Appendix 4

Traffic Impact Assessment

Traffic Impact Assessment Report

September 2023

CTA Consultants Limited

志達顧問有限公司

We commit We deliver

1. INTRODUCTION

1.1 Background

- 1.1.1 CTA Consultants Limited ("CTA") is commissioned by the Applicant to prepare a Traffic Impact Assessment Study for a proposed development of Lot Nos 257 (Part), 258RP (Part) and Adjoining government land in D.D. 122, Ping Shan, Yuen Long for RCHE and Senior Hostel Use.
- 1.1.2 The client intends to provide 420 beds (the "Proposed Development").
- 1.1.3 This TIA study aims to examine the impact of the traffic generated by the proposed number of beds in the vicinity. Improvement proposals where needed would be recommended if necessary to resolve any foreseeable traffic issues.

1.2 Study Objectives

- 1.2.1 The main objectives of this study are listed below:
 - To assess the existing traffic condition in the vicinity of the proposed development;
 - To forecast traffic flows on the adjacent road network in the design year 2032;
 - To estimate the likely traffic generated by the proposed development;
 - To appraise the traffic impact induced by the proposed development on the adjacent road network;
 - To recommend traffic improvement measures to alleviate any foreseeable traffic problem to the surrounding road network, if any.

Traffic Impact Assessment Report
We commit We deliver

2. THE PROPOSED DEVELOPMENT

2.1 Site Location

2.1.1 The proposed development is located at Lot Nos 257 (Part), 258RP (Part) and Adjoining government land in D.D. 122, Ping Shan, Yuen Long as shown in **Figure 2.1**.

2.2 Development Proposal

2.2.1 Development parameters of the proposed development are listed in **Table 2.1**.

 Table 2.1
 Development Parameters of the Proposed Development

	Development Parameters		
Proposed Use	Residential Use & Residential Care Home for the Elderly (RCHE)		
Site Area	$3,330 \text{ m}^2$		
Total Accountable GFA	9,800 m ²		
No of blocking	1		
No of beds & units	420 beds (RCHE) & 9 units (Senior Hostel)		
No of storey	Not exceeding 8 storeys (excluding 1 basement floor)		
No of staffs	75 staffs per shift (total of 150 staffs)		

- 2.2.2 It is anticipated that the proposed development will be commissioned in year 2029. Therefore, design year 2032 (i.e., 3 years after the planned commencement year of the proposed development) is adopted for the Traffic Impact Assessment.
- 2.2.3 The working hour of staff would be in 2 shifts from 7 am to 7pm and 7pm to 7am tentatively. They would mainly go to/ leave from the site by the public transport. It is

We commit We deliver

understood that Hong Kong workers mainly go to work by public transport. GMB, bus stops, LRT and MTR are provided near the proposed development which are convince for the staff to travel by public transport.

- 2.2.4 Staffs are not allowed to use the parking spaces unless they are authorised by their management team.
- 2.2.5 Therefore, staffs will take the public transport to/ from their work.

2.3 Provision of Access Arrangement

2.3.1 No access road connects to the proposed development in the existing condition, and yet, an access road is proposed. The proposed access road connects to the Tsui Sing Road. The detail design of the access road is shown in **Figure 2.2**.

Traffic Impact Assessment Report
We commit We deliver

3. EXISTING TRAFFIC CONDITIONS

3.1 Existing Road Network

- 3.1.1 The proposed development is located in Lot Nos 257 (Part), 258RP (Part) and Adjoining government land in D.D. 122, Ping Shan, Yuen Long as shown in **Figure** 2.1. There is no road connects to the proposed development site.
- 3.1.2 Tsui Sing Road is a single 2-lane carriageway which connects to a local road and the proposed access road.
- 3.1.3 Tin Fuk Road is a dual 2-lane carriageway which connects to the Tin Shing Road.

3.2 Critical Junctions in Surrounding Area

- 3.2.1 In order to study the existing traffic condition of the area as requested by the Transport Department, a comprehensive traffic survey has been conducted.
- 3.2.2 Based on the location of the Lot and the rad network in the vicinity, three key junctions are identified for this Traffic Impact Assessment (TIA) due to the Proposed Development and listed in **Table 2.1**. The location of the junctions is shown in **Figure 3.1**, while the details of each are illustrated in **Figures** from **3.2** to **3.4** respectively.
- 3.2.3 The traffic count surveys were carried out at the critical junctions in the vicinity of the Proposed Development.

Table 3.1 Identified Key Junctions

Ref.	Junction	Type	Figure No.
A	Tin Fuk Road/ Tin Shing Road	Signal	3.2
В	Ping Ha Road/ Tsui Sing Road	Signal	3.3
С	Tsui Sing Road/ Tin Shing Road	Priority	3.4

Traffic Impact Assessment Report

We commit We deliver

Traffic Survey

3.2.4 In order to appraise the existing traffic conditions of these junctions, a traffic survey in the form of manual classified was conducted on 12 June 2023 during AM and PM peak. The peak hour flows occurred from 7:30am to 8:30am and from 6:00pm to 7:00pm respectively. The 2023 observed traffic flows are presented in **Figure 3.5**.

Junction Assessments

3.2.5 Operation performance of the critical junctions has been examined in accordance with the existing traffic flow and the results are summarised in the **Table 3.2** below. Details of the junction assessment are enclosed in the **Appendix A**.

Table 3.2 Existing Operational Performance of Key Junctions in 2023

Dof	Tunation	Method of	Year 2023 RC/RFC (1)			
Ref.	Junction	Control	AM Peak	PM Peak		
A	Tin Fuk Road/ Tin Shing Road	Signal	61%	89%		
В	Ping Ha Road/ Tsui Sing Road	Signal	123%	185%		
С	Tsui Sing Road/ Tin Shing Road	Priority	0.25	0.32		

Notes: (1) RC = Reserve Capacity

RFC = Ratio of Flow to Capacity for Priority Junction

3.2.6 The assessment results in **Table 3.2** indicate that all key junctions are operating with ample capacities during the peak hours in 2023.

3.3 Internal Transport Facilities Provisions

3.3.1 There is no requirements stipulated in the latest Hong Kong Planning Standards and Guidelines (HKPSG), the proposed internal transport facilities provision for the proposed development is summarized in **Table 3.3**.

Traffic Impact Assessment Report

We commit We deliver

Table 3.3 Car Parking Provision Requirement for RCHE

Туре	Proposed Dimensions	Proposed Number of Spaces Parameters
Private Cars	5m(L) x 2.5m(W) x min.2.4m(H)	15
Private Cars for Disabilities	5m(L) x 3.5m(W) x min.2.4m(H)	1
L/UL for Light Bus	8m(L) x 3m(W) x min.3.3m(H)	1
L/UL for LGV	7m(L) x 3.5m(W) x min.3.6m(H)	1

3.3.2 Whilst, for the development of the senior hostel, the transport provision requirements will be referenced to the Hong Kong Planning Standards and Guidelines (HKPSG). The provision requirement is summarized in the **Table 3.4**.

Table 3.4. Proposed Internal Transportation Provision under the HKPSG Requirements

Residential Development										
						Parki	ng Require	ment		Loading/Unloadin g Requirement
Proposed Development				Private Car Parking Space (5m(L) x 2.5m(W) x 2.4m(H))			Motor cycle parking space	Visitors Car parking	Bicycle Parking Space	Loading / Unloading Bay for Goods Vehicles (LGV: 7m(L) x 3.5 m(W) x 3.6m(H)) (HGV: 11m(L) x 3.5 m(W) x 4.7m(H))
			GPS	1 space 7 flats	per 4-			More than 75 units per		Provision of minimum 1 L/UL
Private Housing (1 towers; P.R= 0.26)	GFA	No. of Flat	R1	R2	R3	GPS x R1 X R2 X R3	1 motorcy cle parking space per 100- 150 flats	block should provide at 5 visitor space per block in addition in the requiremen t	Outside 2 km radius of rail station 1 per 30 flats with flat size less than 70 m ²	bay for goods vehicles within the site for every 800 flats or part thereof, subject to a minimum of 1 bay for each housing block or as determined by the Authority
	40 ≤ FS ≤60	9	1.2	0.75	1.3	2-3	0	0	0	1
		Propose	ed			2	0	0	0	1

Traffic Impact Assessment Report

We commit We deliver

3.4 Public Transport Services in the Vicinity of the Proposed Development

3.4.1 Numerous road-based public transport services are provided in vicinity of the proposed development. Details of the current services of franchised buses and GMB routes within 500 meters catchment area are listed in **Table 3.5**, and the location of the nearby public transport stations is shown in **Figure 3.6**.

