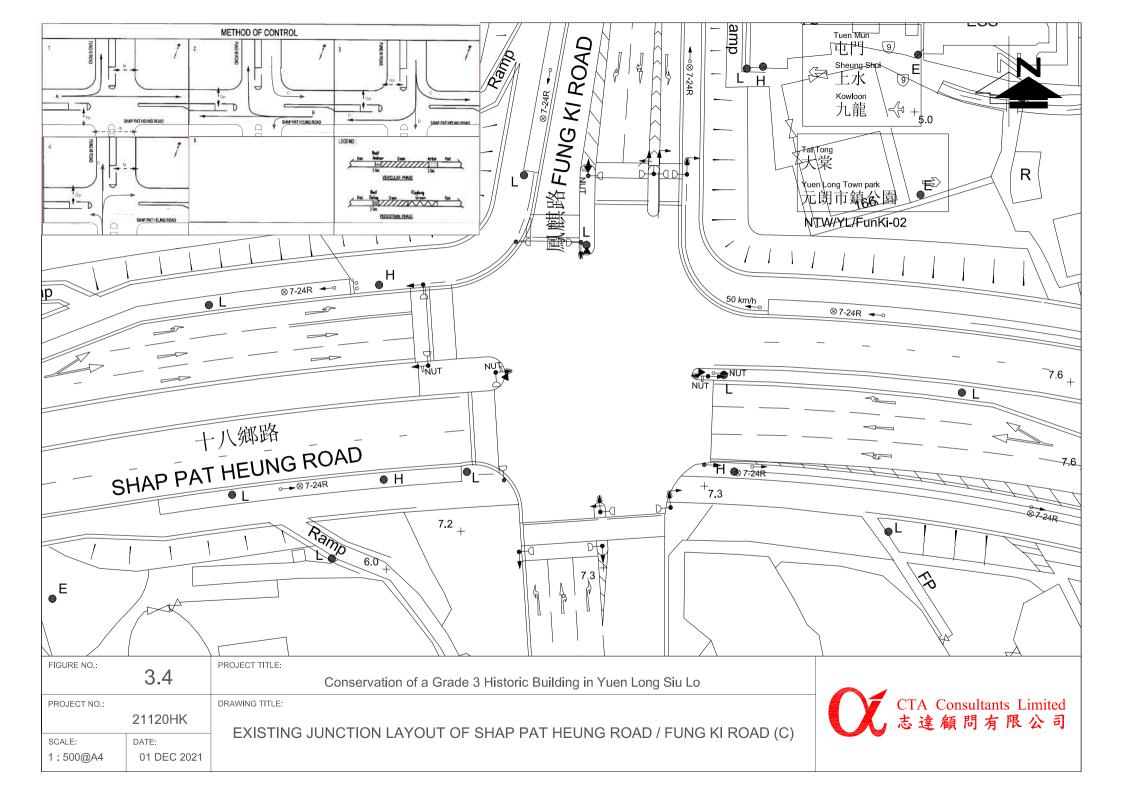

SUMMARY AND CONCLUSION

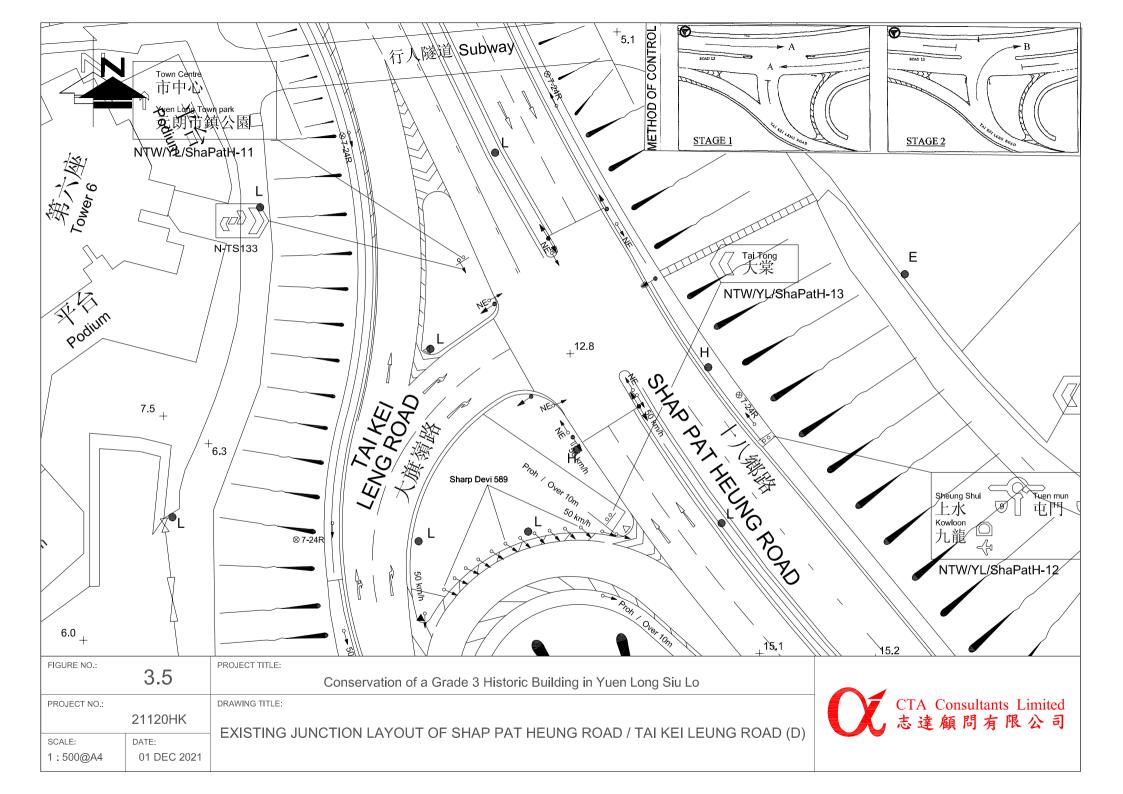

5.1 Summary

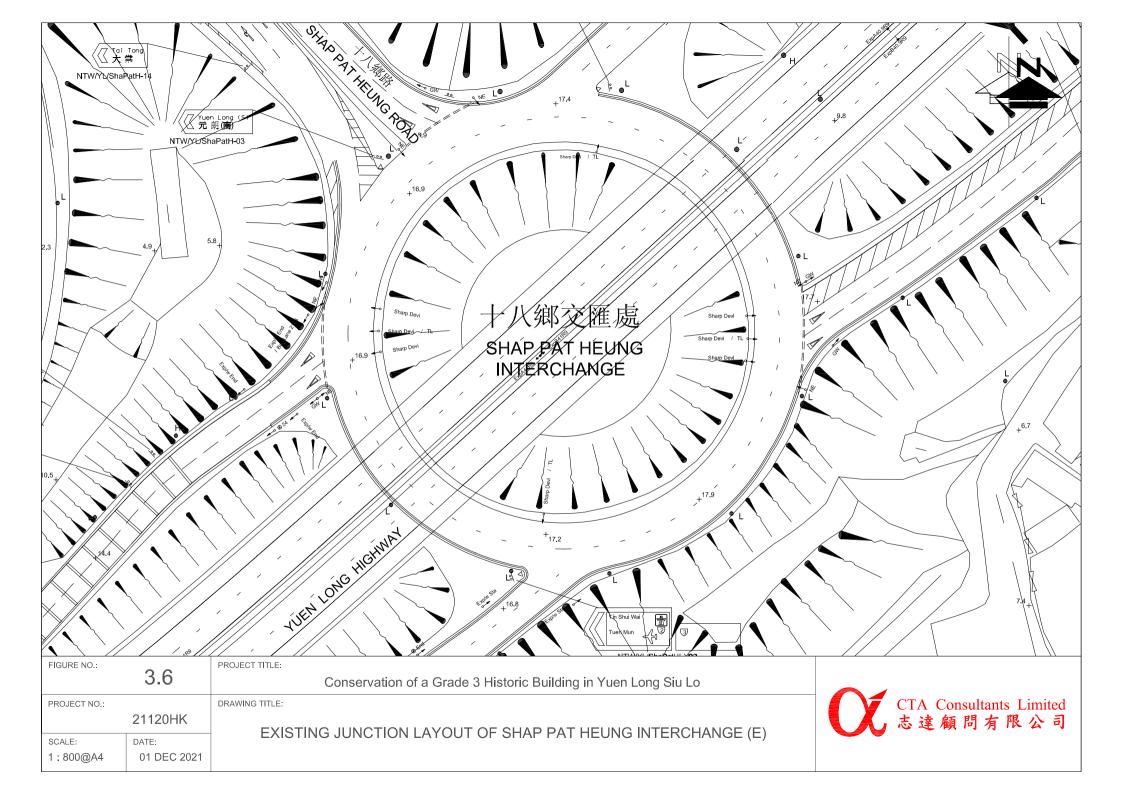

- The application site intends to develop to Residential Care Home for the Elderly (RCHE).
- 5.1.2 CTA Consultants Limited (CTA), are therefore commissioned as the traffic consultant to prepare the Traffic Impact Assessment (TIA) and provide technical justifications in supporting the application from traffic engineering point of view.
- 5.1.3 To appraise the existing traffic condition, a vehicular survey in the form of manualclassified count was conducted at the surrounding road network of the proposed development. Current operational performance of the critical junctions has been assessed with the observed traffic flow. The results reveal that all critical junctions are at present operating within its capacities.
- 5.1.4 Assessment of operational performance of the critical junctions indicates that all critical junctions will still operate within their capacities in both reference and design scenarios in year 2028.
- 5.1.5 The traffic generated by the proposed development would induce insignificant impact on the surrounding road network. Therefore, the application is supported from the traffic points of view.

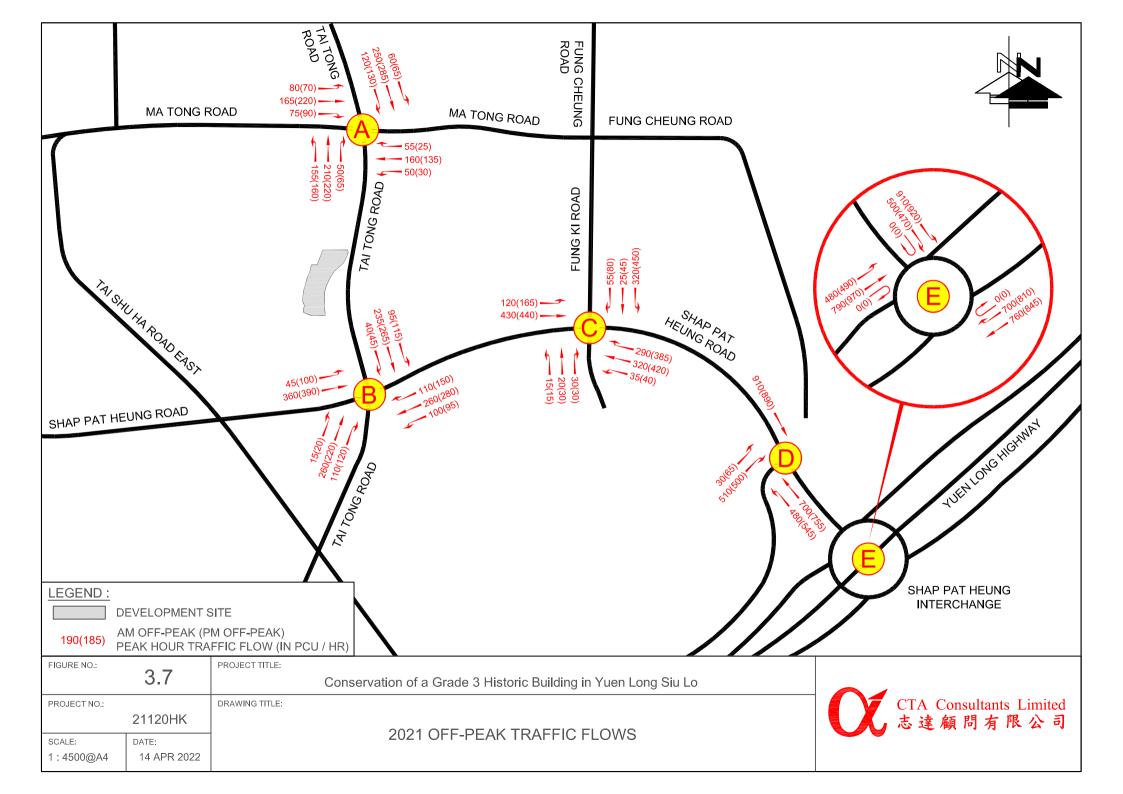

5.2 Conclusion

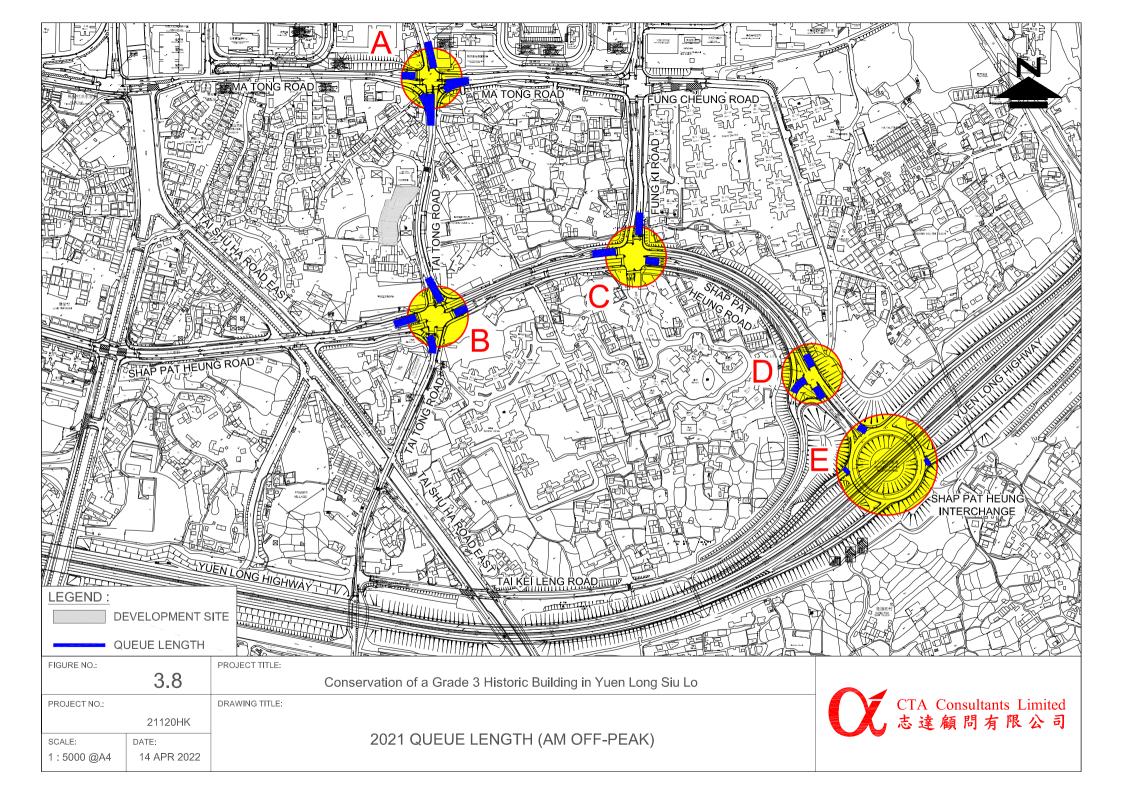

- In conclusion, this Traffic Impact Assessment (TIA) study demonstrated that the related traffic trips related to the proposed development can be absorbed by the nearby road network and no significant traffic impact will be induced.
- 5.2.2 Therefore, the proposed development of RCHE is reckoned feasible from traffic engineering point of view.