Table 3.5 Public Transport Services in the Vicinity of the Proposed Development

Service	Route	Origin - Destination	Headway (min)
	69M	Tin Shui Wai Town Centre – Kwai Fong Station	6-30
	69X	Tin Shui Estate – Jordan (West Kowloon Station)	15-30
	265S	Tin Shui Wai Town Centre – Tai Po Industrial Estate	35
	269B	Tin Shui Wai Town Centre – Hung Hom (Hung Luen Road)	20-30
	269C	Tin Shui Wai Town Centre – Kwun Tong Ferry	5-20
	269D	Tin Fu – Lek Yuen	5-25
	269S	Tin Shui Wai Town Centre – Kwun Tong Ferry	20
Franchised	276A	Tin Heung Estate – Sheung Shui (Tai Ping)	6-25
Buses	276C	Tin Shui Wai Station – Fanling (Cheung Wah)	10-30
	969	Tin Shui Wai Town Centre – Causeway Bay (Moreton Terrace)	7-25
	969N	Tin Shui Wai Town Centre – Causeway Bay (Moreton Terrace)	05:10
	A37	Airport (Ground Transportation Centre) – Long Ping Station	20-30
	B1	Tin Tsz – Lok Ma Station	10-20
	E37	Tin Shui Wai Town Centre – Airport (Ground Transportation Centre)	10-30
	N296	Tin Tsz – Mei Foo	15-25
CMD	79S ¹	Lok Ma Chau Control Point – A Tin Shui Wai (Grandeur Terrace)	10 - 15
GMB	610S ¹	Tin Shui Wai (Tin Shui Estate) – Tsim Sha Tsui (Haiphong Road)	12 - 15
	706	Tin Shui Wai (Circular)	5-7
	761P	Tin Shui Wai – Tin Yat	7-15
Light Rail	705	Tin Shui Wai (Circular)	56
	751	Yan Oi – Tin Yat	4-0
	751P	Tin Shui Wai – Tin Yat	7-15
MTR	/	Tin Shui Wai MTR Station	2-8

Note: (1) Night service only

3.4.2 It reveals that the proposed development is currently well-served by the comprehensive public transport services in the vicinity.

Traffic Impact Assessment Report

We commit We deliver

4. FUTURE TRAFFIC CONDITION & TRAFFIC IMPACT ASSESSMENT

4.1 Design Year

4.1.1 It is anticipated that the proposed development would be completed in 2029 tentatively. In order to assess the possible traffic impacts to the local road network due to the proposed development, year 2032 (i.e., 3 years after construction work completion) has been adopted as the design year for this TIA.

4.2 Traffic Forecast

- 4.2.1 The traffic growth can be estimated by applying growth factor, based on the following information sources:
 - I. Historical traffic growth in Annual Traffic Census (ATC) published by the Transport Department (TD).
 - II. Territorial planning assumptions prepared by the Planning Department.

Historical Trend

4.2.2 Transport Department has traffic count stations in the vicinity of the proposed development. The traffic counts reported in the Annual Traffic Census over a period of seven years, i.e., 2012 to 2018 are summarized in **Table 4.1**.

Traffic Impact Assessment Report

We commit We deliver

Table 4.1 Historical Traffic Data from Annual Traffic Census (ATC)

ATC Stn	Road Name	Annual Average Daily Traffic (AADT)							
		2012	2013	2014	2015	2016	2017	2018	Rate
5880	Tin Yiu Rd (From Ping Ha Rd to Tin Ho Rd)	15,780	15,910*	15,740*	15,610*	16,930	16,960	17,380	1.62%
5886	Tin Wah Rd (From Tin Shui Rd to Tin Shing Rd)	10,010	10,090*	9,980*	9,900*	10,190	10,420	10,680	1.09%
5890	Tin Wu Rd (From Tin Yiu Rd to Tin Shing Rd)	9,090	9,160*	9,060*	8,990*	9,740	8,160	8,360	-1.39%
	Total	34,880	35,160	34,780	34,500	36,860	35,540	36,420	<u>+0.72%</u>

Note: *AADT estimated by Growth factor

Planning Data

4.2.3 Reference has also been made to the latest 2019-Based Territorial Population Employment Data Matrices (TPEDM) planning data published by the Planning Department for projection of population and employment within the study district from years 2019 to 2031. The average annual growth rates in terms of population and employment from 2019 to 2031 are tabulated in **Table 4.2**.

Table 4.2 2019-Based Planning Data from 2019 to 2031

Tin Shui Wai District									
_		Average							
Data	2019	2026	2031	Annual Growth Rate					
Population	279,950	283,250	276,050	-0.14%					
Employment	35,050	33,100	31,950	-0.92%					
Total	315,000	315,000 316,350 308,000							

^{**}Due to the social movement in 2019 and COVID in 2020, the traffic flow will not be reliable and hence the growth rate will only take into account from 2016 to 2018

^{***}As the traffic flow listed in the designated ATC stations are predicted, yet the flow will not be reliable and will not take it into the account.

Traffic Impact Assessment Report

We commit We deliver

Adopted Growth Rate

- 4.2.4 A.A.D.T. of ATC indicates that the traffic flow of the local road network has an average annual growth rate of $\pm 0.72\%$ from year 2012 to year 2018.
- 4.2.5 Whilst, the planning data indicates that the population and employment data of the study area are expected to grow with an average annual growth rate of -0.14% and -0.92% respectively from 2019 to 2031.
- 4.2.6 Therefore, the annual growth rate <u>+0.72%</u> p.a. has been adopted for projecting traffic forecasts from year 2022 to year 2031.

4.3 Traffic Generations of Planned Adjacent New Developments

4.3.1 To fully reflect the growth traffic, trip generation of the future vicinity developments have been taken into consideration. The planned development is detailed in **Table 4.3**, shows the detailed location in **Figure 4.1**.

 Table 4.3
 Planned Adjacent Developments in the Vicinity

Planning Application No.	Development Site	Site area	Applied use	Use	Total floor area	Development Parameter
A/TSW/64	Tin Shui Wai Planning Area 33 (Tin Shui Wai Town Lot 23)	18,232 m ²	Residential development	Domestic	91,051 m ²	1,938 Flats
A/TSW/77	Tin Shui Wai Lot		Proposed wholesale conversion of an	Domestic	55,668 m ²	1,102 Flats
A/1SW///	Territories	No. 4, New Territories 27,900 m ² existing hotel for "flat" and permitted commercial use		Non- domestic	52,395 m ²	/
,	Proposed Public Housing		Dublic Henrica	Domestic	403,215 m ²	9,500 Flats
/	Development near Tin Shui Wai		Public Housing	Non- domestic	88,885 m ²	/