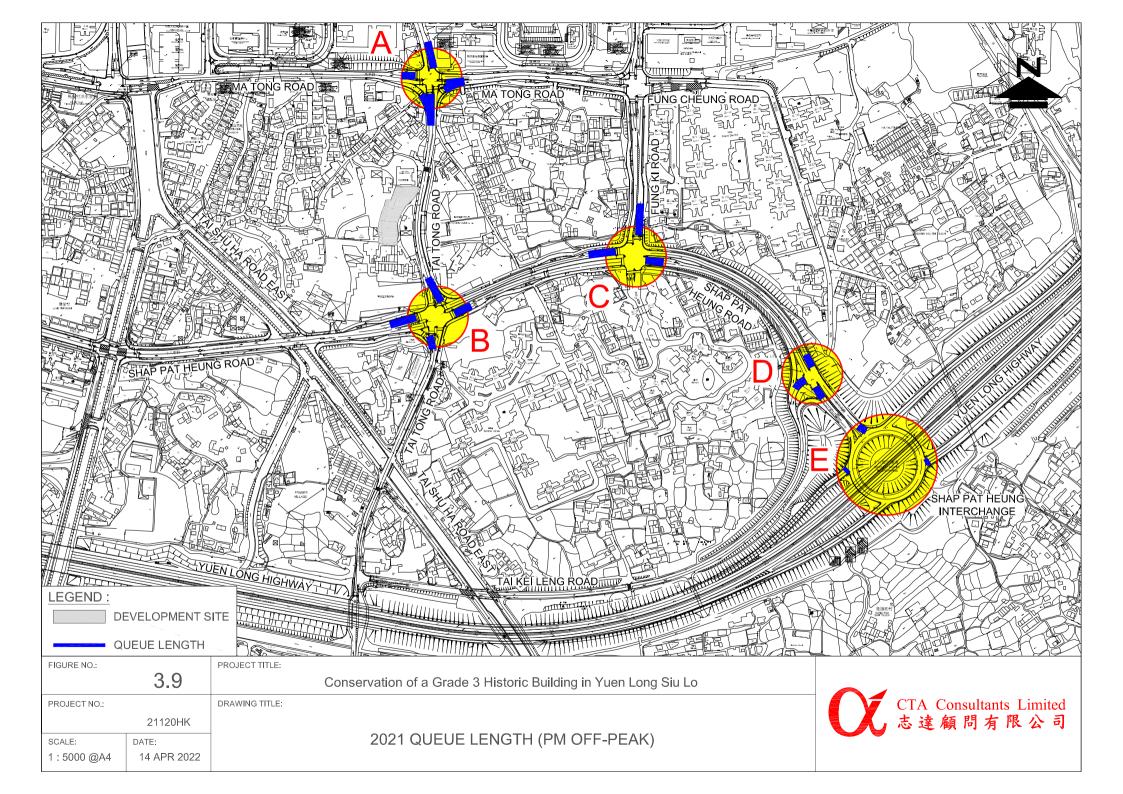


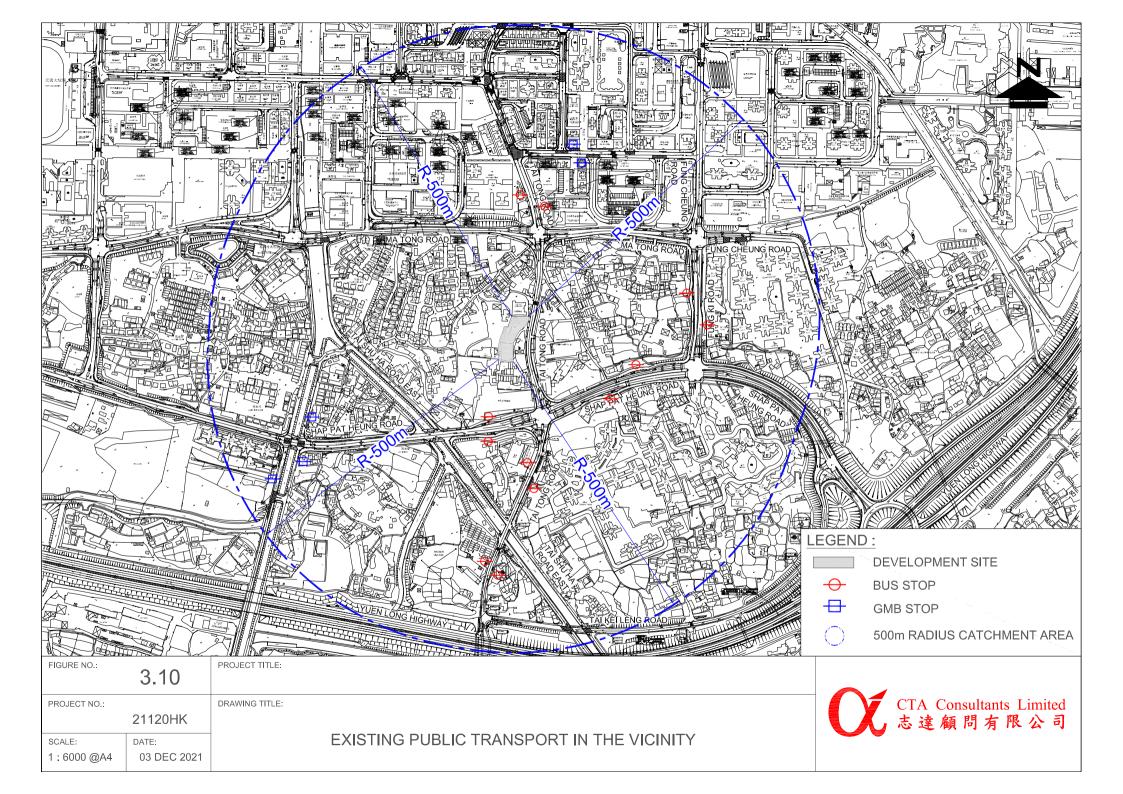


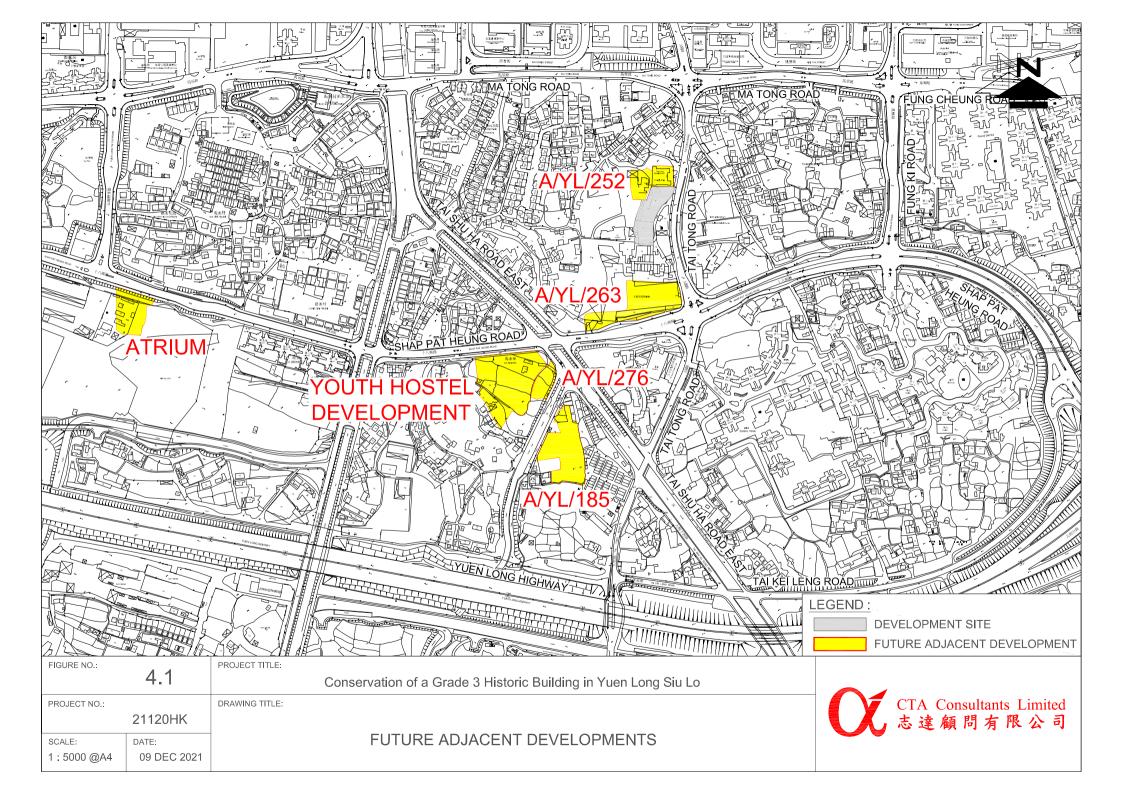


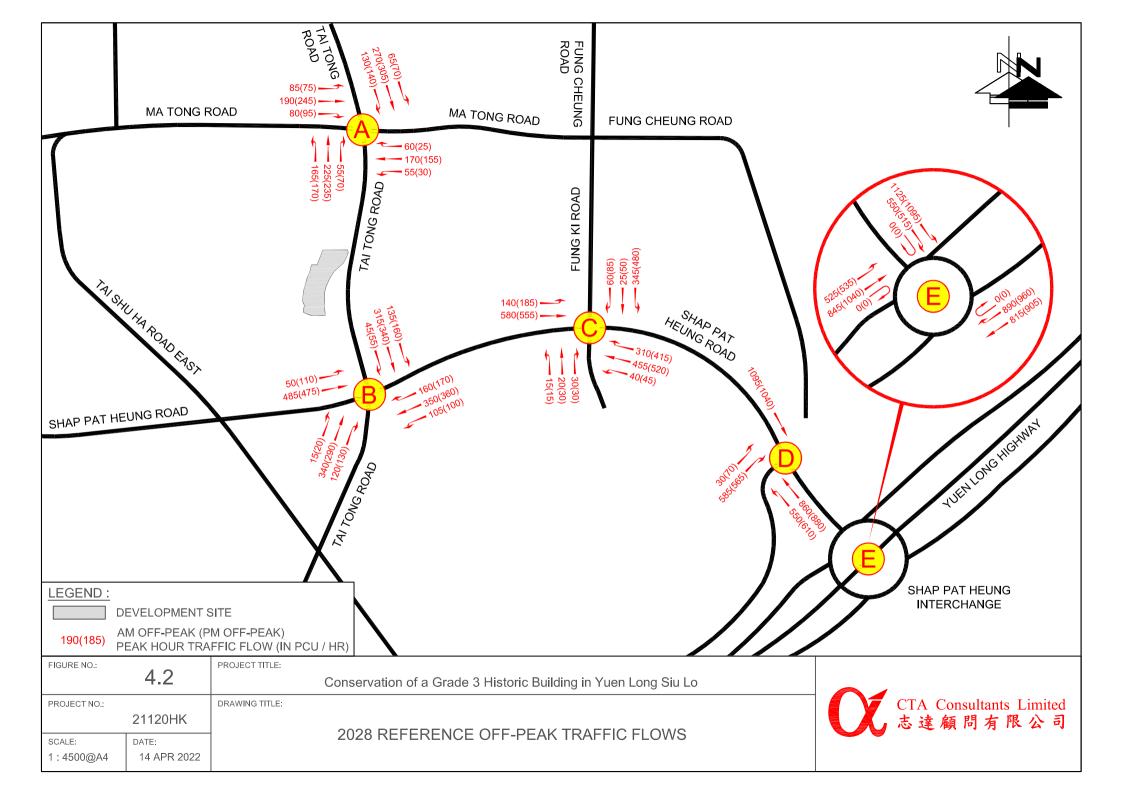


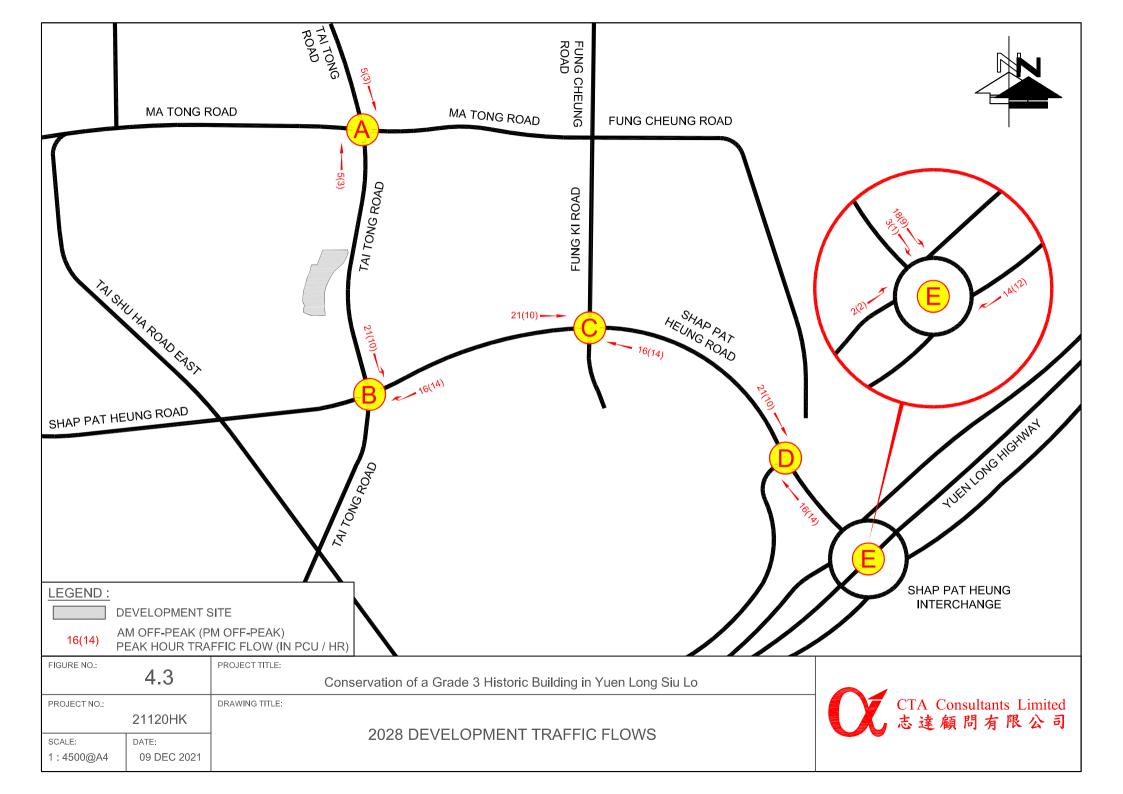


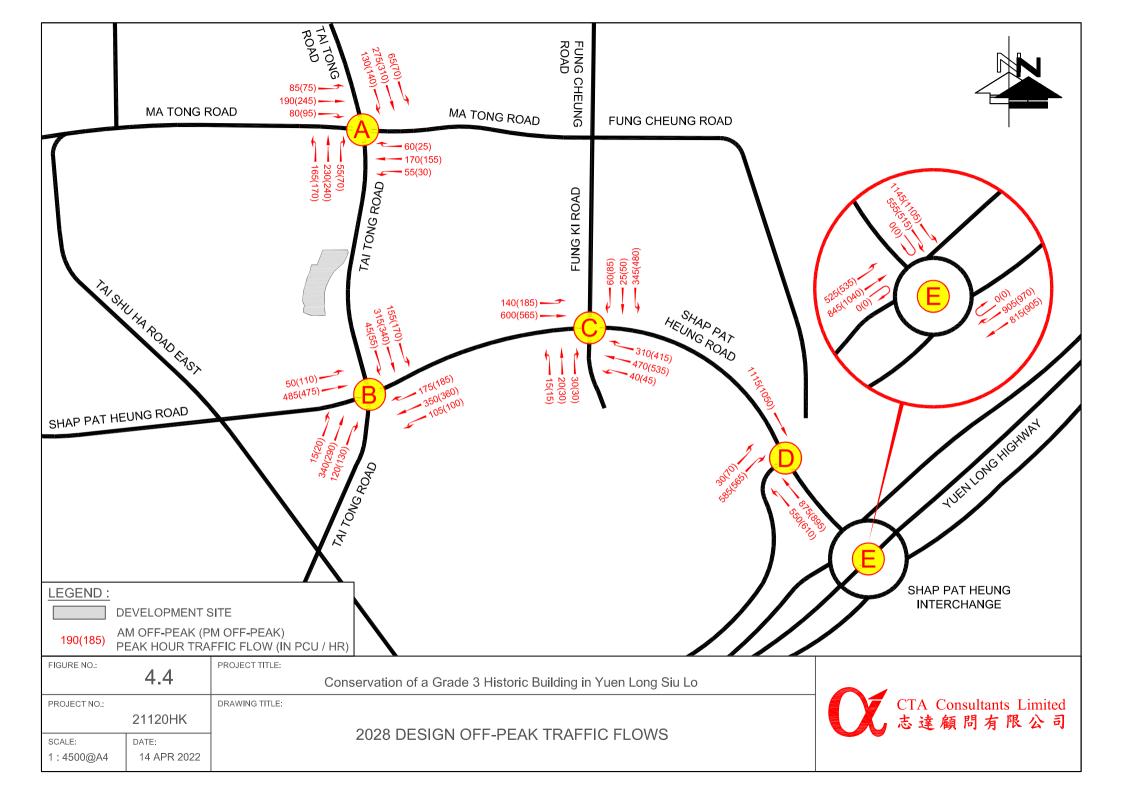


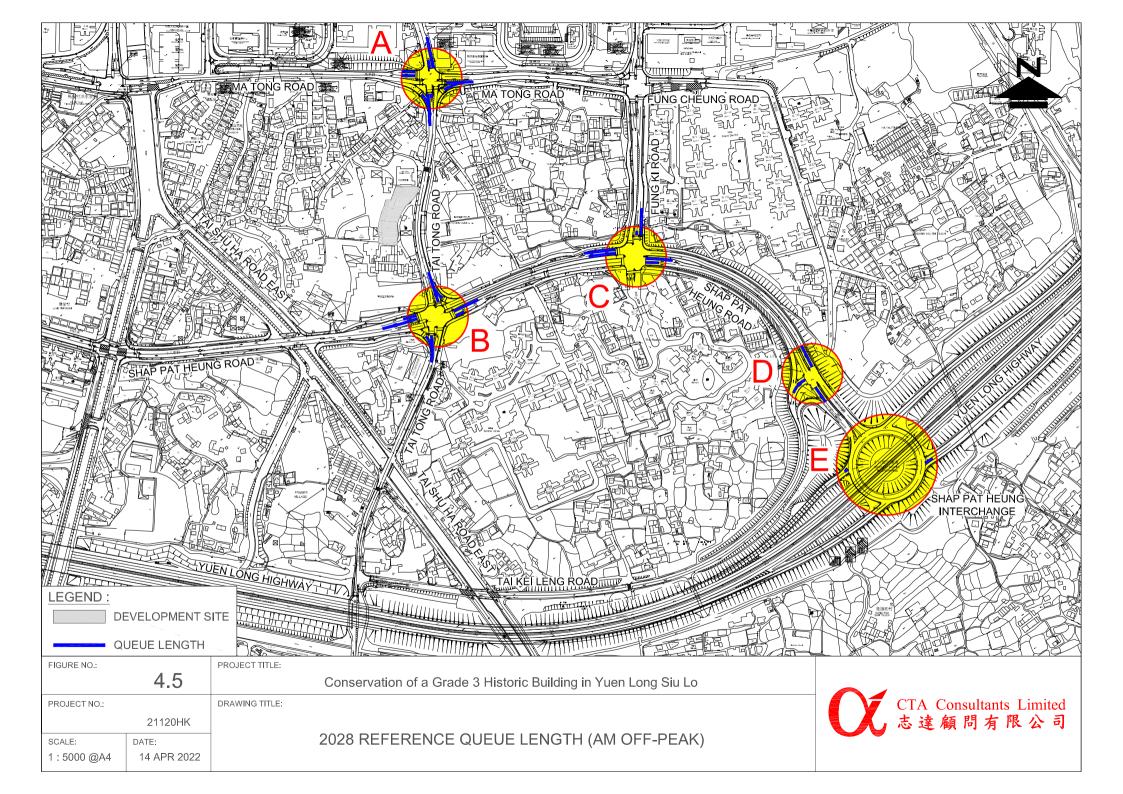


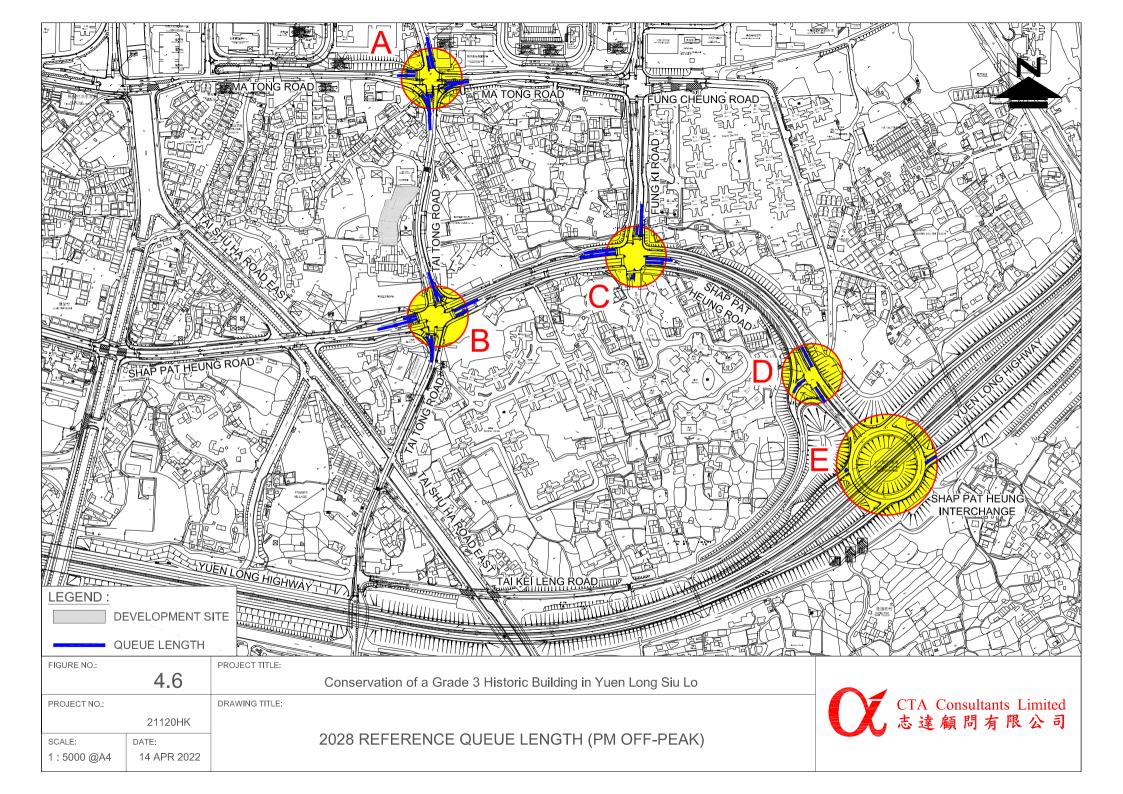


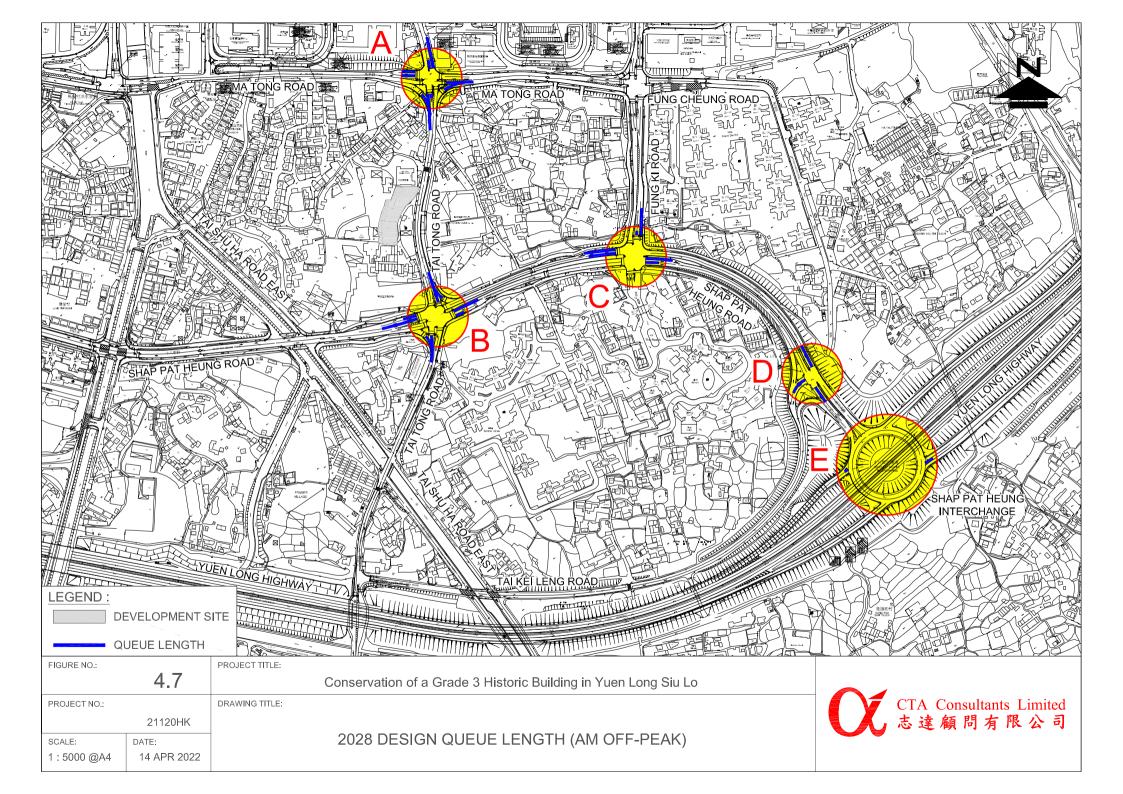


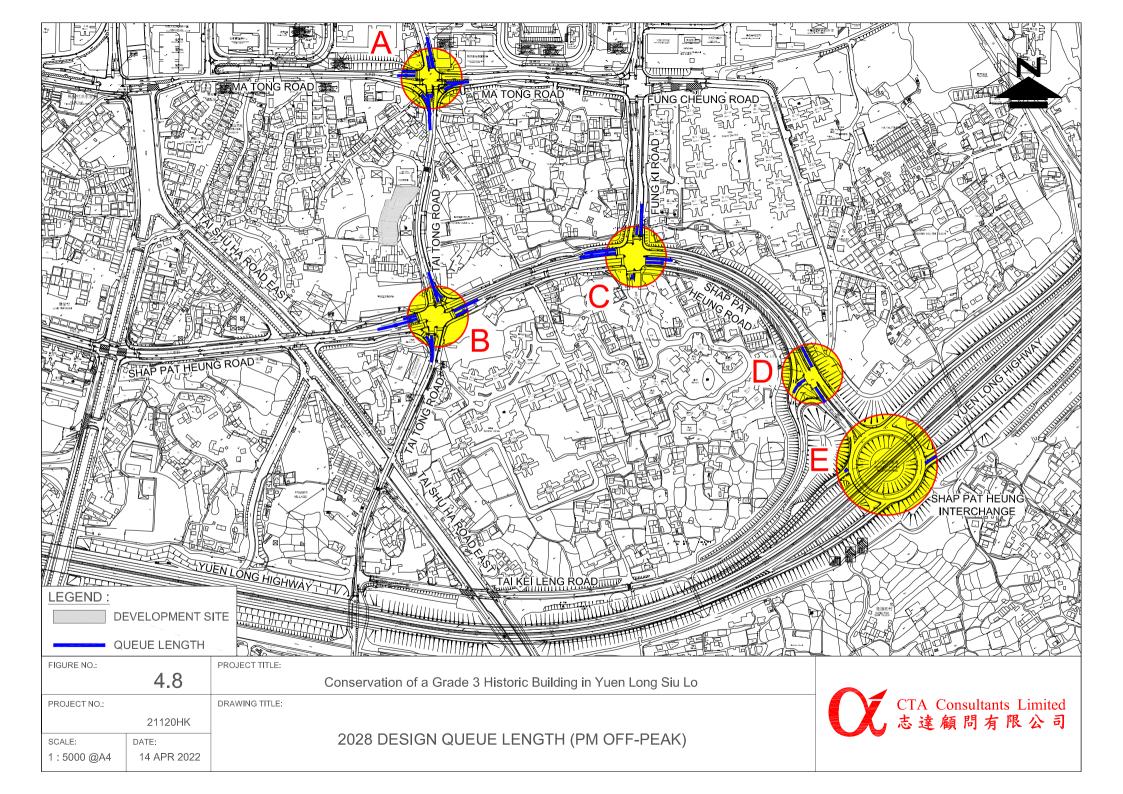


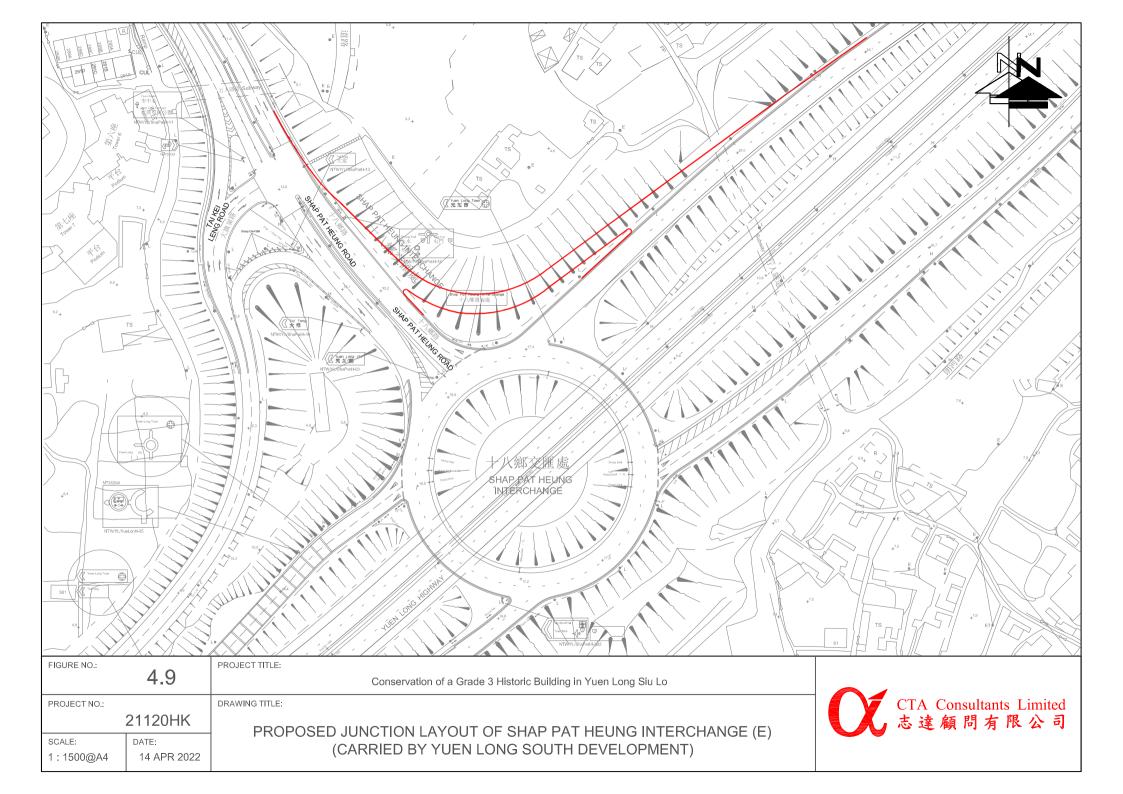












g in Yuen Long Siu Lo fic Impact Assessment inal Report (July 2022) We commit We deliver Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo Traffic Impact Assessment Revised Final Report (July 2022)

Appendix 1

Junction Calculation Sheets

21120HK/ Revised Final Report (July 2022)

TRAFFIC SIGNALS CAI	CUI	LATI	ON							Job No:	21120HK					СТА (Consi	ıltant	s Ltd.
Junction:	(A)	Maï	Γonσ I	Road / 1	Tai Toi	ng Roa	d									C 171 V	Const	artant.	J Litu.
Description:																			
Approach	Direction	Movement	Phase	Stage	Width (m)	Radii	us (m)	Nearside 0/1	Site Factor	Pro. Tur	ning (%)	Saturati (pc)	rised ion Flow u/hr)		A.M. Off-Pea	ık		P.M. Off-Pe	ak
Approuen	Dire	Move	Ph	Sts	Widt	Left	Right	Nearsi	Site	A.M Off- Peak	P.M Off- Peak	A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Ma Tong Road (WB)	W	ţ	В	3	4.0 5.0	0 15	21 0	0	1 0.063	26% 100%	16% 100%	2235	2250	265	0.119	0.119	190	0.084	0.084
Tai Tong Road (NB)	N N	4	D D	2 2	3.5 3.5	8	0 21	1	1.11 0.06	42% 100%	42% 100%	2140	2140	415	0.194	0.194	445	0.208	0.208
Ma Tong Road (EB)	E E	→	A A A	1 1 1	3.5 3.5 3.5	18 0 0	0 0 30	1 0 0	0.9 0.9 0.9	100% 0% 63%	100% 0% 59%	5360	5365	320	0.060	0.060	380	0.071	0.071
Tai Tong Road (SB)	S S	4	с • с	4	3.5 3.5	0 8	24 0	0	1	100% 19%	100% 19%	3875	3880	430	0.111	0.111	480	0.124	0.124
Pedestrian crossing			Gp	1,3,4 1,2 1,2,4 3,4 1,2,3 1,2,4	Min. 0 Min. 0 Min. 0 Min. 0 Min. 0 Min. 0	Prossin Prossin Prossin Prossin Prossin	g Time g Time g Time g Time g Time g Time g Time	= 6Gm - = 5Gm - = 6Gm - = 5Gm - = 8Gm - = 10Gm	+ 5FGm = + 6FGm = + 5FGm = + 6FGm = + 5FGm = + 8FGm = + 10FGi + 5FGm =	=12s =10s =12s =10s =16s n =20s									
Notes:						16	80(70) 5(220) 75(90)		120(130)	250(285) 1210(220)	> - - -	55(25) 160(135 50(30)	N X	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.483 30 120 0.675 40%	•	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phas 0.487 30 120 0.675 39%	e
Stage / Phase Diagrams I A I IIG = 9			2 I/G	= 10	I ♣ D	<u>l</u>	<u></u>		ı	3 	Ţ	-	В	1/G = 6			5		

Junction:	ULATIO	ON							Job No:	21120HK				(CTA (Consu	ıltants	Ltd
						ng Roa	d											
Description:	2021 O	ff-pea	k Traffi	c Flows														
	on	g o		(ii	Radiu	ıs (m)	de	tor	Pro. Tur	ning (%)		ised		A.M. Off-Pea	k		P.M. Off-Pea	k
Approach	Direction	notation	Stage	Width (m)	Left	Right	Nearside 0/1	Site Factor	A.M. Off- Peak	P.M. Off- Peak	A.M. Off- Peak	P.M. Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shap Pat Heung Road (WB)	w ←		3	3.8	0	30 0	0	1	59% 0%	69% 0%	4385	4375	470	0.107	0.107	525	0.120	0.120
	w C		3	3.5	15	0	1	0.95	100%	100%								
Tai Tong Road (NB)	N ×	В - В	2	3.5	15 0	0 15	1	0.125	37% 32%	54% 37%	2275	2265	385	0.169	0.169	360	0.159	0.159
	IN	1- 5	2	3.3	U	13	U	1	3270	3/76								
Shap Pat Heung Road (EB)	E -	F A	1	3.5	15 0	0	1	1	100%	100%	6055	6055	405	0.067	0.067	490	0.081	0.081
		• A	1	3.8	0	0	0	1	0%	0%								
Tai Tong Road (SB)	s ,	- D	4	3.5	15	0	1	0.135	100%	100%	2315	2315	370	0.160	0.160	425	0.184	0.184
	s 🔫	, D	4	3.5	0	15	0	1	15%	15%								
Pedestrian crossing		E _l F _l G _l I _t I _t K _l L _l M	1,3,4 1,2,4 1,2,4 1,2,3 1,2,3 1,2,4 4 2,3,4	Min. Min. Min. Min. Min. Min. Min. Min.	Crossing Crossing Crossing Crossing Crossing Crossing Crossing Crossing	Time = Ti	= 7Gm = 8Gm = 10Gr = 8Gm = 6Gm = 6Gm = 9Gm = 10Gr	+ 6FGm + 7FGm + 8FGm n + 10FG + 8FGm + 8FGm + 8FGm + 6FGm n + 6FGm + 6FGm	n=14s n=16s Gm=20s n=16s n=14s n=12s n=15s m=16s									
Notes:					Traffic	Flow (pcu/h	r)		[AM (PM)]	N	ı	Check Phase	:		Check Phase	,
												€7\	εy	0.503		εу	0.543	
						5(100) -	4		235(265)	95(115)	110(150 260(280		L (sec) C (sec) y pract. R.C. (%)	16 120 0.780 55%		L (sec) C (sec) y pract. R.C. (%)	16 120 0.780 44%	
						5(100) - 0(390) =	∠ - -	<u> </u>	235(265)	→ → → →	110(150 260(280 100(95)))))	L (sec) C (sec) y pract.	16 120 0.780		C (sec) y pract.	120 0.780	
Stage / Phase Diagrams		2					<i>∠</i> <i>− − − − − − − − − −</i>	<u> </u>	↑ I	→ → → →	260(280))))	L (sec) C (sec) y pract.	16 120 0.780 55%)	C (sec) y pract.	120 0.780	
Stage / Phase Diagrams	-	2					\	<u> </u>	↑ I	→ → → →	260(280))))	L (sec) C (sec) y pract.	16 120 0.780)	C (sec) y pract.	120 0.780	

RAFFIC SIGNALS CALC	ULA	TION								Job No:	21120HK					CTA (<u>Cons</u> u	ıltants	Ltd
Junction							i Road										_		
Description	202	1 Off-	peak '	Fraffic	Flows														
	g	n ut			(H)	Radio	us (m)	9	.о.	Pro. Tu	rning (%)	Rev	ised		A.M. Off-Pea	k	F	P.M. Off-Pea	ık
Approach	Direction	Moveme notation	Phase	Stage	Width (Left	Right	Nearside 0/1	Site Factor	A.M Off- Peak	P.M Off- Peak	A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
CI D.H. D. LOWEN	W/	4	n	2	2.5		21		0.055	1000/	1000/	1000	1000	200	0.161	0.161	205	0.214	
Shap Pat Heung Road (WB)	W	_	В	2	3.5	0	21	0	0.855	100%	100%	1800 735	1800 735	290 98	0.161	0.161	385 127	0.214	
	W	_	В	2	3.5	15	0	1	0.35	14%	12%	1940	1940	257	0.133		333	0.172	
		•		-	5.5			•	•	1170	12/0	1710	1710	201	0.155		333	0.172	
The Access Road of The Reach	N	4	Е	4	3.5	15	0	1	1	100%	100%	1785	1785	15	0.008		15	0.008	
	N	^ -	- E	4	3.5	0	35	0	1	16%	34%	2090	2075	18	0.009		23	0.011	
	N	۲	E	4	3.5	0	30	0	1	100%	100%	2005	2005	17	0.009		22	0.011	
Shap Pat Heung Road (EB)	Е	<u>_</u>	Α	1	3.5	15	0	1	0.9	100%	100%	1610	1610	120	0.075	0.136	165	0.102	
	E		Α	1	3.5	0	0	0	0.5	0%	0%	1052.5	1052.5	143	0.136	0.130	147	0.102	0.13
	E	<u> </u>		1															0.13
	Е	~	A	1	3.5	0	0	0	1	0%	0%	2105	2105	287	0.136		293	0.139	
Fung Ki Road (SB)	S	L	С	2,3	3.5	18	0	1	1	100%	100%	1815	1815	320	0.176		450	0.248	0.24
		9																	
	S	~	D	3	3.5	0	23	0	1	39%	30%	2055	2065	41	0.020		64	0.031	
	S	*	D	3	3.5	0	21	0	1	100%	100%	1965	1965	39	0.020		61	0.031	
			Gp Hp Ip Jp		Min. C	rossin; rossin;	g Time	= 7Gm = 7Gm	+ 7FGr + 7FGr										
otes:						Traffic	Flow (pcu / h	ır)		[AM (PM)]	N		Check Phase			Check Phase	
te factor are applied due to la idened to provide an addition									55(80)	25(45)	320(450)		X	Ey L (sec)	0.297 28		εy L (sec)	0.387	
te Factor of 0.95 is apply to fast									ريي					C (sec)	130		C (sec)	130	
VB). Further 10% deduce due to Road, which give total Site fact			k effo	et from	Fung					V	→			y pract.	0.706		y pract.	0.768	
te Factor of 0.35 is apply to mid			on Pot	Houno	Road		0(165) 0(440)		⇒`		~	290(385 320(420		R.C. (%)	138%		R.C. (%)	98%	
vB)	are ill	ic or St	mp r al	reung	.coau	+3	J(110)				V	35(40)	,						
te Factor of 0.95 is apply to near oad (EB)	rside	lane of	Shap P	at Heu	ng				<	1 1	أ								
ite Factor of 0.5 is apply to midd	le lan	e of Sha	p Pat l	Heung l	Road				15(15)	20(30)	30(30)								
age / Phase Diagrams																			
· →			2		I T	l L,	°		В	3	-	∜ > □	С	4	L L				
Т											Т			-	<u> </u>				
M: I/G = 6			I/G =	615	ı					I/G = 5	T			I/G = 5+5	<u> </u>				