Traffic Impact Assessment Report

We commit We deliver

4.3.2 The estimation on trip generations and attractions of the adjacent planned developments is shown in **Table 4.4**.

Table 4.4 Estimated Trip Generations and Attractions of Adjacent Developments

				Trip F	Rates	
Development	Average Fl	lat Size m²	Weekda Pea	•	Weekday PM Peak	
Type			Gen.	Att.	Gen	Att.
				pcu/	hr	
Private Housing	60	m^2	0.0718	0.0425	0.0286	0.0370
Private Housing	70	$\overline{m^2}$	0.0888	0.0515	0.0356	0.048
Private Housing	100	m^2	0.1887	0.0942	0.0862	0.1214
Private Housing	120	m^2	0.2246	0.1157	0.1068	0.1468
Public Housing	40	m^2	0.0432	0.0326	0.0237	0.0301
Commercial	/		0.2296	0.2434	0.31	0.3563
Hotel		0.1329	0.1457	0.1290	0.1456	
Kindergarten		2.4444 (1)	3.1111 ⁽¹⁾	2.6667 ⁽¹⁾	0.7778(1)	
G/IC		15(1)	15(1)	15(1)	15(1)	
			Trip Rates			
Planning Application No.	Development Site	Uses	Weekda Pea	•		lay PM ak
			Gen.	Att.	Gen.	Att.
A/TSW/64	Tin Shui Wai Planning Area 33 (Tin Shui Wai TL 23)	Domestic	139	82	55	72
	Tin Shui Wai Lot No.	Domestic (Proposed use)	96	56	39	53
A/TSW/77	4, New Territories Proposed use	Non-domestic (Proposed use)	13	19	23	27
	Existing use	Hotel (Existing use)	146	161	142	170
		Net Change	0	0	0	0
	Proposed Public	Domestic	410	310	225	286
	Housing Development near Tin Shui Wai	Non-domestic	83	97	94	62
	Total		632	489	374	420

Note:

(1) As no specific trip rates lists in the TPEDM for both GIC and kindergarten use, the estimation of the trip related to the proposed development based on in-house surveys and approved planning applications which conducted with reference to other kindergarten and G/IC facilities.

Traffic Impact Assessment Report

We commit We deliver

4.3.3 The above-mentioned traffic flows were added to the traffic flows to obtain the reference traffic flows as described in Section 4.4.

4.4 Reference Traffic Flow in Year 2032

4.4.1 The reference traffic flow is estimated by applying the adopted growth rate to the observed traffic flow in the current year, and the 2032 reference traffic flows for Junction A to C can be computed with the following calculation:

4.4.2 The 2032 reference traffic flows at surrounding critical junctions are shown in **Figure 4.2**.

4.5 Traffic Generations of the Proposed Development

- 4.5.1 As the use of RCHE does not specify in the latest Transport Planning & Design Manual (TPDM), the estimation of the traffic trips related to the RCHE is based on the in-house survey in the Tin Shui Wai District and summarised in the **Table 4.5**.
- 4.5.2 While for the traffic generation and attraction of the proposed development of the senior hostel, reference has been made to the trip generation rates as stipulated in Volume 1 Chapter 3 Appendix C Table 1 of the latest T.P.D.M. published by Transport Department. The adopted trip rates are also summarized in below **Table 4.5**.
- 4.5.3 Based on the adopted trip rate listed above and the development parameters in Table 2.1, the trip generated and attracted by the proposed development are estimated and summarized in the **Table 4.5**

Traffic Impact Assessment Report

We commit We deliver

Table 4.5 Adopted Trip Rate and Trips of Proposed Development

rable 4.5 Adopted 111p Rate and 111ps of 110posed Development										
Senior Hostel										
				Trips	Rates			Tr	ips	
Use	Average Flat Size	No. of Flats	Pe	ay AM ak ar/flat)	Pe	lay PM ak ar/flat)	Weekd Pe (pcu		Weekd Pe (pcu	
	(sq. m.)	Flats	Gen.	Att.	Gen.	Att.	Gen.	Att.	Gen.	Att.
Private Housing: High-Density	FS ≤ 60	9	0.0718	0.0425	0.0286	0.0370	1	1	1	1
	Total	al		Sub-T	Total		1	1	1	1
				RCI	HE					
				Trips	Rates			Tr	ips	
Use	No of	beds	Pe	Weekday AM Weekday PM Peak Peak (pcu/hr/bed) (pcu/hr/bed)			ay AM ak ı/hr)		ay PM ak /hr)	
			Gen.	Att.	Gen.	Att.	Gen.	Att.	Gen.	Att.
RCHE	420 0.86			0.6835	0.04317	0.05755	37	29	19	25
	Sub-Total 37 29 19 25								25	
Total 38 30 20 26										

4.6 Traffic Forecast for Design Year 2032

4.6.1 The net traffic trips of the proposed development, which is shown in the Figure 4.2, is then superimposed onto the year 2032 reference traffic flow (without the proposed development) as:

2032 Design	2032 Reference	Duanagad
Traffic Flows	Traffic Flows	Proposed
(with proposed	= (without proposed	- Development
development)	development)	Traffic Flows

4.6.2 The 2032 design traffic flows at surrounding critical junctions are shown in **Figure 4.3**.

Traffic Impact Assessment Report

We commit We deliver

4.7 Operational Assessment

4.7.1 To assess traffic impacts due to the proposed development, operational assessment of the critical junctions identified in **Chapter 3** are carried out for both the reference (without the proposed development) and the design scenario (with the proposed development) in year 2032. The results are summarized in **Table 4.6**.

Table 4.6 Operational Performance of Key Junctions in Year 2032

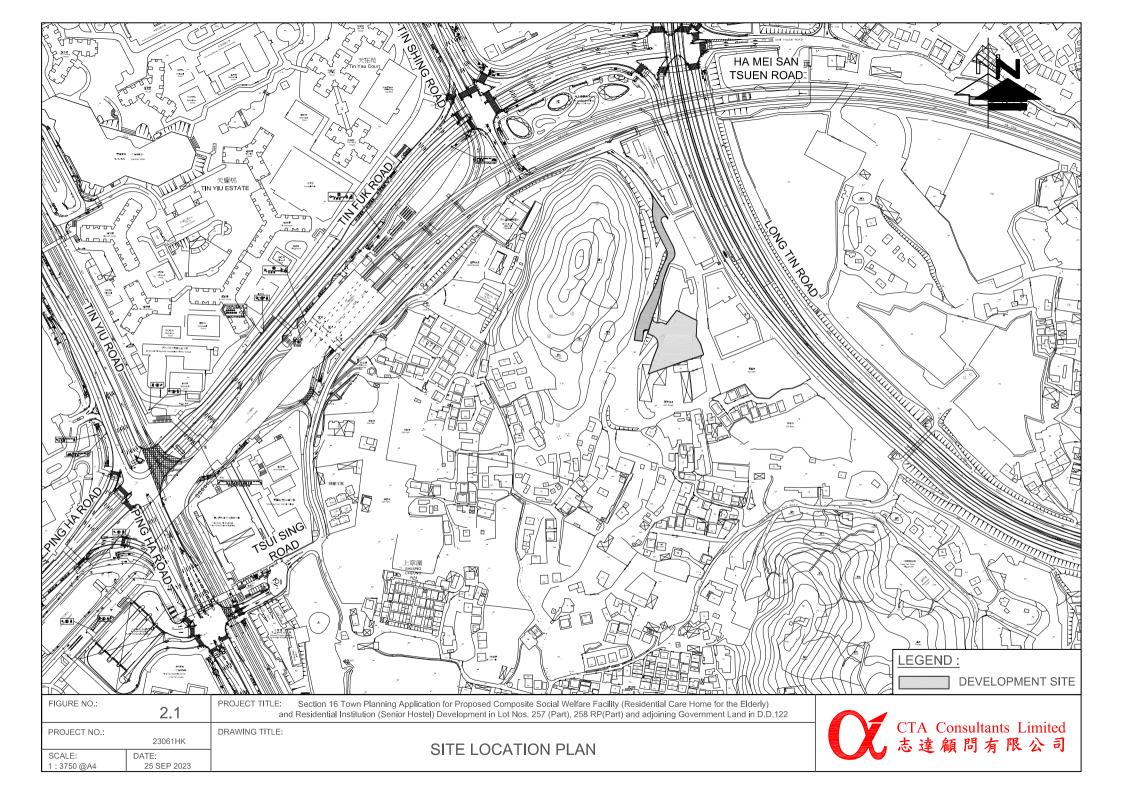
				Year 2032	RC/RFC	
Ref.	Junction	Method of Control (1)	Reference (without the develop	e proposed	the pro	nario (with oposed pment)
			AM Peak	PM Peak	AM Peak	PM Peak
A	Tin Fuk Road/ Tin Shing Road	Signal	36%	64%	30%	59%
В	Ping Ha Road/ Tsui Sing Road	Signal	108%	156%	105%	152%
С	Tsui Sing Road/ Tin Shing Road	Priority	0.27	0.34	0.28	0.35