RAFFIC SIGNALS CALCU	LATI	ON								Job No:	21120HK				(CTA (Consu	ıltant	Ltd
Junction: Description:						ai Kei	Leung	Road											
		-			_	Radii	ıs (m)		-	Dro Tu	ning (%)	Rev	ricad		A.M. Off-Pea	l-		P.M. Off-Pe	ak.
Approach	Direction	Movemen notation	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	Site Factor	A.M Off- Peak	P.M Off- Peak	A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical
Shap Pat Heung Road (SB)	S S	*	A A	1	3.5	0	0	1	0.9	0%	0%		1768.5 1894.5	439 471	0.248 0.248	0.248	430 460	0.243 0.243	0.243
Shap Pat Heung Road (NB)	N	•	Δ	1	3.5	0	0	1	1	0%	0%	1965	1965	338	0.172		365	0.186	
Ship Fut Feding Roud (115)	N	1	A	1	3.5	0	0	0	1	0%	0%	2105	2105	362	0.172		390	0.186	
Tai Kei Leng Road (EB)	E E	\rightarrow	В	2	3.5 3.5	0	12 13.5	1	0.9	100% 100%	100% 100%	1570 1705	1570 1705	244 266	0.156 0.156	0.156	240 260	0.153 0.153	0.153
lotes:																			
site factor are applied due to traffic queue extended from Shap hat Heung Interchange. Jased on site observation, about 10% delay of the effective green right turning from Tai Kei Leng Road to S-bound. Similar 10% delay is also observed along the S-Bound approach.						Traffic	Flow (pcu / h	r)		[AM (PM)]	N	Ev	Check Phase	:		Check Phas	:
at Heung Interchange. Based on site observation, about treen right turning from Tai Kei	10% Leng	delay o	the e	ffective und.			Flow (pcu / h	-V		910(890) ↓]	N	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.404 10 90 0.800 98%	:	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phas 0.396 10 90 0.800 102%	
hat Heung Interchange. Jased on site observation, about recen right turning from Tai Kei Jased on Tai Kei Jased on Tai Kei Jased on Tai Kei Jased on Tai	10% Leng ed alo	delay o Road to ng the S Heung	f the e S-bo S-Bour Road	ffective und. nd app (SB)				peu / h	T)	↑ 700(755)	910(890)]	N	L (sec) C (sec) y pract.	0.404 10 90 0.800	:	Ey L (sec) C (sec) y pract.	0.396 10 90 0.800	;
at Heung Interchange. Based on site observation, about reen right turning from Tai Kei similar 10% delay is also observation.	10% Leng ed alo	delay o Road to ng the S Heung	f the e S-bo S-Bour Road	ffective und. nd app (SB)	roach.			peu / h	¬v	↑	910(890)]	N	L (sec) C (sec) y pract.	0.404 10 90 0.800		Ey L (sec) C (sec) y pract.	0.396 10 90 0.800	

CTA Consultants Ltd. JUNCTION DELAY CALCULATION Job No: 21120HK

Junction: (A) Ma Tong Road / Tai Tong Road

Description: 2021 Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{c(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} -0.65 \quad (c)^{\frac{1}{3}} X^{(2 + 5\lambda)}$$

where d = average delay per vehicle on the particular arm λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

Ī	Ma Tong I	Road (WB)	Tai Tong	Road (NB)	Tai Tong F	Road (NB)	Ma Tong I	Road (EB)	Ma Tong I	Road (EB)	Tai Tong	Road (SB)	Tai Tong l	Road (SB)
Approach:	(LT & ST	. ,	(STR		(R'	. ,	(L		(STR	. ,	(STR	` /	(R	, ,
	A.M. Off-Peak	P.M. Off-Peak												
q (veh/hr)	196	141	270	281	37	48	59	52	178	230	230	259	89	96
g (sec)	18	13	31	31	31	31	9	7	9	7	29	32	29	32
c (sec)	120	120	120	120	120	120	120	120	120	120	120	120	120	120
s (veh/hr)	1,922	1,933	1,552	1,552	363	363	1,207	1,207	2,763	2,767	1,404	1,407	1,467	1,467
λ	0.15	0.11	0.26	0.26	0.26	0.26	0.07	0.06	0.07	0.06	0.24	0.26	0.24	0.26
x	0.68	0.68	0.68	0.70	0.40	0.51	0.68	0.70	0.89	1.35	0.68	0.70	0.25	0.25
M=qc	6.54	4.69	9.01	9.38	1.23	1.60	1.98	1.73	5.93	7.65	7.65	8.64	2.96	3.21
Delay														
d	53.67	59.32	44.39	45.14	46.15	51.63	77.30	87.68	106.32	-23.32	46.49	45.46	37.92	35.99
Junction Delay (sec)	58.3	34.3												

From TPDM Vol4 Table 4.2.5 Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

r = effective red time where

q = flow (in same units as r and d)

(m)	36.0	24.0	42.0	42.0	6.0	6.0	12.0	12.0	24.0	24.0	36.0	36.0	12.0	12.0
Queue length														
Average														
N (veh)	6	4	7	7	1	1	2	2	8	7	6	6	2	2
r (sec)	102	107	89	89	89	89	111	113	111	113	91	88	91	88
	A.M. Off-Peak	P.M. Off-Peak												
Approach:	(L	T)	LT &	RT)	(ST	R)	(STR &	& RT)	(L	T)	LT &	RT)	LT &	z RT)
	Shap Pat Heu	ng Road (EB)	Tai Tong Road	(NB) (STR &	Shap Pat Heur	ng Road (EB)	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong Road	l (SB) (STR &	Tai Tong Road	d (SB) (STR &

Job No: 21120HK

CTA Consultants Ltd

Junction: (B) Shap Pat Heung Road/ Tai Kei Leng Road

Description: 2021 Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{e(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} - 0.65 \quad (e)^{\frac{1}{3}} X^{(2+5)}$$

where d = average delay per vehicle on the particular arm

 λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong I	Road (NB)	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Tai Tong Road	d (SB) (STR &
Approach:	(STR a	& RT)	(L	(T)	(STR & I	LT & RT)	(ST	TR)	(L	T)	LT &	RT)
	A.M. Off-Peak	P.M. Off-Peak										
q (veh/hr)	296	344	80	76	308	288	288	312	36	80	296	340
g (sec)	24	22	24	22	29	26	18	19	18	19	28	31
c (sec)	120	120	120	120	120	120	120	120	120	120	120	120
s (veh/hr)	3,284	3,276	716	716	2,316	2,304	3,416	3,416	1,428	1,428	2,308	2,304
λ	0.20	0.18	0.20	0.18	0.24	0.22	0.15	0.16	0.15	0.16	0.23	0.26
X	0.45	0.57	0.56	0.58	0.55	0.58	0.56	0.58	0.17	0.35	0.55	0.57
M=qc	9.87	11.47	2.67	2.53	10.27	9.60	9.60	10.40	1.20	2.67	9.87	11.33
Delay												
d	42.90	45.71	52.07	55.10	41.30	43.83	48.31	47.79	45.66	47.15	41.99	40.30
Junction Delay (sec)	44.1	45.1										

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong Road	l (NB) (STR &	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Tai Tong Road	l (SB) (STR &
Approach:	(STR	& RT)	(L	T)	LT &	z RT)	(ST	R)	(L	T)	LT &	RT)
	A.M. Off-Peak	P.M. Off-Peak										
r (sec)	96	98	96	98	91	94	102	101	102	101	92	89
N (veh)	8	9	2	2	8	8	8	9	1	2	8	8
Average												
Queue length												
(m)	30.0	36.0	12.0	12.0	30.0	30.0	24.0	24.0	6.0	12.0	30.0	36.0

JUNCTION DELAY CALCULATION

Job No: 21120HK

CTA Consultants Ltd

Junction: (C)Shap Pat Heung Road / Fung Ki Road

Description: 2021 Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{c(1 \lambda)^2}{2(1 \lambda)^2} + \frac{X}{2q(1 - X)} - 0.65 \quad (c)^{\frac{1}{3}} X^{(2 + 5)}$$

 $\begin{array}{ll} \text{where} & \text{d=} & \text{average delay per vehicle on the particular arm} \\ & \lambda = & \text{proportion of the cycle which is effectively green for the phase under} \end{array}$

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

Approach:	Shap Pat Heur (R	ng Road (WB) T)		ng Road (WB) & LT)	The Access Reach (N	Road of The NB) (LT)	The Access Road (NB) (STR		Shap Pat Heu (L		Shap Pat Heu (ST	ng Road (EB)	Fung Ki Roa	ad (SB) (LT)	Fung Ki Road R'	I (SB) (STR & T)
11	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
q (veh/hr)	232	308	284	368	12	12	28	36	96	132	344	352	256	360	64	100
g (sec)	40	44	49	55	6	6	6	6	41	36	41	36	60	66	6	6
c (sec)	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130
s (veh/hr)	1,440	1,440	2,140	2,140	1,428	1,428	3,276	3,264	1,288	1,288	2,526	2,526	1,452	1,452	3,216	3,224
λ	0.31	0.34	0.38	0.42	0.05	0.05	0.05	0.05	0.32	0.28	0.32	0.28	0.46	0.51	0.05	0.05
X	0.52	0.63	0.35	0.41	0.18	0.18	0.19	0.24	0.24	0.37	0.43	0.50	0.38	0.49	0.43	0.67
M=qc	8.38	11.12	10.26	13.29	0.43	0.43	1.01	1.30	3.47	4.77	12.42	12.71	9.24	13.00	2.31	3.61
Delay																
d	39.53	39.41	30.00	27.12	62.42	62.42	60.40	60.64	34.08	39.80	36.20	40.58	24.24	22.69	62.13	71.03
Junction Delay (sec)	36.5	34.8							•		•		•			•

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	The Access	Road of The	The Access Road	of The Reach	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Fung Ki Roa	d (SD) (LT)	Fung Ki Road	(SB) (STR &
Approach:	(R	T)	(STR	& LT)	Reach	ı (LT)	(STR &	RT))	(L	T)	(ST	TR)	Tung Ki Koa	id (3B) (L1)	R	T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
r (sec)	90	86	81	75	124	124	124	124	89	94	89	94	70	64	124	124
N (veh)	6	7	6	8	0	0	1	1	2	3	9	9	5	6	2	4
Average																
Queue length																
(m)	36.0	42.0	24.0	30.0	0.0	0.0	0.0	6.0	12.0	18.0	24.0	30.0	30.0	36.0	6.0	12.0

JUNCTION DELAY CALCULATION

Job No: 21120HK

CTA Consultants Ltd.

Junction: (D)Shap Pat Heung Road / Tai Kei Leung Road

Description: 2021 Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \underbrace{\frac{e(1 \lambda)^2}{2(1 \lambda)^2} + \frac{X}{2q(1 - X)}}_{} -0.65 \underbrace{(e)}_{q^2} \frac{\frac{1}{3}}{X^{(2 + 5)}} X^{(2 + 5)}$$

where d = average delay per vehicle on the particular arm

 λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

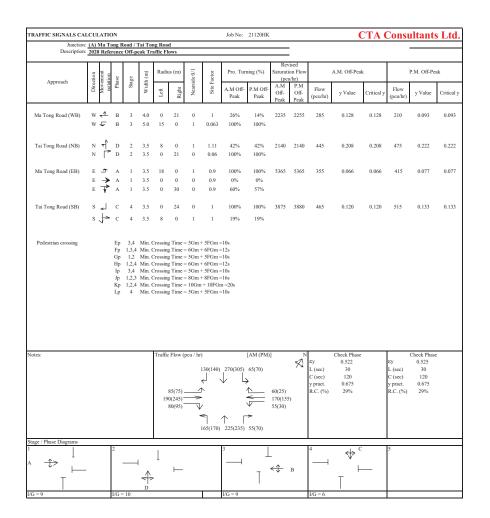
g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Shap Pat Heu	ng Road (SB)	Shap Pat Heur	ng Road (NB)	Tai Kei Leng	g Road (EB)
Approach:	(ST	TR)	(ST	TR)	(R	T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
q (veh/hr)	728	712	560	604	408	400
g (sec)	49	49	49	49	31	31
c (sec)	90	90	90	90	90	90
s (veh/hr)	2,930	2,930	3,256	3,256	2,620	2,620
λ	0.54	0.54	0.54	0.54	0.34	0.34
X	0.46	0.45	0.32	0.34	0.45	0.44
M=qc	18.20	17.80	14.00	15.10	10.20	10.00
Delay						
d	13.16	13.06	11.70	11.93	23.90	23.80
Junction Delay (sec)	10.3	9.5				

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by


N=q(r/2+d) or qr,whichever the greater

where

r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heu	ng Road (SB)	Shap Pat Heu	ng Road (NB)	Tai Kei Len	g Road (EB)
Approach:	(ST	TR)	(ST	ΓR)	(R	(T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
r (sec)	41	41	41	41	59	59
N (veh)	8	8	6	7	7	7
Average						
Queue length (m)		24.0	10.0	10.0	10.0	10.0
(111)	24.0	24.0	18.0	18.0	18.0	18.0

TRAFFIC SIGNALS CALC	ULAT	TON								Job No:	21120HK				(CTA (Consu	ıltant	s Ltd.
Junction: Description:								d											
	_	t _			6	Radit	ıs (m)	0	J.C	Pro. Tu	ming (%)	Rev	rised		A.M. Off-Pea	ık		P.M. Off-Pe	ak
Approach	Direction	Movemen	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	Site Factor	A.M. Off Peak	P.M. Off- Peak	A.M. Off- Peak	P.M. Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shap Pat Heung Road (WB)		↓	C C	3 3 3	3.8 3.8 3.5	0 0 15	30 0 0	0 0 1	1 0.95 0.15	62% 0% 100%	64% 0% 100%	4380	4380	615	0.140	0.140	630	0.144	0.144
Tai Tong Road (NB)	N N	1	В	2	3.5 3.5	15 0	0 15	1 0	0.125	30% 28%	44% 33%	2285	2280	475	0.208	0.208	440	0.193	0.193
Shap Pat Heung Road (EB)	E E	-^ → →	A A	1 1 1	3.5 3.8 3.8	15 0 0	0 0 0	1 0 0	1 1 1	100% 0% 0%	100% 0% 0%	6055	6055	535	0.088	0.088	585	0.097	0.097
Tai Tong Road (SB)	s s =	↓> < ↓	D D	4	3.5	15 0	0 15	1	0.135	100% 13%	100% 14%	2320	2315	495	0.213	0.213	555	0.240	0.240
Pedestrian crossing			Ep Fp Gp Hp Ip Kp Lp Mp Np	1,3,4 1,2 1,2,4 3,4 1,2,3 1,2,4 4 2,3,4	Min. C Min. C Min. C Min. C Min. C Min. C Min. C	Crossing Crossing Crossing Crossing Crossing Crossing Crossing Crossing	g Time =	= 7Gm = 8Gm = 10Gm = 8Gm = 6Gm = 6Gm = 9Gm = 10Gm	+ 6FGm + 7FGm + 8FGm n + 10FG + 8FGm + 8FGm + 6FGm n + 6FGm + 6FGm	n=14s n=16s Gm=20s n=16s n=14s n=12s n=15s m=16s									
Notes:						51	0(110) - 5(475)		45(55)	315(340) 15(340) 15(340) 15(340) 15(340)	→	160(170 350(360 105(100)	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.650 16 120 0.780 20%	3	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.673 16 120 0.780 16%	2
Stage / Phase Diagrams 1 A I I I I I I I I I I I I			2 I/G =	:5	A B	1	<u> </u>			3 	 	-	Ċ	1/G = 6	→ 1)			

		ΓΙΟN								Job No:	21120HK					<i>Г</i> ТА (Consi	ıltant	<u>s Ltd.</u>
Junction:																			
Description:	2028	Refe	rence	Off-pe	eak Tra	ffic Fi	ows												
	n c	n n			(m)	Radiu	ıs (m)	2	tor	Pro. Tu	rning (%)	Rev	ised		A.M. Off-Pea	k		P.M. Off-Pe	ak
Approach	Direction	Moveme notation	Phase	Stage	Width (1	Left	Right	Nearside 0/1	Site Factor	A.M Off- Peak	P.M Off- Peak	A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shap Pat Heung Road (WB)	W	1	В	2	3.5	0	21	0	0.855	100%	100%	1800	1800	310	0.172	0.185	415	0.231	
snap Pat Heung Road (WB)	W	~_ ←	В	2	3.5	0	0	0	0.855	0%	0%	735	735	136	0.172	0.185	155	0.231	
	w	₹	В	2	3.5	15	0	1	1	11%	11%	1945	1945	359	0.185		410	0.211	
		•																	
The Access Road of The	N	'n	Е	4	3.5	15	0	1	1	100%	100%	1785	1785	15	0.008		15	0.008	
Reach	N	1>	Е	4	3.5	0	35	0	1	16%	34%	2090	2075	18	0.009		23	0.011	
	N	1	E	4	3.5	0	30	0	1	100%	100%	2005	2005	17	0.009		22	0.011	
Shap Pat Heung Road (EB)	Е	<u>_</u>	Α	1	3.5	15	0	1	0.9	100%	100%	1610	1610	140	0.087	0.184	185	0.115	
	E	_	A	1	3.5	0	0	0	0.5	0%	0%	1052.5	1052.5	193	0.184		185	0.176	0.176
	E	Š	A	1	3.5	0	0	0	1	0%	0%	2105	2105	387	0.184		370	0.176	0.170
	E	7	А	1	3.3	U	U	U	1	076	076	2103	2103	307	0.164		370	0.176	
Fung Ki Road (SB)	S	I.	С	2,3	3.5	18	0	1	1	100%	100%	1815	1815	345	0.190		480	0.264	0.264
	-	9						Ī											
	S	~	D	3	3.5	0	23	0	1	42%	28%	2050	2070	43	0.021		69	0.033	
	S	«J	D	3	3.5	0	21	0	1	100%	100%	1965	1965	42	0.021		66	0.033	
			Gp Hp						+ 7FGn	Gm =20s n =14s									
			Ip Jp		Min. C	rossing	Time	= 7Gm	+ 7FGn n + 6FG	n=14s									
lotes:			Ιp		Min. C	rossing rossing	g Time g Time	= 7Gm = 10Gi	+ 7FGm n + 6FG	n=14s	[AM (PM)	1	N	Г	Check Phase		Г	Check Phase	e
ite factor are applied due to la			Ip Jp		Min. C	rossing rossing	Time	= 7Gm = 10Gi	r)	n=14s sm=16s	[AM (PM)]	N N	Еу	0.369		εγ	0.440	e
ite factor are applied due to la ridened to provide an addition	nal lan	e near	Ip Jp	nction:	Min. C	rossing rossing	g Time g Time	= 7Gm = 10Gi	+ 7FGm n + 6FG	n=14s sm=16s	[AM (PM)]	N N	L (sec)	0.369 28		εy L (sec)	0.440 19	с
ite factor are applied due to le ridened to provide an addition ite Factor of 0.95 is apply to fast	nal lan	e near f Shap	Ip Jp	nction: ung Ro	Min. C Min. C	rossing rossing	g Time g Time	= 7Gm = 10Gi	r)	n=14s sm=16s]	N N	L (sec) C (sec)	0.369 28 130		Ey L (sec) C (sec)	0.440 19 130	c
ite factor are applied due to la ridened to provide an addition ite Factor of 0.95 is apply to fast WB). Further 10% deduce due to i Road, which give total Site fact	lane o the qu tor of (e near f Shap eue bac 0.855	Ip Jp Jp thes an the ju Pat He kk effer	nction: ung Ro	Min. C Min. C	Traffic	Time Time Flow (= 7Gm = 10Gi	r)	n=14s sm=16s		310(415)	L (sec)	0.369 28		εy L (sec)	0.440 19	c
ite factor are applied due to le ridened to provide an addition ite Factor of 0.95 is apply to fast VB). Further 10% deduce due to	lane o the qu tor of (e near f Shap eue bac 0.855	Ip Jp Jp thes an the ju Pat He kk effer	nction: ung Ro	Min. C Min. C	Traffic	g Time g Time	= 7Gm = 10Gi	r)	n=14s sm=16s		,)	L (sec) C (sec) y pract.	0.369 28 130 0.706		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	c
ite factor are applied due to la ridened to provide an addition ite Factor of 0.95 is apply to fast VB). Further 10% deduce due to i Road, which give total Site fact ite Factor of 0.35 is apply to mid	lane o the qu tor of (e near f Shap eue bac 0.855 se of Sh	Ip Jp Jp hes an the ju Pat He k effor	nction: ung Ro et from Heung	Min. C Min. C	Traffic	Time Time Flow (= 7Gm = 10Gi	r)	n=14s sm=16s	345(480)	310(415 455(520)	L (sec) C (sec) y pract.	0.369 28 130 0.706		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	е
ite factor are applied due to la videncd to provide an addition ite Factor of 0.95 is apply to fast WB). Further 10% deduce due to it Road, which give total Site fact ite Factor of 0.35 is apply to mid WB) ite Factor of 0.95 is apply to near	lane o the qu tor of (ddle lan	e near f Shap eue bac 1.855 se of Sh ane of	Ip Jp Jp Pat He ju Pat He effer sap Pat	nction: rung Ro et from Heung	Min. C Min. C	Traffic	Time Time Flow (= 7Gm = 10Gi	r)	n=14s m=16s	345(480)	310(415 455(520)	L (sec) C (sec) y pract.	0.369 28 130 0.706		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	e
ite factor are applied due to la idened to provide an addition tie Factor of 0.95 is apply to fast WB). Further 10% deduce due to it Road, which give total Site fact tie Factor of 0.35 is apply to mid WB) tie Factor of 0.95 is apply to near oad (EB) ite Factor of 0.95 is apply to near oad (EB)	lane o the qu tor of (ddle lan	e near f Shap eue bac 1.855 se of Sh ane of	Ip Jp Jp Pat He ju Pat He effer sap Pat	nction: rung Ro et from Heung	Min. C Min. C	Traffic	Time Time Flow (= 7Gm = 10Gi	r) 60(85)	n=14s m=16s	345(480)	310(415 455(520)	L (sec) C (sec) y pract.	0.369 28 130 0.706		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	e
ite factor are applied due to hidened to provide an additior tie Factor of 0.95 is apply to fast WB. Further 10% deduce due to it Road, which give total Site fact ite Factor of 0.35 is apply to mid WB) tie Factor of 0.95 is apply to near oad (EB) the Factor of 0.5 is apply to midd the provided of the Factor of 0.5 is apply to midd the provided of 0.5 is apply to midd (EB)	lane o the qu tor of (ddle lan	e near f Shap eue bac 1.855 ne of Sh ane of S	Ip Jp Jp Pat He ju Pat He effer sap Pat	nction: rung Ro et from Heung	Min. C Min. C	Traffic	Flow (00(185) 00(555)	= 7Gm = 10Gi	r) 60(85)	n=14s m=16s	345(480)	310(415 455(520 40(45))))	L (sec) C (sec) y pract.	0.369 28 130 0.706		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	e
ite factor are applied due to hidened to provide an additior tie Factor of 0.95 is apply to fast WB. Further 10% deduce due to it Road, which give total Site fact ite Factor of 0.35 is apply to mid WB) tie Factor of 0.95 is apply to near oad (EB) the Factor of 0.5 is apply to midd the provided of the Factor of 0.5 is apply to midd the provided of 0.5 is apply to midd (EB)	lane o the qu tor of (ddle lan	e near f Shap eue bac 1.855 ne of Sh ane of S	Ip Jp Jp Pat He ju Pat He effer sap Pat	nction: rung Ro et from Heung	Min. C Min. C	Traffic	Flow (00(185) 00(555)	= 7Gm = 10Gi	+ 7FGn n + 6FG	n=14s m=16s	345(480)	310(415 455(520)))	L (sec) C (sec) y pract. R.C. (%)	0.369 28 130 0.706 91%		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	e
itie factor are applied due to la defined to provide an addition the Factor of 0.95 is apply to fast VB). Further 10% deduce due to treat Road, which give total Stef fact the Factor of 0.35 is apply to mid VB) ite Factor of 0.95 is apply to nead oud (EB) the Factor of 0.5 is apply to mid Beat of 0.5 is apply to mid Beat Pactor of 0.5 is apply to midd Beat Pactor of 0.5 is apply to 0.5 is ap	lane o the qu tor of (ddle lan	e near f Shap eue bac 1.855 ne of Sh ane of S	Ip Jp Jp Pat He ju Pat He effer sap Pat	nction: rung Ro et from Heung	Min. C Min. C	Traffic	Flow (00(185) 00(555)	= 7Gm = 10Gi	r) 60(85)	n=14s m=16s	345(480)	310(415 455(520 40(45))))	L (sec) C (sec) y pract. R.C. (%)	0.369 28 130 0.706		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	e
itie factor are applied due to la defined to provide an addition the Factor of 0.95 is apply to fast VB). Further 10% deduce due to treat Road, which give total Stef fact the Factor of 0.35 is apply to mid VB) ite Factor of 0.95 is apply to nead oud (EB) the Factor of 0.5 is apply to mid Beat of 0.5 is apply to mid Beat Pactor of 0.5 is apply to midd Beat Pactor of 0.5 is apply to 0.5 is ap	lane o the qu tor of (ddle lan	e near f Shap eue bac 1.855 ne of Sh ane of S	Ip Jp Jp Pat He ju Pat He effer sap Pat	nction: rung Ro et from Heung at Heur Heung F	Min. C Min. C	Traffic	Flow (00(185) 00(555)	= 7Gm = 10Gi	+ 7FGn n + 6FG	n=14s m=16s	345(480)	310(415 455(520 40(45))))	L (sec) C (sec) y pract. R.C. (%)	0.369 28 130 0.706 91%		Ey L (sec) C (sec) y pract.	0.440 19 130 0.768	с

TRAFFIC SIGNALS CALCULAT	TION								Job No:	21120HK					CTA (Consu	ıltants	Ltd
Junction: (D)Shap P	at He	ung Ro	oad / T	ai Kei	Leung	Road					0						
Description: 20	28 Refer	rence	Off-pe:	ak Tra	ffic Flo	ows						,						
Τ,	1 =	П		2	Radi	us (m)	0	k	Pro. Tu	rning (%)	Rev	ised		A.M. Off-Pea	k	1	P.M. Off-Pe	ak
Approach	Movemen	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	Site Factor	A.M Off- Peak		A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critica
Shap Pat Heung Road (SB)	- i	A A	1	3.5	0	0	1	0.9	0% 0%	0% 0%		1768.5 1894.5	529 566	0.299 0.299	0.299	502 538	0.284 0.284	0.28
Shap Pat Heung Road (NB)	1	A A	1	3.5	0	0	1	1	0%	0%	1965 2105	1965 2105	415 445	0.211		425 455	0.216 0.216	
Tai Kei Leng Road (EB) E		В	2	3.5 3.5	0	12 13.5	1	0.9	100% 100%	100% 100%	1570 1705	1570 1705	280 305	0.179 0.179	0.179	271 294	0.173 0.173	0.17
Notes:					Traffi	c Flow	(pcu / h	nr)		[AM (PM)]	N X	εγ	Check Phase 0.478	:	εγ	Check Phase 0.456	
Site factor are applied due to traffic of Pat Heung Interchange. Based on site observation, about 10% green right turning from Tai Kei Len Similar 10% delay is also observed a	6 delay o g Road t	of the o	effective	e	58	35(565)		¬v		1095(104	0)	N	L (sec) C (sec) y pract. R.C. (%)	10 90 0.800 68%		L (sec) C (sec) y pract. R.C. (%)	10 90 0.800 75%	
Site Factor of 0.9 is apply to Shap Pa Site Factor of 0.9 is apply to Tai Kei	at Heung	Road	(SB)	roacii.					↑ 860(880)									
Stage / Phase Diagrams I	Ĵ	2		В	 T	I			3									
A L/G = 5		I/G =	- 7		I				I/G =									

CTA Consultants Ltd. JUNCTION DELAY CALCULATION Job No: 21120HK

Junction: (A) Ma Tong Road / Tai Tong Road

Description: 2028 Reference Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{c(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} -0.65 \quad (c)^{\frac{1}{3}} X^{(2 + 5\lambda)}$$

where d = average delay per vehicle on the particular arm λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Ma Tong I	Road (WB)	Tai Tong l	Road (NB)	Tai Tong F	Road (NB)	Ma Tong I	Road (EB)	Ma Tong I	Road (EB)	Tai Tong l	Road (SB)	Tai Tong	Road (SB)
Approach:	(LT & S7	ΓR & RT)	(STR	& LT)	(R	T)	(L'	Γ)	(STR o	& RT)	(STR	& LT)	(R	(T)
	A.M. Off-Peak	P.M. Off-Peak												
q (veh/hr)	211	156	289	300	41	52	63	56	200	252	248	278	96	104
g (sec)	18	13	30	31	30	31	9	7	9	7	29	31	29	31
c (sec)	120	120	120	120	120	120	120	120	120	120	120	120	120	120
s (veh/hr)	1,922	1,937	1,552	1,552	363	363	1,207	1,207	2,767	2,767	1,404	1,407	1,467	1,467
λ	0.15	0.11	0.25	0.26	0.25	0.26	0.07	0.06	0.07	0.06	0.24	0.26	0.24	0.26
X	0.74	0.72	0.73	0.75	0.44	0.56	0.73	0.75	1.02	1.49	0.73	0.75	0.27	0.27
M=qc	7.04	5.19	9.63	10.00	1.36	1.73	2.10	1.85	6.67	8.40	8.27	9.26	3.21	3.46
Delay														
d	57.57	61.57	47.34	48.42	48.68	55.18	89.28	103.69	-539.19	-21.68	49.53	48.85	38.33	36.50
Junction Delay (sec)	-50.9	37.3				•					·	·	•	

From TPDM Vol4 Table 4.2.5 Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

r = effective red time where

q = flow (in same units as r and d)

	Shap Pat Heu	ng Road (EB)	Tai Tong Road	l (NB) (STR &	Shap Pat Heur	ng Road (EB)	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong Road	d (SB) (STR &	Tai Tong Road	d (SB) (STR &
Approach:	(L	T)	LT &	RT)	(ST	TR)	(STR	& RT)	(L	T)	LT &	RT)	LT &	z RT)
	A.M. Off-Peak	P.M. Off-Peak												
r (sec)	102	107	90	89	90	89	111	113	111	113	91	89	91	89
N (veh)	6	5	7	8	1	1	3	2	6	8	7	7	2	3
Average														
Queue length														
(m)	36.0	30.0	42.0	48.0	6.0	6.0	18.0	12.0	18.0	24.0	42.0	42.0	12.0	18.0

Job No: 21120HK

CTA Consultants Ltd

Junction: (B) Shap Pat Heung Road/ Tai Kei Leng Road

Description: 2028 Reference Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{e(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} - 0.65 \quad (e)^{\frac{1}{3}} X^{(2+5)}$$

where d = average delay per vehicle on the particular arm

 λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong I	Road (NB)	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Tai Tong Road	l (SB) (STR &
Approach:	(STR	& RT)	(L	T)	(STR & I	LT & RT)	(ST	R)	(L	T)	LT &	RT)
	A.M. Off-Peak	P.M. Off-Peak										
q (veh/hr)	408	424	84	80	380	352	388	380	40	88	396	444
g (sec)	20	19	20	19	28	25	20	19	20	19	30	33
c (sec)	120	120	120	120	120	120	120	120	120	120	120	120
s (veh/hr)	3,280	3,280	716	716	2,324	2,312	3,416	3,416	1,428	1,428	2,308	2,304
λ	0.17	0.16	0.17	0.16	0.23	0.21	0.17	0.16	0.17	0.16	0.25	0.28
X	0.75	0.82	0.70	0.71	0.70	0.73	0.68	0.70	0.17	0.39	0.69	0.70
M=qc	13.60	14.13	2.80	2.67	12.67	11.73	12.93	12.67	1.33	2.93	13.20	14.80
Delay												
d	51.30	56.65	68.54	70.59	45.28	48.68	48.99	50.33	43.98	47.64	43.46	41.82
Junction Delay (sec)	48.3	50.2										

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where

r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong Road	l (NB) (STR &	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Tai Tong Road	d (SB) (STR &
Approach:	(STR	& RT)	(L	T)	LT &	z RT)	(ST	R)	(L	T)	LT &	z RT)
	A.M. Off-Peak	P.M. Off-Peak										
r (sec)	100	101	100	101	92	95	100	101	100	101	90	87
N (veh)	11	13	3	3	10	9	11	11	1	2	10	11
Average												
Queue length												
(m)	48.0	48.0	18.0	18.0	36.0	36.0	30.0	30.0	6.0	12.0	42.0	42.0

Job No: 21120HK

CTA Consultants Ltd

Junction: (C)Shap Pat Heung Road / Fung Ki Road

Description: 2028 Reference Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{c(1 \lambda)^2}{2(1 \lambda)^2} + \frac{X}{2q(1 - X)} - 0.65 \quad (c)^{\frac{1}{3}} X^{(2 + 5)}$$

 $\begin{array}{ll} \text{where} & \text{d=} & \text{average delay per vehicle on the particular arm} \\ & \lambda = & \text{proportion of the cycle which is effectively green for the phase under} \end{array}$

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

Approach:	Shap Pat Heur (R	ng Road (WB) T)		ng Road (WB) & LT)	The Access	Road of The NB) (LT)	The Access Road (NB) (STR		Shap Pat Heur (L'			ng Road (EB)	Fung Ki Roa	ad (SB) (LT)	Fung Ki Road R'	(SB) (STR & T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
q (veh/hr)	248	332	396	452	12	12	28	36	112	148	464	444	276	384	68	108
g (sec)	45	48	42	52	6	6	6	6	45	40	45	40	53	63	6	6
c (sec)	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130
s (veh/hr)	1,440	1,440	2,144	2,144	1,428	1,428	3,276	3,264	1,288	1,288	2,526	2,526	1,452	1,452	3,212	3,228
λ	0.35	0.37	0.32	0.40	0.05	0.05	0.05	0.05	0.35	0.31	0.35	0.31	0.41	0.48	0.05	0.05
X	0.50	0.62	0.57	0.53	0.18	0.18	0.19	0.24	0.25	0.37	0.53	0.57	0.47	0.55	0.46	0.72
M=qc	8.96	11.99	14.30	16.32	0.43	0.43	1.01	1.30	4.04	5.34	16.76	16.03	9.97	13.87	2.46	3.90
Delay																
d	35.70	36.60	38.10	30.98	62.42	62.42	60.40	60.64	31.60	37.06	35.16	39.05	29.97	25.54	62.55	76.38
Junction Delay (sec)	36.6	36.0		•	•			•	•		•					

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heur	ng Road (WB)	Shap Pat Heun	ng Road (WB)	The Access	Road of The	The Access Road	of The Reach	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Fung Ki Roa	d (SD) (LT)	Fung Ki Road	(SB) (STR &
Approach:	(R	(T)	(STR &	& LT)	Reach	ı (LT)	(STR &	RT))	(L	T)	(ST	ΓR)	Tung Ki Koa	id (3B) (L1)	R	Γ)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
r (sec)	85	82	88	78	124	124	124	124	85	90	85	90	77	67	124	124
N (veh)	6	8	10	10	0	0	1	1	3	4	11	11	6	7	2	4
Average																
Queue length			Ì													
(m)	36.0	48.0	36.0	42.0	0.0	0.0	0.0	6.0	18.0	24.0	30.0	36.0	36.0	42.0	6.0	12.0

JUNCTION DELAY CALCULATION

Job No: 21120HK

CTA Consultants Ltd

Junction: (D)Shap Pat Heung Road / Tai Kei Leung Road

Description: 2028 Reference Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \underbrace{\frac{e(1 \lambda)^2}{2(1 \lambda)^2} + \frac{X}{2q(1 - X)}}_{} -0.65 \underbrace{(e)}_{q^2} \frac{\frac{1}{3}}{X^{(2 + 5)}} X^{(2 + 5)}$$

where d = average delay per vehicle on the particular arm

 λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

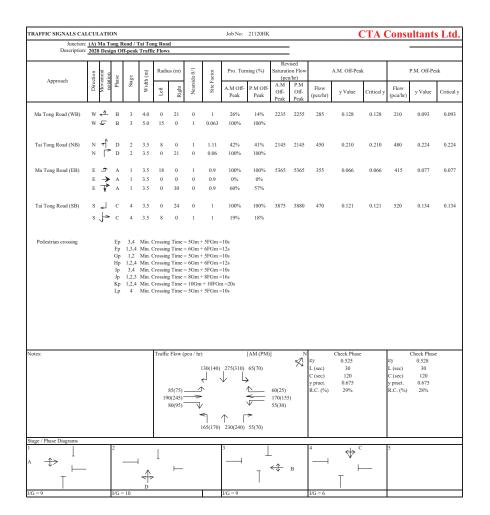
q should be the flow in vehicles per second to give delay in seconds