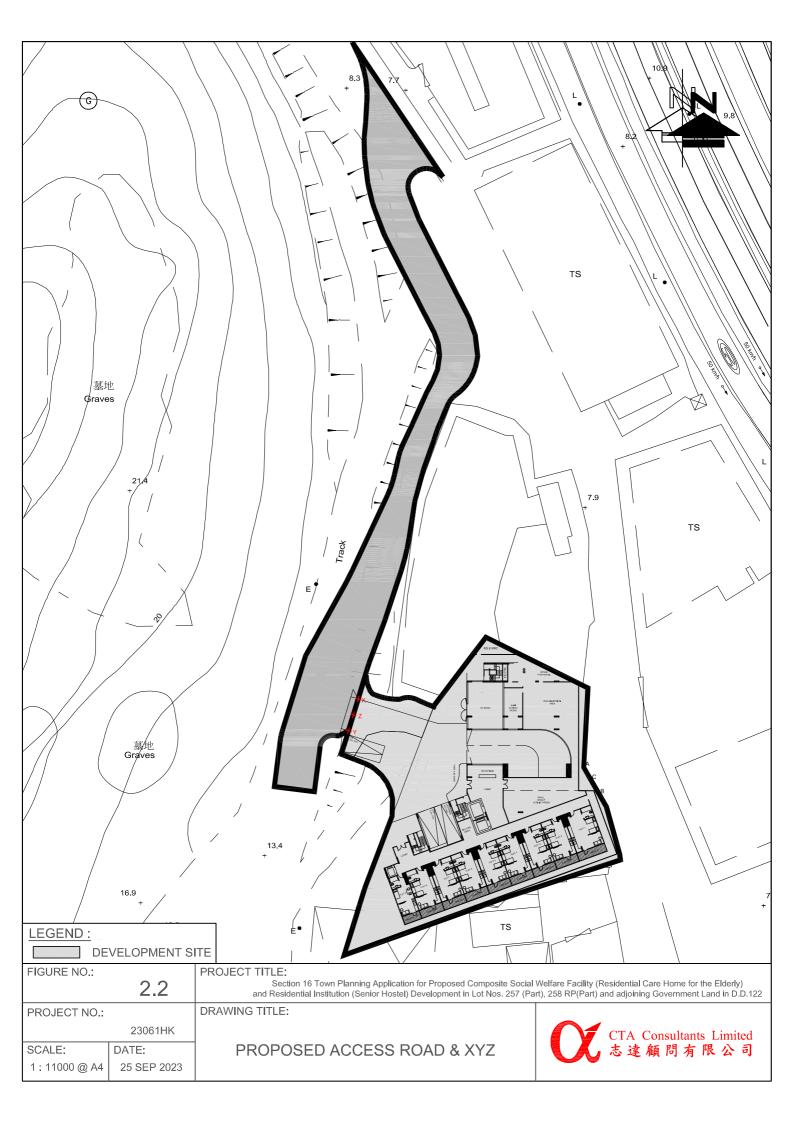
Notes: (1) RC = Reserve Capacity for Signalized Junction

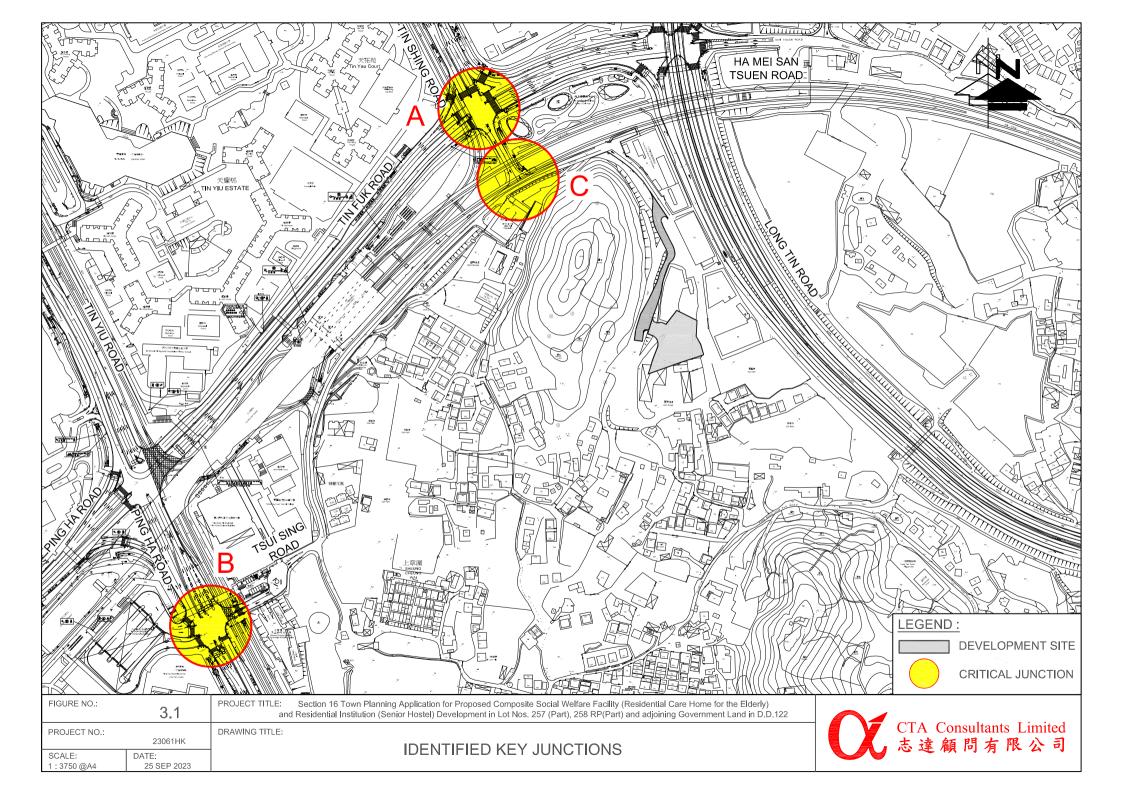
RFC = Ratio of Flow to Capacity for Priority Junction

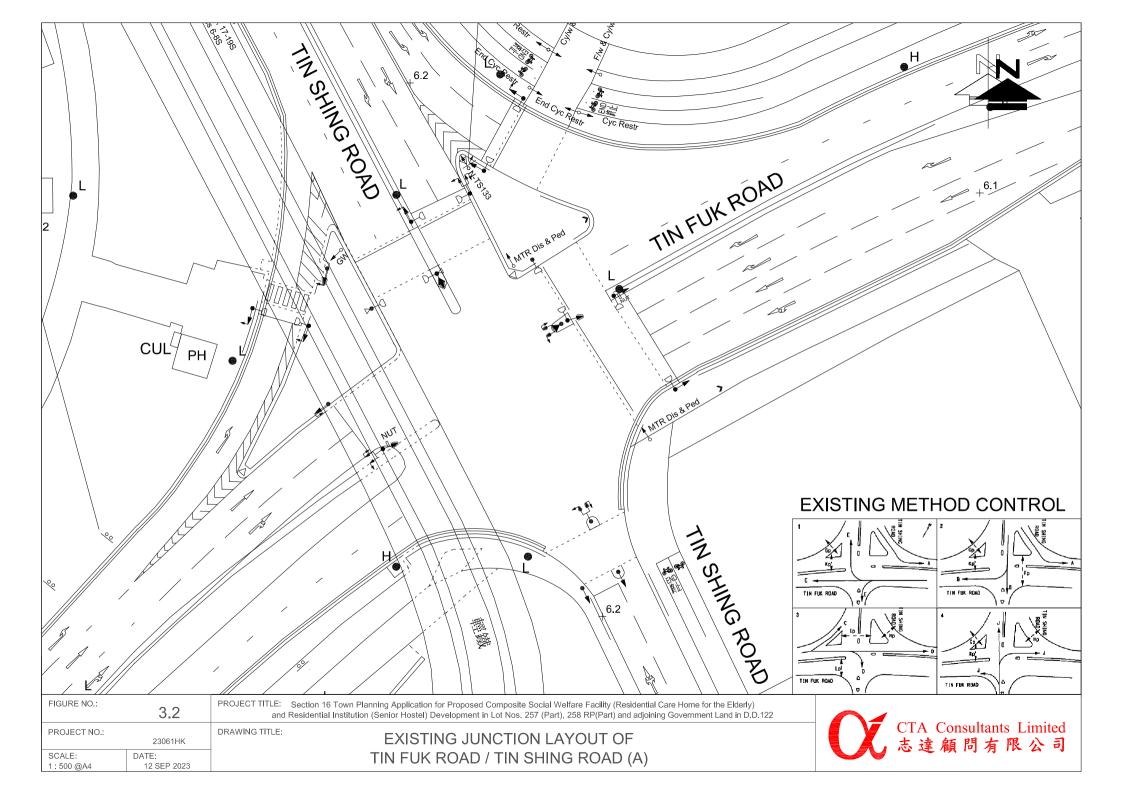
4.7.2 Based on the assessment results given in **Table 4.6**, all key junctions would operate with ample capacities in both reference and design scenarios in year 2032.