	Shap Pat Heu	ng Road (SB)	Shap Pat Heur	ng Road (NB)	Tai Kei Leng	g Road (EB)
Approach:	(ST	TR)	(ST	TR)	(R	T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
q (veh/hr)	876	832	688	704	468	452
g (sec)	50	50	50	50	30	30
c (sec)	90	90	90	90	90	90
s (veh/hr)	2,930	2,930	3,256	3,256	2,620	2,620
λ	0.56	0.56	0.56	0.56	0.33	0.33
X	0.54	0.51	0.38	0.39	0.54	0.52
M=qc	21.90	20.80	17.20	17.60	11.70	11.30
Delay						
d	13.58	13.26	11.79	11.88	25.58	25.34
Junction Delay (sec)	10.7	9.9				

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater


where

r = effective red time

q = flow (in same units as r and d)

	Shap ratifica
Approach:	(ST
	A.M. Off-Peak
r (sec)	40
N (veh)	10
Average	
Queue length	
(m)	30.0

Г	Shap Pat Heu	ng Road (SB)	Shap Pat Heu	ng Road (NB)	Tai Kei Len	g Road (EB)
	(S)	ΓR)	(ST	ΓR)	(R	T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
Г	40	40	40	40	60	60
1	10	9	8	8	8	8
•						
1	20.0	20.0	24.0	24.0	24.0	24.0
′∟	30.0	30.0	24.0	24.0	24.0	24.0

TRAFFIC SIGNALS CALC	ULA	TION								Job No:	21120HK				(CTA (Consi	ıltant	s Ltd.
Junction: Description:								d											
Description.	202	o Desi;	ZII OI	п-реак	CITAIII														
	ion	ent on	ë	9	(m)	Radit	ıs (m)	ide	Factor	Pro. Tu	ming (%)	Rev	P.M.		A.M. Off-Pea	k		P.M. Off-Pe	ak
Approach	Direction	Movemen notation	Phase	Stage	Width (Left	Right	Nearside 0/1	Site Fa	A.M. Off Peak	P.M. Off- Peak	A.M. Off- Peak	Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Shap Pat Heung Road (WB)	W W		C C	3 3 3	3.8 3.8 3.5	0 0 15	30 0 0	0 0 1	1 0.95 0.15	66% 0% 100%	67% 0% 100%	4375	4375	630	0.144	0.144	645	0.147	0.147
Tai Tong Road (NB)	N N	1	В	2 2	3.5 3.5	15 0	0 15	1	0.125	30% 28%	44% 33%	2285	2280	475	0.208	0.208	440	0.193	0.193
Shap Pat Heung Road (EB)	E E	<u>→</u>	A A	1 1 1	3.5 3.8 3.8	15 0 0	0 0	1 0 0	1 1 1	100% 0% 0%	100% 0% 0%	6055	6055	535	0.088	0.088	585	0.097	0.097
Tai Tong Road (SB)	S S	↓> < ↓	D D	4	3.5 3.5	15	0 15	1	0.135	100% 13%	100% 14%	2320	2315	515	0.222	0.222	565	0.244	0.244
Pedestrian crossing			Ep Fp Gp Hp Ip Jp Kp Lp Mp Np	1,2 1,2,4 3,4 1,2,3 1,2,4 4 2,3,4	Min. 6 Min. 6 Min. 6 Min. 6 Min. 6 Min. 6 Min. 6	Crossing Crossing Crossing Crossing Crossing Crossing Crossing Crossing	g Time g Time g Time g Time g Time g Time g Time g Time	= 7Gm = 8Gm = 10Gr = 8Gm = 6Gm = 6Gm = 9Gm = 10Gr	+ 6FGn + 7FGn + 8FGn n + 10Fl + 8FGn + 8FGn + 8FGn + 6FGn + 6FGn + 6FGn	n = 14s n = 16s Gm = 20s n = 16s n = 14s n = 12s n = 15s dm = 16s									
Notes:						51	0(110) 5(475)	4	45(55)) 315(340)	→	175(185 350(360 105(100)	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.662 16 120 0.780 18%		εy L (sec) C (sec) y pract. R.C. (%)	Check Phas 0.681 16 120 0.780 15%	е
Stage / Phase Diagrams			2							2	-			14	. 1		1		
 			-		- - - - -		<u></u>				- I	<-\$	c		T → 1				
I/G = 7			I/G =	- 5						I/G = 7				I/G = 6					

	(C):	Shan I	at He	uno F	oad / I	ung K	Road				21120HK					CTA (Const	iitaiit.	Liu
Description:																			
	п	Ħ c			(m)	Radiu	s (m)	9	i.o	Pro. Tu	ning (%)	Revi	ised		A.M. Off-Pea	ık	1	P.M. Off-Pe	ak
Approach	Direction	Movemen	Phase	Stage	Width (r	Left	Right	Nearside 0/1	Site Factor	A.M Off- Peak	P.M Off- Peak	A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical 3
Shap Pat Heung Road (WB)	W	1_	В	2	3.5	0	21	0	0.855	100%	100%	1800	1800	310	0.172	0.191	415	0.231	
	W	←	В	2	3.5	0	0	0	0.35	0%	0%	735	735	140	0.191		159	0.217	
	W	⋾	В	2	3.5	15	0	1	1	11%	11%	1945	1945	370	0.190		421	0.216	
The Access Road of The	N	q	Е	4	3.5	15	0	1	1	100%	100%	1785	1785	15	0.008		15	0.008	
Reach	N	7>	E	4	3.5	0	35	0	1	16%	34%	2090	2075	18	0.009		23	0.011	
	N	1	Е	4	3.5	0	30	0	1	100%	100%	2005	2005	17	0.009		22	0.011	
Shap Pat Heung Road (EB)	Е	ⅎ	A	1	3.5	15	0	1	0.9	100%	100%	1610	1610	140	0.087	0.190	185	0.115	
	E	\rightarrow	A	1	3.5	0	0	0	0.5	0%	0%	1052.5	1052.5	200	0.190		188	0.179	0.179
	E	→	Α	1	3.5	0	0	0	1	0%	0%	2105	2105	400	0.190		377	0.179	
Fung Ki Road (SB)	S	1.	С	2,3	3.5	18	0	1	1	100%	100%	1815	1815	345	0.190		480	0.264	0.264
	S	-J	D	3	3.5	0	23	0	1	42%	28%	2050	2070	43	0.021		69	0.033	
	S	7	D	3	3.5	0	21	0	1	100%	100%	1965	1965	42	0.021		66	0.033	
	3	< □	D	3	3.3	U	21	U	1	100%	100%	1903	1903	42	0.021		00	0.033	
Pedestrian crossing			Fp Gp Hp Ip Jp		Min. C Min. C Min. C	rossing rossing	Time Time Time	= 10Gr = 7Gm = 7Gm	+ 7FGn + 7FGn	Gm =20s n =14s n =14s									
			»P						11 - 01 C	m=16s									
iotes: ite fistor are applied due to la ite fistor are applied due to la ite Fastor of 0.95 is apply to fast WB; Further 10% dechee due to 1 it Road, which give total Site fact ite Fastor of 0.35 is apply to mid- WB;	lane of the qu or of of dle lan	of Shap neue ba 0.855 ne of Sl	hes ar the ju Pat He kk effe	nction rung Ro et from Heung	ly : ad Fung Road						[AM (PM) 345(480)	310(415) 470(535) 40(45))	εy L (sec) C (sec) y pract. R.C. (%)	Check Phase 0.381 28 130 0.706 85%	,	Ey L (sec) C (sec) y pract. R.C. (%)	Check Phass 0.443 19 130 0.768 73%	c
ite factor are applied due to la idened to provide an addition the Factor of 0.95 is apply to fast WB). Further 10% deduce due to it Road, which give total Site fact the Factor of 0.35 is apply to mide WB).	lane of the qu or of of dle land	of Shap neue ba 0.855 ne of Sl lane of	hes ar the ju Pat He ck effe map Pat	nction rung Ro et from Heung	ly ead Fung Road	140	Flow (r)	25(50)		310(415) 470(535)	M.	εy L (sec) C (sec) y pract.	0.381 28 130 0.706		Ey L (sec) C (sec) y pract.	0.443 19 130 0.768	
ite factor are applied due to la videned to provide an addition lite Factor of 0.95 is apply to fast WB). Further 10% deduce due to Li Road, which give total Site facts ite Factor of 0.35 is apply to mide	lane of the qu or of of dle land	of Shap neue ba 0.855 ne of Sl lane of	hes ar the ju Pat He ck effe map Pat	nction rung Ro et from Heung	y ead Fung Road	140	Flow ((F) (60(85)	25(50)	345(480)	310(415) 470(535) 40(45)	×()	εy L (sec) C (sec) y pract.	0.381 28 130 0.706	,	Ey L (sec) C (sec) y pract.	0.443 19 130 0.768	e
ite factor are applied due to la videned to provide an addition ite Factor of 0.95 is apply to fast WB). Further 10% deduce due to 1 Road, which give total Site facti- ite Factor of 0.35 is apply to mid- WB) ite Factor of 0.95 is apply to near oad (EB) ite Factor of 0.5 is apply to middl EB)	lane of the qu or of of dle land	of Shap neue ba 0.855 ne of Sl lane of	hes ar the ju Pat He ck effe map Pat	nction rung Ro et from Heung	y ead Fung Road	140	Flow (peu/h	(F) (60(85)	25(50)	345(480)	310(415) 470(535)	×()	Ey L (sec) C (sec) y pract. R.C. (%)	0.381 28 130 0.706	:	Ey L (sec) C (sec) y pract.	0.443 19 130 0.768	
itie factor are applied due to la didiction to provide an addition the Factor of 0.95 is apply to fast VB). Further 10% deduce due to 1 Road, which give total Site factor of 0.35 is apply to mid-VB) the Factor of 0.35 is apply to mid-VB) the Factor of 0.95 is apply to near oad (EB) the Factor of 0.95 is apply to near oad (EB) apply to near oad (EB) the Factor of 0.5 is apply to middle (EB) the Factor of 0.5 is apply to middle (EB) apply to middle	lane of the qu or of of dle land	of Shap neue ba 0.855 ne of Sl lane of	hes ar the ju Pat He ck effe map Pat	nction rung Ro et from Heung	y ead Fung Road	140	Flow (peu/h	60(85) 60(85) 7 7	25(50)	345(480)	310(415) 470(535) 40(45)	×()	Ey L (sec) C (sec) y pract. R.C. (%)	0.381 28 130 0.706 85%		Ey L (sec) C (sec) y pract.	0.443 19 130 0.768	5

TRAFFIC SIGNALS CALCULATION	ON								Job No:	21120HK				(CTA (Consu	ıltant	Ltd
Junction: (D)S							Road											
Description: 2028	Design	Off-	-peak	Traffic	Flows							•						
e	i ii	П		(m)	Radii	us (m)	9	ъ	Pro. Tu	rning (%)		ised		A.M. Off-Pea	k		P.M. Off-Pe	ak
Approach .i.g	Movemen notation	Phase	Stage	Width (Left	Right	Nearside 0/1	Site Factor	A.M Off- Peak	P.M Off- Peak	A.M Off- Peak	P.M Off- Peak	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critica
Shap Pat Heung Road (SB) S	¥	A A	1	3.5	0	0	1	0.9	0%	0%		1768.5 1894.5	538 577	0.304	0.304	507 543	0.287	0.28
S	•	Α.	1	3.3	Ü	0		0.9	070	070	1074.3	1094.5	3//	0.304		543	0.287	
Shap Pat Heung Road (NB) N	^	A	1	3.5	0	0	1	1	0%	0%	1965	1965	422	0.215		432	0.220	
N	1	Α	1	3.5	0	0	0	1	0%	0%	2105	2105	453	0.215		463	0.220	
Tai Kei Leng Road (EB) E	_	В	2	3.5	0	12 13.5	1	0.9	100% 100%	100%	1570 1705	1570 1705	280 305	0.179	0.179	271 294	0.173 0.173	0.17
Pedestrian crossing																		
lotes: ite factor are applied due to traffic que at Heung Interchange. ased on site observation, about 10% o	delay of	the e	ffective		Traffic	e Flow	(pcu / l	ur)		[AM (PM)		N N	Ey L (sec) C (sec) y pract.	Check Phase 0.483 10 90 0.800	;	εy L (sec) C (sec) y pract.	Check Phas 0.459 10 90 0.800	
reen right turning from Tai Kei Leng I	ng the S Heung I	-Bou Road	nd appi	roach.	58	5(565)		_₩	↑ 875(895)				R.C. (%)	66%		R.C. (%)	74%	
Stage / Phase Diagrams																		
stage / Phase Diagrams	A I	2	¬v	В	 [L			3									
A I/G = 5		I/G =							I/G =				<u> </u>					

CTA Consultants Ltd. JUNCTION DELAY CALCULATION Job No: 21120HK

Junction: (A) Ma Tong Road / Tai Tong Road

Description: 2028 Design Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{c(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} -0.65 \quad (c)^{\frac{1}{3}} X^{(2 + 5\lambda)}$$

where d = average delay per vehicle on the particular arm λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Ma Tong I	Road (WB)	Tai Tong l	Road (NB)	Tai Tong F	Road (NB)	Ma Tong I	Road (EB)	Ma Tong l	Road (EB)	Tai Tong l	Road (SB)	Tai Tong	Road (SB)
Approach:	(LT & S7	ΓR & RT)	(STR	& LT)	(R	T)	(L	T)	(STR	& RT)	(STR	& LT)	(R	(T)
	A.M. Off-Peak	P.M. Off-Peak												
q (veh/hr)	211	156	293	304	41	52	63	56	200	252	252	281	96	104
g (sec)	18	13	31	31	31	31	8	7	8	7	29	32	29	32
c (sec)	120	120	120	120	120	120	120	120	120	120	120	120	120	120
s (veh/hr)	1,922	1,937	1,552	1,552	363	363	1,207	1,207	2,767	2,767	1,404	1,407	1,467	1,467
λ	0.15	0.11	0.25	0.26	0.25	0.26	0.07	0.06	0.07	0.06	0.24	0.26	0.24	0.26
X	0.75	0.73	0.74	0.76	0.44	0.56	0.74	0.76	1.03	1.51	0.74	0.76	0.27	0.27
M=qc	7.04	5.19	9.75	10.12	1.36	1.73	2.10	1.85	6.67	8.40	8.40	9.38	3.21	3.46
Delay														
d	58.30	62.29	47.62	48.78	48.50	54.92	91.40	106.67	-338.18	-22.26	49.81	49.21	38.18	36.38
Junction Delay (sec)	-15.1	37.6										·		

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

r = effective red time where

q = flow (in same units as r and d)

	Shap Pat Heu	ng Road (EB)	Tai Tong Road	l (NB) (STR &	Shap Pat Heur	ng Road (EB)	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong Road	d (SB) (STR &	Tai Tong Road	d (SB) (STR &
Approach:	(L	T)	LT &	z RT)	(STR)		(STR & RT)		(LT)		LT & RT)		LT & RT)	
	A.M. Off-Peak	P.M. Off-Peak												
r (sec)	102	107	89	89	89	89	112	113	112	113	91	88	91	88
N (veh)	6	5	8	8	1	1	3	3	6	8	7	7	2	3
Average														
Queue length														
(m)	36.0	30.0	48.0	48.0	6.0	6.0	18.0	18.0	18.0	24.0	42.0	42.0	12.0	18.0

Job No: 21120HK

CTA Consultants Ltd

Junction: (B) Shap Pat Heung Road/ Tai Kei Leng Road

Description: 2028 Design Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{e(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} - 0.65 \quad (e)^{\frac{1}{3}} X^{(2+5)}$$

where d = average delay per vehicle on the particular arm

 λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong l	Road (NB)	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Tai Tong Road	1 (SB) (STR &
Approach:	(STR a	& RT)	(L	T)	(STR & I	LT & RT)	(ST	TR)	(L	T)	LT &	z RT)
	A.M. Off-Peak	P.M. Off-Peak										
q (veh/hr)	420	436	84	80	380	352	388	380	40	88	412	452
g (sec)	19	18	19	18	27	25	19	18	19	18	32	34
c (sec)	120	120	120	120	120	120	120	120	120	120	120	120
s (veh/hr)	3,276	3,276	716	716	2,324	2,312	3,416	3,416	1,428	1,428	2,308	2,304
λ	0.16	0.15	0.16	0.15	0.23	0.21	0.16	0.15	0.16	0.15	0.27	0.28
X	0.81	0.89	0.74	0.74	0.73	0.73	0.72	0.74	0.18	0.41	0.67	0.69
M=qc	14.00	14.53	2.80	2.67	12.67	11.73	12.93	12.67	1.33	2.93	13.73	15.07
Delay												
d	56.07	69.41	76.57	79.69	46.94	48.68	50.80	52.55	44.93	48.76	41.63	40.90
Junction Delay (sec)	50.2	54.0	•					•				

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where

r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	Tai Tong Road	l (NB) (STR &	Shap Pat Heur	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Tai Tong Road	l (SB) (STR &
Approach: (STR & RT)		(L	T)	LT &	z RT)	(ST	R)	(L	T)	LT & RT)		
	A.M. Off-Peak	P.M. Off-Peak										
r (sec)	101	102	101	102	93	95	101	102	101	102	88	86
N (veh)	12	15	3	3	10	9	11	11	1	2	10	11
Average												
Queue length												
(m)	48.0	60.0	18.0	18.0	42.0	36.0	30.0	30.0	6.0	12.0	42.0	42.0

JUNCTION DELAY CALCULATION

Job No: 21120HK

CTA Consultants Ltd

Junction: (C)Shap Pat Heung Road / Fung Ki Road

Description: 2028 Design Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \frac{c(1 \lambda)^{2}}{2(1 \lambda)^{2}} + \frac{X}{2q(1 - X)} - 0.65 \quad (c)^{\frac{1}{3}} X^{(2 + 5)}$$

 $\begin{array}{ll} \text{where} & \text{d=} & \text{average delay per vehicle on the particular arm} \\ & \lambda = & \text{proportion of the cycle which is effectively green for the phase under} \end{array}$

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/iEs where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

Approach:	Shap Pat Heur (R	ng Road (WB) T)		ng Road (WB) & LT)	The Access Reach (N	Road of The NB) (LT)	The Access Road (NB) (STR		Shap Pat Heu (L		Shap Pat Heur (ST	. ,	Fung Ki Roa	ad (SB) (LT)	Fung Ki Road R'	I (SB) (STR & T)
**	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
q (veh/hr)	248	332	408	464	12	12	28	36	112	148	480	452	276	384	68	108
g (sec)	45	48	41	51	6	6	6	6	45	40	45	40	52	62	6	6
c (sec)	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130
s (veh/hr)	1,440	1,440	2,144	2,144	1,428	1,428	3,276	3,264	1,288	1,288	2,526	2,526	1,452	1,452	3,212	3,228
λ	0.35	0.37	0.32	0.39	0.05	0.05	0.05	0.05	0.35	0.31	0.35	0.31	0.40	0.48	0.05	0.05
X	0.50	0.62	0.60	0.55	0.18	0.18	0.19	0.24	0.25	0.37	0.55	0.58	0.48	0.55	0.46	0.72
M=qc	8.96	11.99	14.73	16.76	0.43	0.43	1.01	1.30	4.04	5.34	17.33	16.32	9.97	13.87	2.46	3.90
Delay																
d	35.70	36.60	39.37	32.04	62.42	62.42	60.40	60.64	31.60	37.06	35.47	39.23	30.77	26.31	62.55	76.38
Junction Delay (sec)	37.0	36.5					•	•			•				•	•