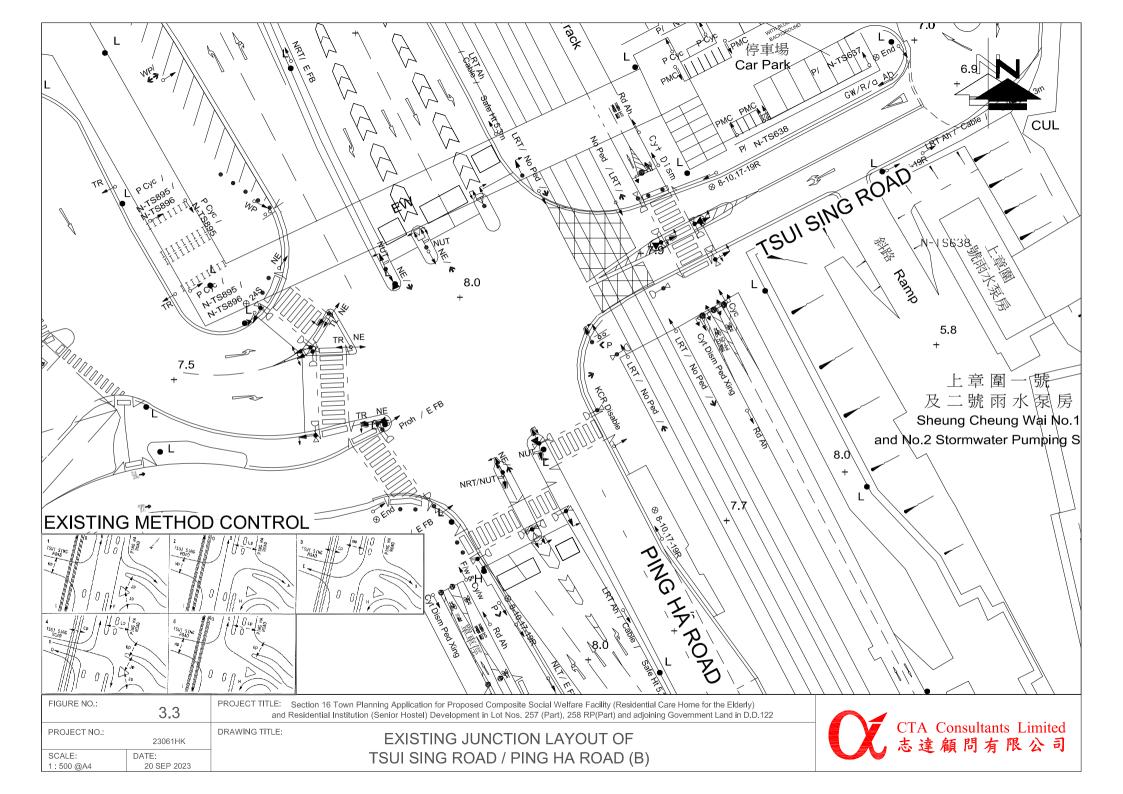
We commit We deliver

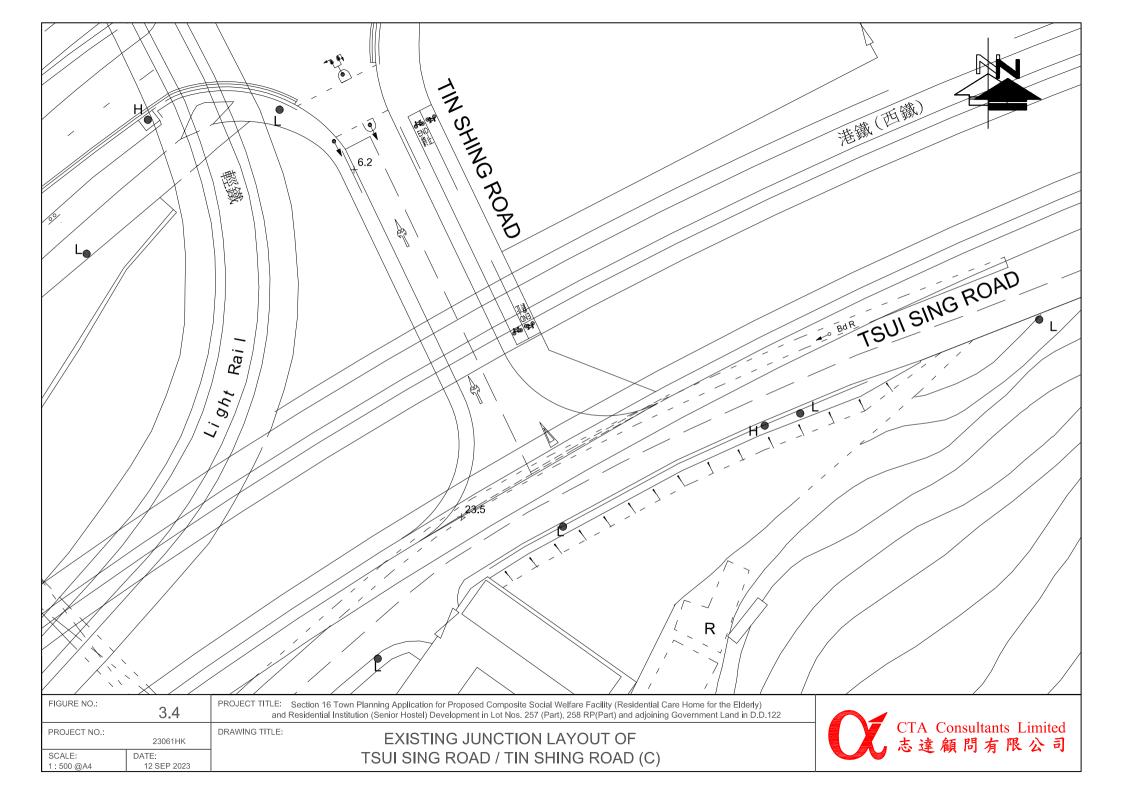

5. SUMMARY AND CONCLUSION

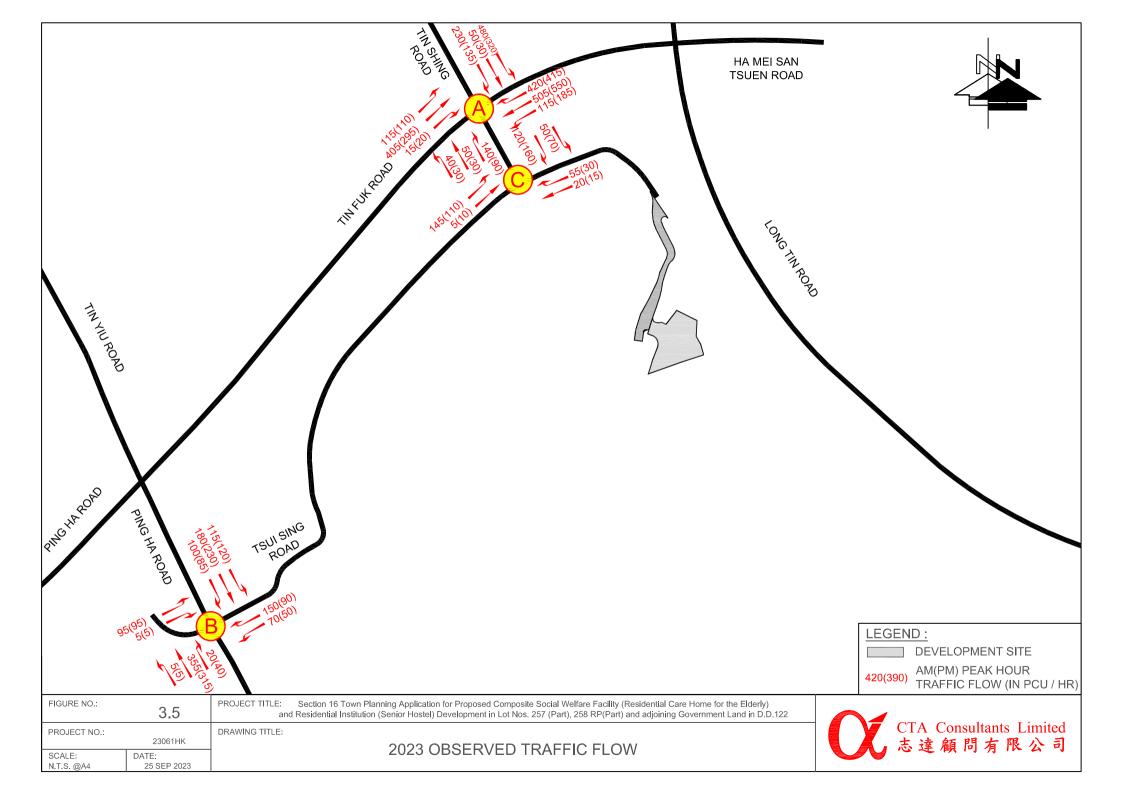

5.1 Summary

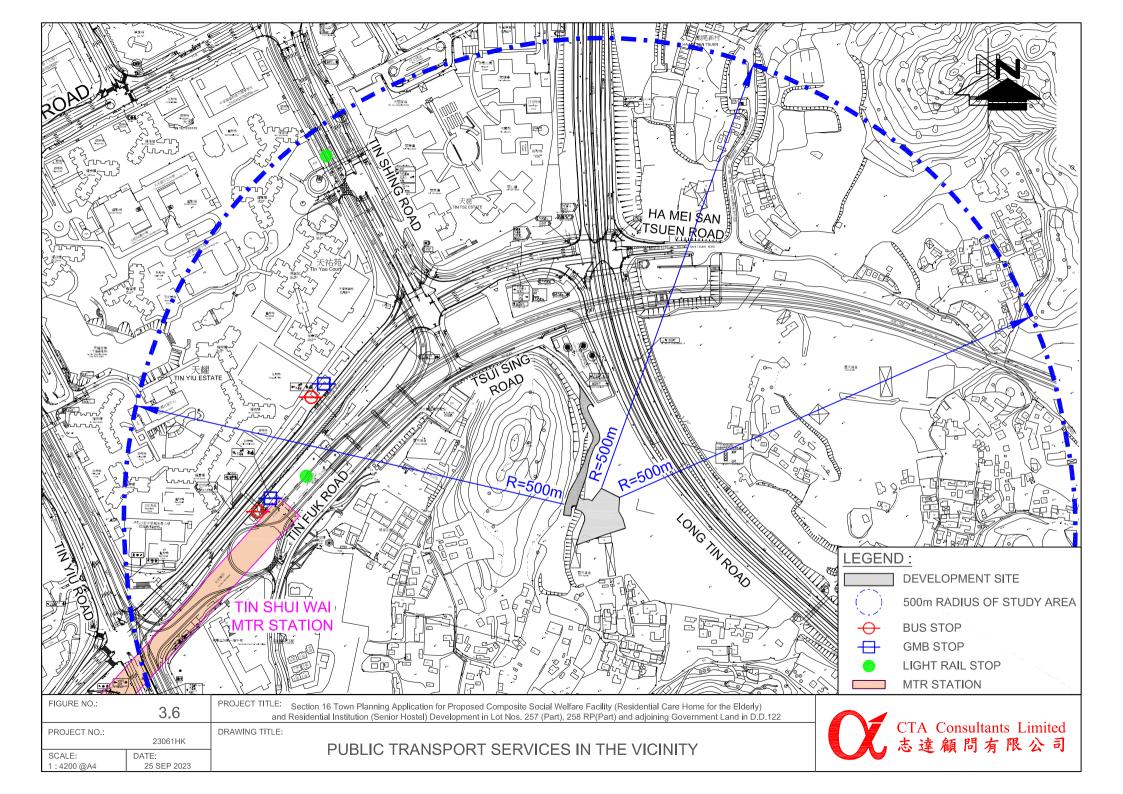

- 5.1.1 CTA Consultants Limited (CTA) is commissioned as the traffic consultant to prepare the Traffic Impact Assessment (TIA) and technical justifications in supporting the S16 Town Planning Application for proposed composite social welfare facility (residential care home for the elderly) and residential institution (senior hostel) development in Lots 257 (part), 258 RP (part) and adjoining government land in DD 122.
- 5.1.2 To appraise the existing traffic condition, a vehicular survey in the form of manual classified count was conducted at the surrounding road network of the proposed development. Current operational performance of the critical junctions has been assessed with the observed traffic flow. The results reveal that all critical junctions are at present operating within its capacities.
- 5.1.3 Assessment of operational performance of the critical junctions indicates that all critical junctions will still operate within their capacities in both reference and design scenarios in year 2032.
- 5.1.4 As the traffic trips of both committed planning and proposed development do not produce significant impact on the surrounding road network. Therefore, the application is supported from the traffic points of view.

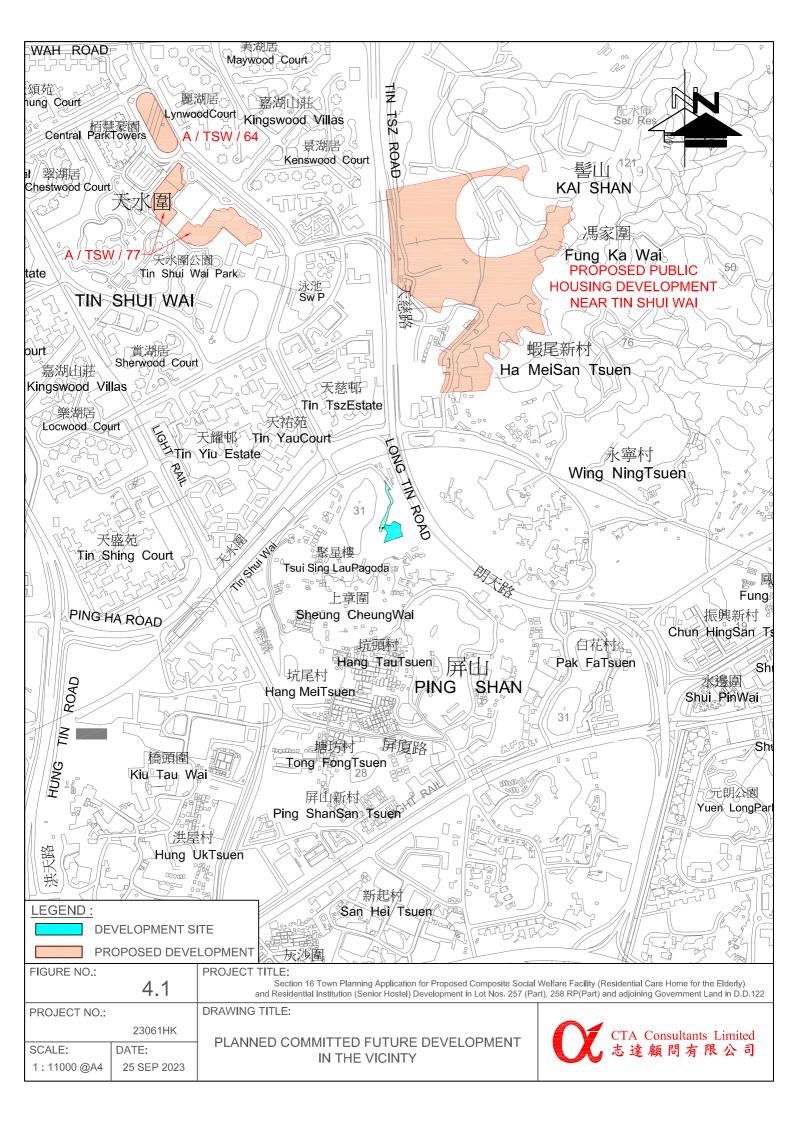

5.2 Conclusion

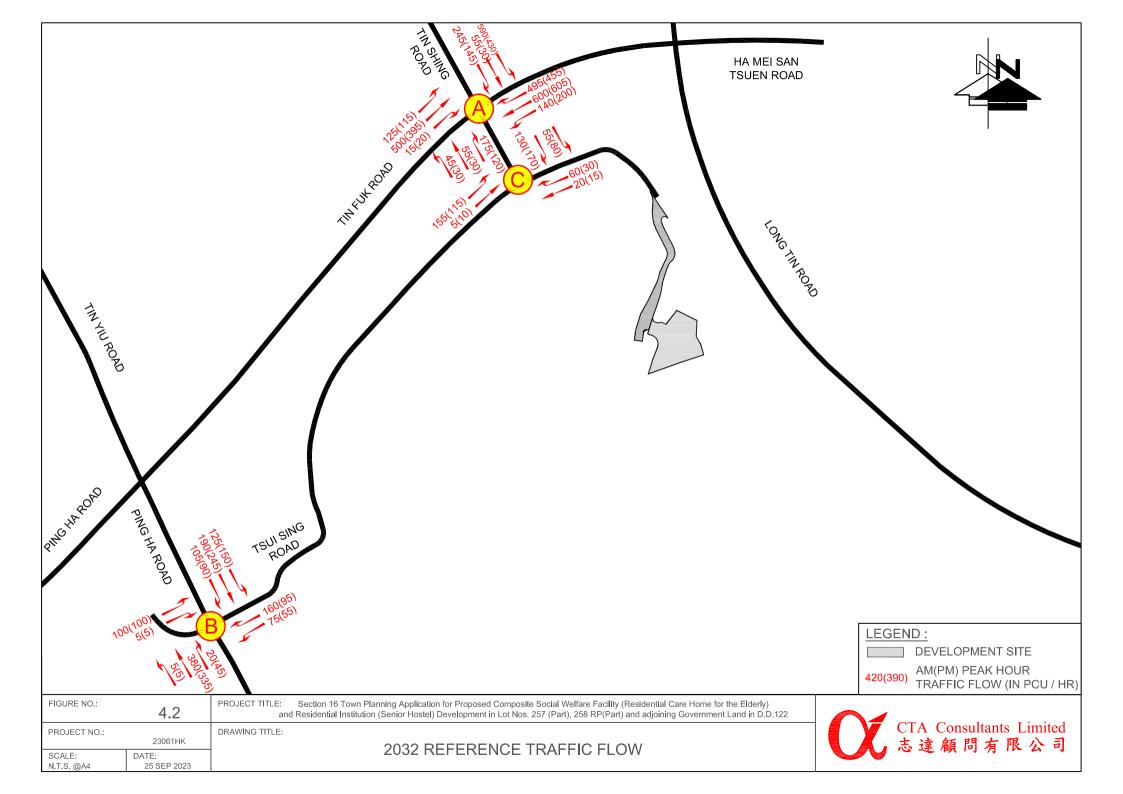

- 5.2.1 Traffic Impact Assessment (TIA) study indicates that no adverse traffic impact will be induced by the proposed development.
- 5.2.2 Therefore, the proposed residential development at Lots 257 (part), 258 RP (part) and adjoining government land in DD 122 is reckoned feasible from traffic engineering point of view.