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heur	ng Road (WB)	Shap Pat Heur	ng Road (WB)	The Access	Road of The	The Access Road	of The Reach	Shap Pat Heu	ng Road (EB)	Shap Pat Heu	ng Road (EB)	Fung Ki Roa	4 (CD) (LT)	Fung Ki Road	(SB) (STR &
Approach:	(RT)		(STR & LT)		Reach (LT)		(STR & RT))		(LT)		(ST	R)	rung Ki Koa	id (3B) (L1)	R	Γ)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
r (sec)	85	82	89	79	124	124	124	124	85	90	85	90	78	68	124	124
N (veh)	6	8	10	10	0	0	1	1	3	4	11	11	6	7	2	4
Average																
Queue length																
(m)	36.0	48.0	42.0	42.0	0.0	0.0	0.0	6.0	18.0	24.0	36.0	36.0	36.0	42.0	6.0	12.0

JUNCTION DELAY CALCULATION

Job No: 21120HK

CTA Consultants Ltd

Junction: (D)Shap Pat Heung Road / Tai Kei Leung Road

Description: 2028 Design Off-peak Traffic Flows

TRRL Method (Transport Road Research Laboratory)

$$d = \underbrace{\frac{e(1 \lambda)^2}{2(1 \lambda)^2} + \frac{X}{2q(1 - X)}}_{} -0.65 \underbrace{(e)}_{q^2} \frac{\frac{1}{3}}{X^{(2 + 5)}} X^{(2 + 5)}$$

where d = average delay per vehicle on the particular arm

 λ = proportion of the cycle which is effectively green for the phase under

consideration i.e.f g/c

x = The degree of saturation. This is the ratio of actual flow to the maximum possible flow under the given setting of signals and equals 3600q/Es where S = saturation flow in veh/hour

c = Cycle time in seconds

g = Effective green time in seconds

q should be the flow in vehicles per second to give delay in seconds

	Shap Pat Heu	ng Road (SB)	Shap Pat Heu	ng Road (NB)	Tai Kei Leng	g Road (EB)
Approach:	(ST	TR)	(ST	ΓR)	(R	T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
q (veh/hr)	892	840	700	716	468	452
g (sec)	50	50	50	50	30	30
c (sec)	90	90	90	90	90	90
s (veh/hr)	2,930	2,930	3,256	3,256	2,620	2,620
λ	0.56	0.56	0.56	0.56	0.33	0.33
X	0.55	0.52	0.39	0.40	0.54	0.52
M=qc	22.30	21.00	17.50	17.90	11.70	11.30
Delay						
d	13.70	13.31	11.86	11.94	25.58	25.34
unction Delay (sec)	10.7	9.9				

From TPDM Vol4 Table 4.2.5

Average Queue N calculated by

N=q(r/2+d) or qr,whichever the greater

where

r = effective red time

q = flow (in same units as r and d)

	Shap Pat Heu	ng Road (SB)	Shap Pat Heu	ng Road (NB)	Tai Kei Len	g Road (EB)
Approach:	(ST	ΓR)	(ST	ΓR)	(R	T)
	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak	A.M. Off-Peak	P.M. Off-Peak
r (sec)	40	40	40	40	60	60
N (veh)	10	9	8	8	8	8
Average						
Queue length						
(m)	30.0	30.0	24.0	24.0	24.0	24.0

Junctions 8

ARCADY 8 - Roundabout Module

Version: 8.0.5.523 [19102.19/06/2015] © Copyright TRL Limited, 2022

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: 21076HK Jn E.arc8

Path: \\PROJSRV\Project\CTA Consultants Limited\\CTA - Project\21076HK (wkk) - Town planning application of Ma Tin Pok

RCHE\Cal\2022-04-12

Report generation date: 12/4/2022 15:05:33

» Shap Pat Heung Interchange - 2021 Existing, AM Off-Peak

» Shap Pat Heung Interchange - 2021 Existing, PM Off-Peak

» Shap Pat Heung Interchange - 2028 Reference, AM Off-Peak

» Shap Pat Heung Interchange - 2028 Reference, PM Off-Peak

» Shap Pat Heung Interchange - 2028 Design, AM Off-Peak

» Shap Pat Heung Interchange - 2028 Design, PM Off-Peak

Summary of junction performance

	AM	Off-Peak			PM Off-Peak					
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS		
	S	hap Pat He	ung I	nterd	hange - 2021	Existing				
Arm 1	0.47	2.23	0.32	Α	2.23	4.88	0.69	Α		
Arm 2	0.72	2.06	0.42	Α	1.40	3.46	0.58	Α		
Arm 3	1.63	4.19	0.62	Α	1.79	4.64	0.64	Α		
	S	hap Pat He	eung	Inter	rchange - 2028 Design					
Arm 1	2.73	5.74	0.73	Α	3.82	7.39	0.79	Α		
Arm 2	1.28	3.37	0.56	Α	1.92	4.40	0.66	Α		
Arm 3	0.33	2.13	0.25	Α	0.32	2.24	0.24	Α		
	Sh	ap Pat Heu	ıng I r	iterch	ange - 2028 F	Reference				
Arm 1	2.67	5.65	0.73	Α	3.73	7.24	0.79	Α		
Arm 2	1.27	3.35	0.56	Α	1.90	4.36	0.66	Α		
Arm 3	0.33	2.13	0.25	Α	0.32	2.24	0.24	Α		

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle.

Run using Junctions 8.0.5.523 at 12/4/2022 15:05:30

File summary

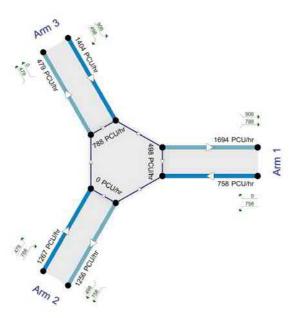
Title	(untitled)
Location	
Site Number	
Date	11/10/2018
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	ITADMIN
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	RFC Threshold	Average Delay Threshold (s)	Queue Threshold (PCU)
5.75			N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCU	PCU	perHour	s	-Min	perMin


[&]quot;D1 - 2021 Existing, AM Off-Peak " model duration: 11:00 - 12:00

[&]quot;D2 - 2021 Existing, PM Off-Peak" model duration: 16:00 - 17:00

[&]quot;D3 - 2028 Reference, AM Off-Peak" model duration: 11:00 - 12:00

[&]quot;D4 - 2028 Reference, PM Off-Peak" model duration: 16:00 - 17:00
"D5 - 2028 Design, AM Off-Peak" model duration: 11:00 - 12:00
"D6 - 2028 Design, PM Off-Peak" model duration: 16:00 - 17:00

20.00 m

Street greated for trings protes (PCs)

Time Segment (11:00-11:15)
Stooling Analysis Set "A1 - Shap Pat Heavig Westbangs" - Demant Set: "D1 - 2021 Externy, AM Off-Peak "

The junction diagram reflects the last run of ARCADY.

Shap Pat Heung Interchange - 2021 Existing, AM Off- Peak

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Shap Pat Heung Interchange	ARCADY			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2021 Existing, AM Off-Peak	2021 Existing	AM Off- Peak		FLAT	11:00	12:00	60	15		

Junction Network

Junctions

Junction	Name	Junction Type	Arm Order	Grade Separated	Large Roundabout	Junction Delay (s)	Junction LOS
Е	Shap Pat Heung Interchange	Roundabout	1,2,3			2.97	Α

Junction Network Options

	Driving Side Left	Lighting				
ı	Left	Normal/unknown				

Arms

Arms

Arm	Arm	Name	Description
1	1	Yuen Long Highway west bound	
2	2	Yuen Long Highway east bound	
3	3	Shap Pat Heung road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)
1	0.00	99999.00
2	0.00	99999.00
3	0.00	99999.00

Roundabout Geometry

Arm	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	7.30	9.70	20.00	26.36	100.00	41.00	
2	7.30	10.50	25.00	40.00	100.00	25.00	
3	7.30	10.20	30.00	30.00	100.00	50.00	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Enter slope and intercept directly	Entered slope	Entered intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
1		(calculated)	(calculated)	0.579	2665.145
2		(calculated)	(calculated)	0.643	3020.964
3		(calculated)	(calculated)	0.582	2729.917

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
1	FLAT	✓	760.00	100.000
2	FLAT	✓	1270.00	100.000
3	FLAT	✓	1410.00	100.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (PCU/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (PCU/hr)	Direct Demand Pedestrian Flow (Ped/hr)
11:00-11:15	1	760.00	760.00		
11:00-11:15	2	1270.00	1270.00		
11:00-11:15	3	1410.00	1410.00		
11:15-11:30	1	760.00	760.00		
11:15-11:30	2	1270.00	1270.00		
11:15-11:30	3	1410.00	1410.00		
11:30-11:45	1	760.00	760.00		
11:30-11:45	2	1270.00	1270.00		
11:30-11:45	3	1410.00	1410.00		
11:45-12:00	1	760.00	760.00		
11:45-12:00	2	1270.00	1270.00		
11:45-12:00	3	1410.00	1410.00		

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction E (for whole period)

			То	
		1	2	3
From	1	0.000	760.000	0.000
FIOIII	2	790.000	0.000	480.000
	3	910.000	500.000	0.000

Turning Proportions (PCU) - Junction E (for whole period)

		То				
		1	2	3		
From	1	0.00	1.00	0.00		
1 10111	2	0.62	0.00	0.38		
	3	0.65	0.35	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction E (for whole period)

				То	
			1	2	3
	From	1	1.000	1.000	1.000
	FIOIII	2	1.000	1.000	1.000
		3	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction E (for whole period)

		Т	О	
		1	2	3
From	1	0.0	0.0	0.0
FIOIII	2	0.0	0.0	0.0
	3	0.0	0.0	0.0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max RFC Max Delay (s) Max Q		Max LOS
1	0.32	2.23	0.47	Α
2	0.42	2.06	0.72	Α
3	0.62	4.19	1.63	Α

Main Results for each time segment

Main results: (11:00-11:15)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	760.00	758.13	497.70	0.00	2376.95	0.320	0.47	2.222	Α
2	1270.00	1267.11	0.00	0.00	3020.96	0.420	0.72	2.049	Α
3	1410.00	1403.53	788.20	0.00	2270.84	0.621	1.62	4.121	Α

Main results: (11:15-11:30)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	760.00	760.00	499.98	0.00	2375.63	0.320	0.47	2.227	Α
2	1270.00	1269.99	0.00	0.00	3020.96	0.420	0.72	2.055	Α
3	1410.00	1409.96	790.00	0.00	2269.79	0.621	1.63	4.186	Α

Main results: (11:30-11:45)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	760.00	760.00	499.99	0.00	2375.62	0.320	0.47	2.227	Α
2	1270.00	1270.00	0.00	0.00	3020.96	0.420	0.72	2.055	Α
3	1410.00	1409.99	790.00	0.00	2269.79	0.621	1.63	4.186	Α

Main results: (11:45-12:00)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	760.00	760.00	500.00	0.00	2375.62	0.320	0.47	2.227	Α
2	1270.00	1270.00	0.00	0.00	3020.96	0.420	0.72	2.055	Α
3	1410.00	1409.99	790.00	0.00	2269.79	0.621	1.63	4.186	Α

Shap Pat Heung Interchange - 2021 Existing, PM Off- Peak

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Shap Pat Heung Interchange	ARCADY			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2021 Existing, PM Off-Peak	2021 Existing	PM Off- Peak		FLAT	16:00	17:00	60	15		

Junction Network

Junctions

Junction	Junction Name		Arm Order	Grade Separated	Large Roundabout	Junction Delay (s)	Junction LOS
E	Shap Pat Heung Interchange	Roundabout	1,2,3			4.35	Α

Junction Network Options

Driving Side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Arm	Name	Description
1	1	Yuen Long Highway west bound	
2	2	Yuen Long Highway east bound	
3	3	Shap Pat Heung road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)			
1	0.00	99999.00			
2	0.00	99999.00			
3	0.00	99999.00			

Roundabout Geometry

Arm	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	7.30	9.70	20.00	26.36	100.00	41.00	
2	7.30	10.50	25.00	40.00	100.00	25.00	
3	7.30	10.20	30.00	30.00	100.00	50.00	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Enter slope and intercept directly	Entered slope	Entered intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
1		(calculated)	(calculated)	0.579	2665.145
2		(calculated)	(calculated)	0.643	3020.964
3		(calculated)	(calculated)	0.582	2729.917

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time		Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

4	Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
	1	FLAT	✓	1655.00	100.000
Г	2	FLAT	✓	1460.00	100.000
Г	3	FLAT	✓	1390.00	100.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (PCU/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (PCU/hr)	Direct Demand Pedestrian Flow (Ped/hr)
16:00-16:15	1	1655.00	1655.00		
16:00-16:15	2	1460.00	1460.00		
16:00-16:15	3	1390.00	1390.00		
16:15-16:30	1	1655.00	1655.00		
16:15-16:30	2	1460.00	1460.00		
16:15-16:30	3	1390.00	1390.00		
16:30-16:45	1	1655.00	1655.00		
16:30-16:45	2	1460.00	1460.00		
16:30-16:45	3	1390.00	1390.00		
16:45-17:00	1	1655.00	1655.00		
16:45-17:00	2	1460.00	1460.00		
16:45-17:00	3	1390.00	1390.00		

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction E (for whole period)

		То						
		1	2	3				
From	1	0.000	845.000	810.000				
	2	970.000	0.000	490.000				
	3	920.000	470.000	0.000				

Turning Proportions (PCU) - Junction E (for whole period)

		То					
		1	2	3			
From	1	0.00	0.51	0.49			
From	2	0.66	0.00	0.34			
	3	0.66	0.34	0.00			

Vehicle Mix

Average PCU Per Vehicle - Junction E (for whole period)

			То	
		1	2	3
From	1	1.000	1.000	1.000
	2	1.000	1.000	1.000
	3	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction E (for whole period)

		То					
		1	2	3			
From	1	0.0	0.0	0.0			
110111	2	0.0	0.0	0.0			
	3	0.0	0.0	0.0			

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.69	4.88	2.23	Α
2	0.58	3.46	1.40	Α
3	0.64	4.64	1.79	Α

Main Results for each time segment

Main results: (16:00-16:15)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1655.00	1646.20	467.61	0.00	2394.37	0.691	2.20	4.758	Α
2	1460.00	1454.45	805.69	0.00	2502.69	0.583	1.39	3.416	Α
3	1390.00	1382.95	966.31	0.00	2167.10	0.641	1.76	4.550	Α

Main results: (16:15-16:30)

Arm	Total Demand Entry Flow Circulating Flow (PCU/hr) (PCU/hr) (PCU/hr)			Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1655.00	1654.91	469.98	0.00	2393.00	0.692	2.22	4.875	Α
2	1460.00	1459.96	809.96	0.00	2499.95	0.584	1.40	3.460	Α
3	1390.00	1389.94	969.98	0.00	2164.96	0.642	1.78	4.644	Α

Main results: (16:30-16:45)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1655.00	1654.97	469.99	0.00	2393.00	0.692	2.23	4.877	Α
2	1460.00	1459.99	809.99	0.00	2499.93	0.584	1.40	3.460	Α
3	1390.00	1389.98	969.99	0.00	2164.95	0.642	1.78	4.645	Α

Main results: (16:45-17:00)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1655.00	1654.99	470.00	0.00	2392.99	0.692	2.23	4.877	Α
2	1460.00	1460.00	809.99	0.00	2499.93	0.584	1.40	3.460	Α
3	1390.00	1389.99	970.00	0.00	2164.95	0.642	1.79	4.645	Α

Shap Pat Heung Interchange - 2028 Reference, AM Off-Peak

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Shap Pat Heung Interchange	ARCADY			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2028 Reference, AM Off-Peak	2028 Reference	AM Off- Peak		FLAT	11:00	12:00	60	15		

Junction Network

Junctions

Junction	Name	Junction Type	Arm Order	Grade Separated	Large Roundabout	Junction Delay (s)	Junction LOS
E	Shap Pat Heung Interchange	Roundabout	1,2,3			4.25	Α

Junction Network Options

Driving Side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Am	Name	Description
1	1	Yuen Long Highway west bound	
2	2	Yuen Long Highway east bound	
3	3	Shap Pat Heung road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)
1	0.00	99999.00
2	0.00	99999.00
3	0.00	99999.00

Roundabout Geometry

Arm	V - Approach road half- width (m) E - Entry width (m)		l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
1	7.30	9.70	20.00	26.36	100.00	41.00	
2	7.30	10.50	25.00	40.00	100.00	25.00	
3	7.30	10.20	30.00	30.00	100.00	50.00	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Enter slope and intercept directly	Entered slope	Entered intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
1		(calculated)	(calculated)	0.579	2665.145
2		(calculated)	(calculated)	0.643	3020.964
3		(calculated)	(calculated)	0.582	2729.917

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
	✓	√	HV Percentages	2.00				~	✓

Entry Flows

General Flows Data

1	Arm	rm Profile Type Use Turning Cou		Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
	1	FLAT	✓	1710.00	100.000
	2	FLAT	✓	1370.00	100.000
Г	3	FLAT	✓	550.00	100.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (PCU/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (PCU/hr)	Direct Demand Pedestrian Flow (Ped/hr)
11:00-11:15	1	1710.00	1710.00		
11:00-11:15	2	1370.00	1370.00		
11:00-11:15	3	550.00	550.00		
11:15-11:30	1	1710.00	1710.00		
11:15-11:30	2	1370.00	1370.00		
11:15-11:30	3	550.00	550.00		
11:30-11:45	1	1710.00	1710.00		
11:30-11:45	2	1370.00	1370.00		
11:30-11:45	3	550.00	550.00		
11:45-12:00	1	1710.00	1710.00		
11:45-12:00	2	1370.00	1370.00		
11:45-12:00	3	550.00	550.00		

Generated on 12/4/2022 15:05:40 using Junctions 8 (8.0.5.523)

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction E (for whole period)

		То				
		1	2	3		
From	1	0.000	815.000	895.000		
110111	2	845.000	0.000	525.000		
	3	0.000	550.000	0.000		

Turning Proportions (PCU) - Junction E (for whole period)

		То				
		1	2	3		
From	1	0.00	0.48	0.52		
FIOIII	2	0.62	0.00	0.38		
	3	0.00	1.00	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction E (for whole period)

		То				
		1	2	3		
From	1	1.000	1.000	1.000		
FIOIII	2	1.000	1.000	1.000		
	3	1.000	1.000	1.000		

Heavy Vehicle Percentages - Junction E (for whole period)

	То					
		1	2	3		
From	1	0.0	0.0	0.0		
110111	2	0.0	0.0	0.0		
	3	0.0	0.0	0.0		

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.73	5.65	2.67	Α
2	0.56	3.35	1.27	Α
3	0.25	2.13	0.33	Α

Main Results for each time segment

Main results: (11:00-11:15)

A	m	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
	1	1710.00	1699.51	548.70	0.00	2347.42	0.728	2.62	5.472	Α
	2	1370.00	1364.96	889.51	0.00	2448.78	0.559	1.26	3.307	Α
	3	550.00	548.70	841.89	0.00	2239.57	0.246	0.32	2.128	Α

Main results: (11:15-11:30)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1710.00	1709.87	550.00	0.00	2346.67	0.729	2.65	5.651	Α
2	1370.00	1369.97	894.93	0.00	2445.29	0.560	1.27	3.347	Α
3	550.00	550.00	844.98	0.00	2237.77	0.246	0.33	2.132	Α

Main results: (11:30-11:45)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1710.00	1709.96	550.00	0.00	2346.67	0.729	2.67	5.653	Α
2	1370.00	1369.99	894.98	0.00	2445.26	0.560	1.27	3.347	Α
3	550.00	550.00	844.99	0.00	2237.76	0.246	0.33	2.132	Α

Main results: (11:45-12:00)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1710.00	1709.98	550.00	0.00	2346.67	0.729	2.67	5.653	Α
2	1370.00	1370.00	894.99	0.00	2445.25	0.560	1.27	3.347	Α
3	550.00	550.00	845.00	0.00	2237.76	0.246	0.33	2.132	Α

Shap Pat Heung Interchange - 2028 Reference, PM Off-Peak

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Shap Pat Heung Interchange	ARCADY			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2028 Reference, PM Off-Peak	2028 Reference	PM Off- Peak		FLAT	16:00	17:00	60	15		

Junction Network

Junctions

Junction	Name	Junction Type	Arm Order	Grade Separated	Large Roundabout	Junction Delay (s)	Junction LOS
E	Shap Pat Heung Interchange	Roundabout	1,2,3			5.44	Α

Junction Network Options

Driving Side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Am	Name	Description
1	1	Yuen Long Highway west bound	
2	2	Yuen Long Highway east bound	
3	3	Shap Pat Heung road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)
1	0.00	99999.00
2	0.00	99999.00
3	0.00	99999.00

Roundabout Geometry

,	Arm	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
	1	7.30	9.70	20.00	26.36	100.00	41.00	
	2	7.30	10.50	25.00	40.00	100.00	25.00	
Г	3	7.30	10.20	30.00	30.00	100.00	50.00	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Enter slope and intercept directly	Entered slope	Entered intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
1		(calculated)	(calculated)	0.579	2665.145
2		(calculated)	(calculated)	0.643	3020.964
3		(calculated)	(calculated)	0.582	2729.917

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
1	FLAT	✓	1870.00	100.000
2	FLAT	✓	1575.00	100.000
3	FLAT	✓	515.00	100.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (PCU/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (PCU/hr)	Direct Demand Pedestrian Flow (Ped/hr)
16:00-16:15	1	1870.00	1870.00		
16:00-16:15	2	1575.00	1575.00		
16:00-16:15	3	515.00	515.00		
16:15-16:30	1	1870.00	1870.00		
16:15-16:30	2	1575.00	1575.00		
16:15-16:30	3	515.00	515.00		
16:30-16:45	1	1870.00	1870.00		
16:30-16:45	2	1575.00	1575.00		
16:30-16:45	3	515.00	515.00		
16:45-17:00	1	1870.00	1870.00		
16:45-17:00	2	1575.00	1575.00		
16:45-17:00	3	515.00	515.00		

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction E (for whole period)

			То	
		1	2	3
From	1	0.000	905.000	965.000
FIOIII	2	1040.000	0.000	535.000
	3	0.000	515.000	0.000

Turning Proportions (PCU) - Junction E (for whole period)

			То						
	From		1	2	3				
		1	0.00	0.48	0.52				
		2	0.66	0.00	0.34				
		3	0.00	1.00	0.00				

Generated on 12/4/2022 15:05:40 using Junctions 8 (8.0.5.523)

Vehicle Mix

Average PCU Per Vehicle - Junction E (for whole period)

		То						
		1	2	3				
From	1	1.000	1.000	1.000				
	2	1.000	1.000	1.000				
	3	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction E (for whole period)

	То							
		1	2	3				
From	1	0.0	0.0	0.0				
	2	0.0	0.0	0.0				
	3	0.0	0.0	0.0				

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.79	7.24	3.73	Α
2	0.66	4.36	1.90	Α
3	0.24	2.24	0.32	Α

Main Results for each time segment

Main results: (16:00-16:15)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1870.00	1855.51	513.73	0.00	2367.67	0.790	3.62	6.848	Α
2	1575.00	1567.51	957.52	0.00	2405.03	0.655	1.87	4.262	Α
3	515.00	513.73	1035.06	0.00	2127.06	0.242	0.32	2.228	Α

Main results: (16:15-16:30)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1870.00	1869.72	515.00	0.00	2366.94	0.790	3.69	7.229	Α
2	1575.00	1574.92	964.86	0.00	2400.31	0.656	1.89	4.361	Α
3	515.00	515.00	1039.94	0.00	2124.21	0.242	0.32	2.236	Α

Main results: (16:30-16:45)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1870.00	1869.91	515.00	0.00	2366.94	0.790	3.72	7.237	Α
2	1575.00	1574.98	964.95	0.00	2400.25	0.656	1.90	4.361	Α
3	515.00	515.00	1039.98	0.00	2124.19	0.242	0.32	2.236	Α

Main results: (16:45-17:00)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1870.00	1869.95	515.00	0.00	2366.93	0.790	3.73	7.240	Α
2	1575.00	1574.99	964.98	0.00	2400.23	0.656	1.90	4.362	Α
3	515.00	515.00	1039.99	0.00	2124.18	0.242	0.32	2.236	Α

Shap Pat Heung Interchange - 2028 Design, AM Off- Peak

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Shap Pat Heung Interchange	ARCADY			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2028 Design, AM Off-Peak	2028 Design	AM Off- Peak		FLAT	11:00	12:00	60	15		

Junction Network

Junctions

Junction	Name	Junction Type	Arm Order	Grade Separated	Large Roundabout	Junction Delay (s)	Junction LOS
Е	Shap Pat Heung Interchange	Roundabout	1,2,3			4.30	Α

Junction Network Options

Driving Side	Lighting
Left	Normal/unknown

Arms

Arms

	Arm	Arm	Name	Description
ľ	1	1	Yuen Long Highway west bound	
ľ	2	2	Yuen Long Highway east bound	
ľ	3	3	Shap Pat Heung road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)
1	0.00	99999.00
2	0.00	99999.00
3	0.00	99999.00

Roundabout Geometry

Ar	v - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Exit Only
	7.30	9.70	20.00	26.36	100.00	41.00	
-:	7.30	10.50	25.00	40.00	100.00	25.00	
-	7.30	10.20	30.00	30.00	100.00	50.00	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Enter slope and intercept directly	Entered slope	Entered intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
1		(calculated)	(calculated)	0.579	2665.145
2		(calculated)	(calculated)	0.643	3020.964
3		(calculated)	(calculated)	0.582	2729.917

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
	✓	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
1	FLAT	✓	1720.00	100.000
2	FLAT	✓	1370.00	100.000
3	FLAT	✓	550.00	100.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (PCU/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (PCU/hr)	Direct Demand Pedestrian Flow (Ped/hr)
11:00-11:15	1	1720.00	1720.00		
11:00-11:15	2	1370.00	1370.00		
11:00-11:15	3	550.00	550.00		
11:15-11:30	1	1720.00	1720.00		
11:15-11:30	2	1370.00	1370.00		
11:15-11:30	3	550.00	550.00		
11:30-11:45	1	1720.00	1720.00		
11:30-11:45	2	1370.00	1370.00		
11:30-11:45	3	550.00	550.00		
11:45-12:00	1	1720.00	1720.00		
11:45-12:00	2	1370.00	1370.00		
11:45-12:00	3	550.00	550.00		

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction E (for whole period)

		То					
		1	2	3			
From	1	0.000	815.000	905.000			
FIOIII	2	845.000	0.000	525.000			
	3	0.000	550.000	0.000			

Turning Proportions (PCU) - Junction E (for whole period)

	То					
		1	2	3		
From	1	0.00	0.47	0.53		
From	2	0.62	0.00	0.38		
	3	0.00	1.00	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction E (for whole period)

				То	
ĺ			1	2	3
	From	1	1.000	1.000	1.000
	From	2	1.000	1.000	1.000
Į		3	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction E (for whole period)

		То						
		1	2	3				
From	1	0.0	0.0	0.0				
From	2	0.0	0.0	0.0				
	3	0.0	0.0	0.0				

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.73	5.74	2.73	Α
2	0.56	3.37	1.28	Α
3	0.25	2.13	0.33	Α

Main Results for each time segment

Main results: (11:00-11:15)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1720.00	1709.29	548.70	0.00	2347.42	0.733	2.68	5.553	Α
2	1370.00	1364.93	899.36	0.00	2442.44	0.561	1.27	3.327	Α
3	550.00	548.70	841.87	0.00	2239.58	0.246	0.32	2.128	Α

Main results: (11:15-11:30)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1720.00	1719.87	550.00	0.00	2346.67	0.733	2.71	5.739	Α
2	1370.00	1369.97	904.93	0.00	2438.86	0.562	1.28	3.367	Α
3	550.00	550.00	844.98	0.00	2237.77	0.246	0.33	2.132	Α

Main results: (11:30-11:45)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1720.00	1719.96	550.00	0.00	2346.67 0.733		2.72	5.741	Α
2	1370.00	1369.99	904.98	0.00	2438.83	0.562	1.28	3.367	Α
3	550.00	550.00	844.99	0.00	2237.76	0.246	0.33	2.132	Α

Main results: (11:45-12:00)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1720.00	1719.98	550.00	0.00	2346.67	0.733	2.73	5.744	Α
2	1370.00	1370.00	904.99	0.00	2438.82	0.562	1.28	3.367	Α
3	550.00	550.00	845.00	0.00	2237.76	0.246	0.33	2.132	Α

Shap Pat Heung Interchange - 2028 Design, PM Off- Peak

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
Shap Pat Heung Interchange	ARCADY			100.000	

Demand Set Details

Name	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
2028 Design,	2028	PM Off-		FLAT	16:00	17:00	60	15		
PM Off-Peak	Design	Peak		FLAI	10.00	17.00	00	15		

Junction Network

Junctions

Junction	Name	Junction Type	Arm Order	Grade Separated	Large Roundabout	Junction Delay (s)	Junction LOS
Е	Shap Pat Heung Interchange	Roundabout	1,2,3			5.53	А

Junction Network Options

Driving Side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Arm	Name	Description
1 1		Yuen Long Highway west bound	
2	2	Yuen Long Highway east bound	
3	3	Shap Pat Heung road	

Capacity Options

Arm	Minimum Capacity (PCU/hr)	Maximum Capacity (PCU/hr)
1	0.00	99999.00
2	0.00	99999.00
3	0.00	99999.00

Roundabout Geometry

Ап	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius D - Inscribed circle diameter (m)		PHI - Conflict (entry) angle (deg)	Exit Only
1	7.30	9.70	20.00	26.36	100.00	41.00	
2	7.30	10.50	25.00	40.00	100.00	25.00	
3	7.30	10.20	30.00	30.00	100.00	50.00	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Enter slope and intercept directly	Entered slope	Entered intercept (PCU/hr)	Final Slope	Final Intercept (PCU/hr)
1		(calculated)	(calculated)	0.579	2665.145
2		(calculated)	(calculated)	0.643	3020.964
3		(calculated)	(calculated)	0.582	2729.917

The slope and intercept shown above include any corrections and adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
	√	√	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
1	FLAT	✓	1880.00	100.000
2	FLAT	✓	1575.00	100.000
3	FLAT	✓	515.00	100.000

Direct/Resultant Flows

Direct Flows Data

Time Segment	Arm	Direct Demand Entry Flow (PCU/hr)	DirectDemandEntryFlowInPCU (PCU/hr)	Direct Demand Exit Flow (PCU/hr)	Direct Demand Pedestrian Flow (Ped/hr)
16:00-16:15	1	1880.00	1880.00		
16:00-16:15	2	1575.00	1575.00		
16:00-16:15	3	515.00	515.00		
16:15-16:30	1	1880.00	1880.00		
16:15-16:30	2	1575.00	1575.00		
16:15-16:30	3	515.00	515.00		
16:30-16:45	1	1880.00	1880.00		
16:30-16:45	2	1575.00	1575.00		
16:30-16:45	3	515.00	515.00		
16:45-17:00	1	1880.00	1880.00		
16:45-17:00	2	1575.00	1575.00		
16:45-17:00	3	515.00	515.00		

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction E (for whole period)

			То	
		1	2	3
From	1	0.000	905.000	975.000
1 10111	2	1040.000	0.000	535.000
	3	0.000	515.000	0.000

Turning Proportions (PCU) - Junction E (for whole period)

	То				
		1	2	3	
From	1	0.00	0.48	0.52	
FIOIII	2	0.66	0.00	0.34	
	3	0.00	1.00	0.00	

Vehicle Mix

Average PCU Per Vehicle - Junction E (for whole period)

			То	
		1	2	3
From	1	1.000	1.000	1.000
FIOIII	2	1.000	1.000	1.000
	3	1.000	1.000	1.000

Heavy Vehicle Percentages - Junction E (for whole period)

		То					
		1	2	3			
From	1	0.0	0.0	0.0			
110111	2	0.0	0.0	0.0			
	3	0.0	0.0	0.0			

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
1	0.79	7.39	3.82	Α
2	0.66	4.40	1.92	Α
3	0.24	2.24	0.32	Α

Main Results for each time segment

Main results: (16:00-16:15)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1880.00	1865.15	513.73	0.00	2367.67	0.794	3.71	6.971	Α
2	1575.00	1567.46	967.30	0.00	2398.74	0.657	1.89	4.293	Α
3	515.00	513.73	1035.02	0.00	2127.08	0.242	0.32	2.228	Α

Main results: (16:15-16:30)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1880.00	1879.71	515.00	0.00	2366.94	0.794	3.79	7.377	Α
2	1575.00	1574.91	974.85	0.00	2393.88	0.658	1.91	4.395	Α
3	515.00	515.00	1039.94	0.00	2124.21	0.242	0.32	2.236	Α

Main results: (16:30-16:45)

A	m Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
	1880.00	1879.90	515.00	0.00	2366.94	0.794	3.81	7.386	Α
:	1575.00	1574.98	974.95	0.00	2393.82	0.658	1.91	4.396	Α
		515.00	1039.98	0.00	2124.19	0.242	0.32	2.236	Α

Main results: (16:45-17:00)

Arm	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Circulating Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
1	1880.00	1879.95	515.00	0.00	2366.93	0.794	3.82	7.389	Α
2	1575.00	1574.99	974.97	0.00	2393.80	0.658	1.92	4.396	Α
3	515.00	515.00	1039.99	0.00	2124.18	0.242	0.32	2.236	Α

APPENDIX 8A

TRAFFIC STATEMENT

INTRODUCTION

Yuen Long.

Table 1.1

Table 1.2

parameters is now applying.

Site Area **GFA**

No. of Beds

Site Area

GFA No. of Beds

CTA Consultants Limited

Proposed Minor Relaxation of Building Height Restriction

for Permitted Social Welfare Facility (Residential Care Home for the Elderly) and

Proposed House Use with Conservation Proposal at Lot nos. 1695 S.E ss.1 RP,

1695 S.F ss.1 and 1695 S.H RP (Part) in D.D. 120 and Adjoining Government Land, Tai Kei Leng, Yuen Long

Traffic Statement

This Traffic Statement is to support the Section 16 (S16) planning application for Proposed Minor Relaxation of Building Height Restriction for Permitted Social Welfare Facility (Residential Care Home for the Elderly) and Proposed House Use with Conservation Proposal at Lot nos. 1695 S.E ss.1 RP, 1695 S.F ss.1 and 1695 S.H RP (Part) in D.D. 120 and Adjoining Government Land, Tai Kei Leng,

The applicant has put forward a conservation-cum-development proposal on the Site. A S16 planning application (Planning Application No. A/YL/289) was approved in July 2022. A new S16 planning application with new development

The tentative development parameters for the Proposals are shown below:

(Planning Application No. A/YL/289)

Development Parameters for the Approved Scheme

Development Parameters for the This Application

About 1,953 m²

About 5,930 m²

281 (or within a range of 260 - 300)

About 1,877.1 m²

About 5,756 m²

241 beds (or within a range of 220 - 260)

Transportation, Planning, Engineering, Research and Development We commit We deliver

以

誠

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo **Traffic Statement**

We commit We deliver

Ü 以 誠

This Traffic Statement is therefore prepared to identify the magnitude of the change in traffic volume generated from the proposed development, and its impact due to this minor change.

THE FINDINGS 2.

Table 2.1 gives a detail calculation on the estimated traffic trips induced by the proposed development.

Table 2.1 **Derivation of the Traffic Trips on the Scenarios**

	(Plannin	Approved Scheme (Planning Application No. A/YL/289)				This Application			
Site Area		About 1,953 m ²				About 1,877.1 m ²			
GFA		About 5,930 m ² About 5,756 m ²							
No. of Beds	(or w	281 beds (or within a range of 260 – 300)			241 beds (or within a range of 220 – 260)				
	AM	Peak	PM	Peak	AM Peak		PM Peak		
	Gen.	Attn.	Gen.	Attn.	Gen.	Attn.	Gen.	Attn.	
Trip Rates (pcu/hr/flat)	0.08633	0.08633	0.08633	0.08633	0.08633	0.08633	0.08633	0.08633	
Trips (pcu/hr)	26	21	13	17	22	18	11	15	

1) Upper range of no. of beds is adopted as conservative approach.

Table 2.2 gives a comparison of the traffic generated by the development with 300 beds and 260 beds.

Table 2.2 Comparison of the Traffic Trips

	Peak Hour Trips (pcu/hr)			
	AM Peak		PM Peak	
	Gen.	Attn.	Gen.	Attn.
This Application (260 beds)	22	18	11	15
Approved Scheme (300 beds)	26	21	13	17
Difference	<u>-4</u>	<u>-3</u>	<u>-2</u>	<u>-2</u>

21120HK

1 of 3

21120HK

2 of 3

Conservation of a Grade 3 Historic Building in Yuen Long Siu Lo

Traffic Statement

用

心以

誠

We commit We deliver

2.3 From **Table 2.2**, it is revealed that the decrease of no. of beds from 300 to 260 will generate lesser traffic trips in the peak hours.

3. CONCLUSION

- 3.1 With the decrease of no. of beds from 300 to 260, the proposed development will generate lesser traffic trips in the peak hours. The traffic impact by the proposed development to road network under the new application will be even smaller than the approved scheme.
- 3.2 Therefore, the assessment in the TIA (Planning Application No. A/YL/289) approved in July 2022 is already in conservative approach and could be adopted for this new application. The proposed change is therefore considered acceptable from traffic engineering point of view.

21120HK

3 of 3