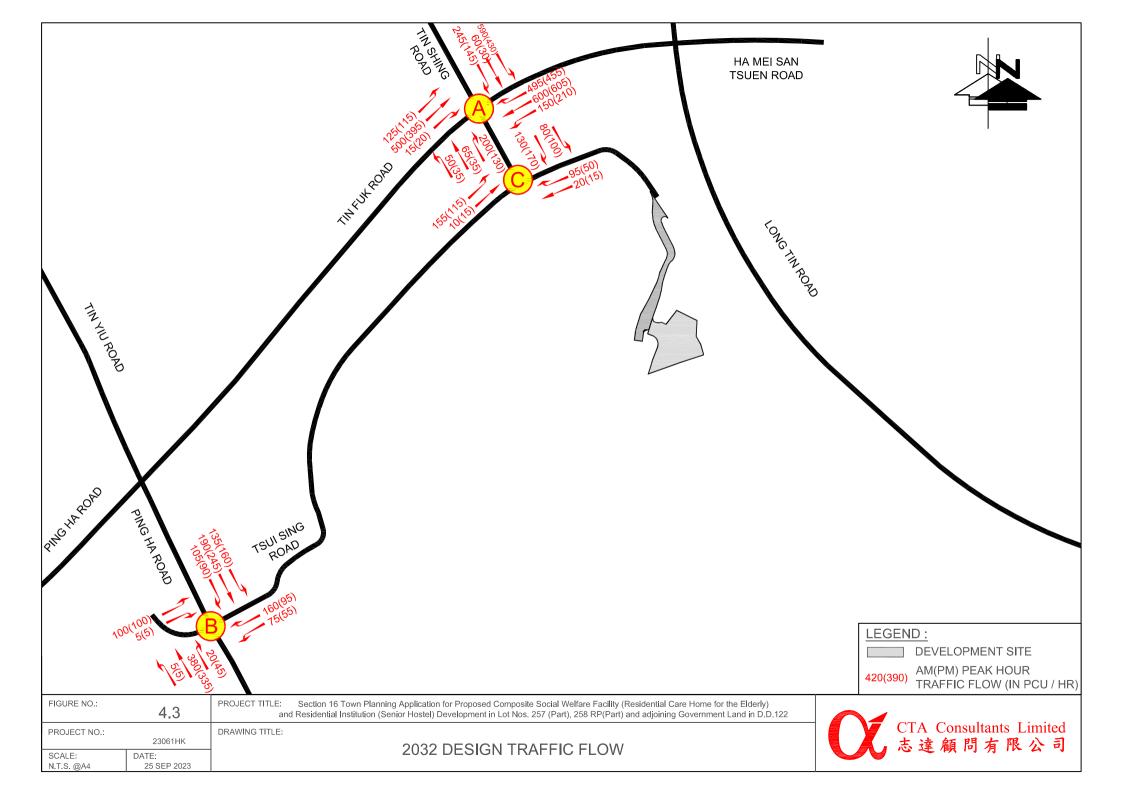


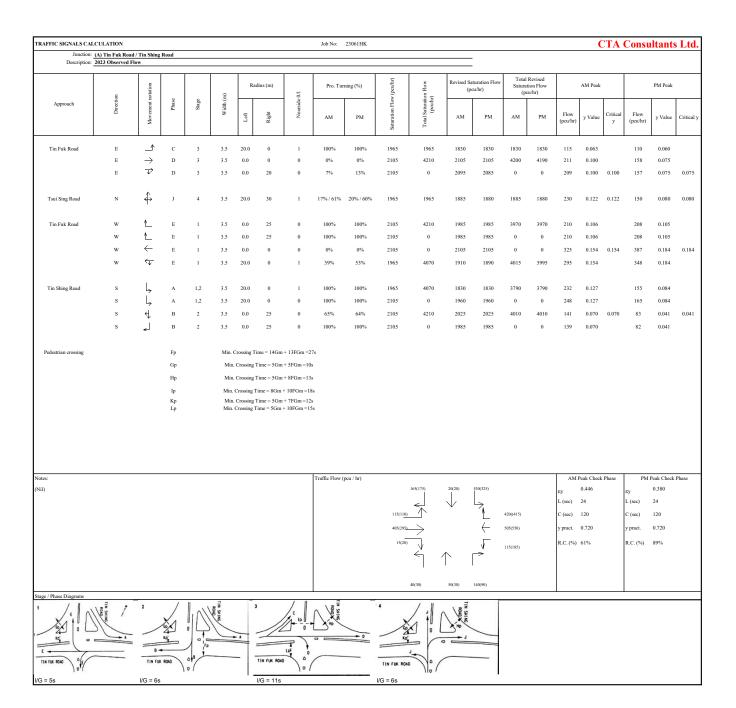


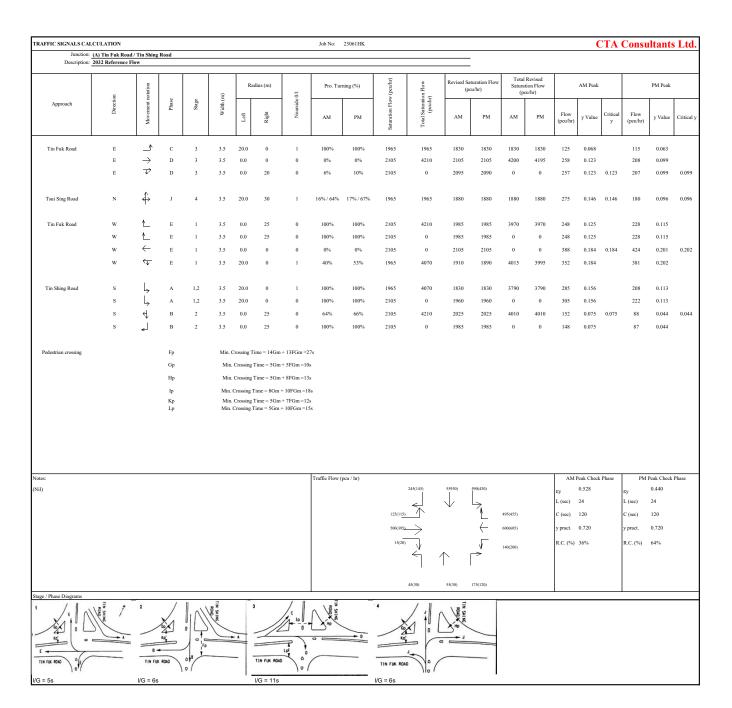


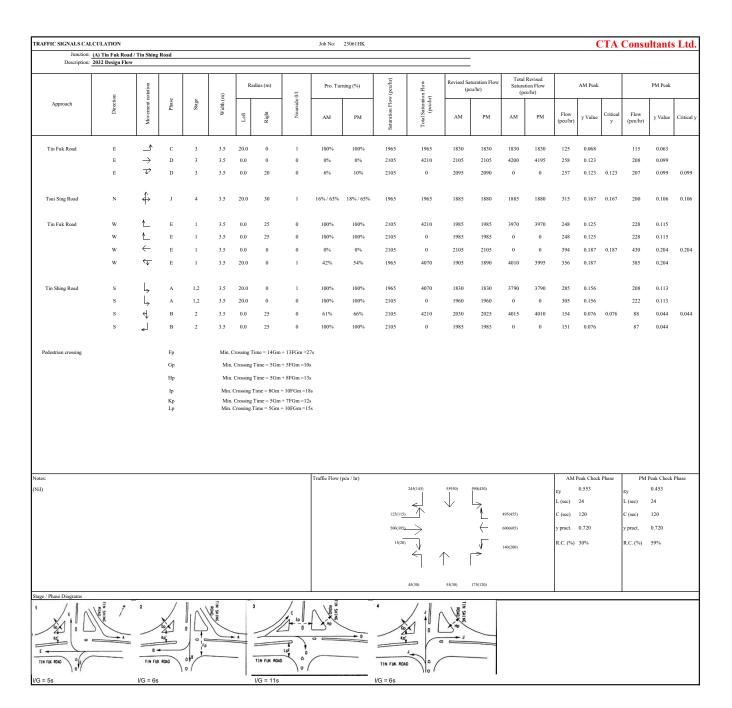











We commit We deliver

APPENDIX 1

JUNCTION CALCULATION SHEETS

RAFFIC SIGNALS CA	(B) Ping Ha Road	Teni Sine I	Pond						Job No:	23061HK									JΙΑ	Consu	utants	s Lu
Description	2023 Observed Fl	ow	Koau																			
		1 1							ı		-	1	1		Total	Revised	l					
		lion				Rae	fius (m)		Pro. Tui	ming (%)	Saturation Flow (pcu.hr)	Flow	Revised Sa	turation Flow cu/hr)	Satura	tion Flow		AM Peak			PM Peak	
	tion	t notation	se	9.	Ê	-		Nearside 0/1			ow (p	d Saturation] (pcu/hr)			(pc	cu/hr)						
Approach	Direction	Movement	Phase	Stage	Width (m)		=	earsic			E E	Satura (pcu/					Flow		Critical	Flow		
		Mow				Left	Right	Z	AM	PM	turati	Total 5	AM	PM	AM	PM	(pcu/hr)	y Value	Critical y	(pcu/hr)	y Value	Critic
											S	٦										
Tsui Sing Road	w	₽	D	4	3.5	10.0	12	1	32% / 68%	36% / 64%	1461	1461	1290	1290	1290	1290	220	0.171	0.171	140	0.109	0.10
I sai ong road		V		-	5.5	10.0		•	32,07 00%	30,07,04,0	1401	1401	1270	1270	1270	12,0	220	0.171	0.171	140	0.107	0.10
Tsui Sing Road	E	_1	Н	2,3,5	7.0	20.0	0	1	100%	100%	2315	2315	2155	2155	2155	2155	95	0.044		95	0.044	
	E	\neg	G	5	9.5	0.0	15	0	100%	100%	2705	2705	2460	2460	2460	2460	5	0.002		5	0.002	
	_		-					_									-			-		
Ping Ha Road	N	.→	Е	3	3.5	0.0	15	0	100%	100%	2105	2105	1915	1915	1915	1915	20	0.010		40	0.021	
ring ria Koad		1	F																			
	N	↑	-	1	3.5	20.0	0	1	3%	3%	1965	4070	1960	1960	4065	4065	174	0.089	0.089	154	0.079	0.0
	N	(F	1	3.5	0.0	0	0	0%	0%	2105	0	2105	2105	0	0	186	0.089		166	0.079	
Ping Ha Road	S	۲,	A	2,3	4.1	0.0	12.5	0	100%	100%	2165	2165	1935	1935	1935	1935	115	0.059	0.059	120	0.062	0.06
	S	\downarrow	В	1,2	3.5	0.0	0	1	0%	0%	1965	4070	1965	1965	4070	4070	87	0.044		111	0.057	
	S	\downarrow	В	1,2	3.5	0.0	0	0	0%	0%	2105	0	2105	2105	0	0	93	0.044		119	0.057	
	S	ل	D	4	4.0	15.0	0	1	100%	100%	2015	2015	1830	1830	1830	1830	100	0.055		85	0.046	
Pedestrian crossing			Np		Min	. Crossing	Time = 5Gm	+ 8FGm =13s	s													
			Jp		Min	. Crossing	Time = 5Gm	+ 6FGm =11s	s													
			Lp		Min.	. Crossing	Γime = 5Gm +	10FGm =15	is													
			Cp		Min	. Crossing	Time = 7Gm	+ 8FGm =15s														
			Mp				Time = 5Gm															
			Kp		Min	. Crossing	Time = 5Gm	+ 9FGm =14s	3													
ites:									Traffic Flow (pcu/hr)	95(95 <u>)</u> 5(5)	100(85)	180(230)	_	150(90) 70(50)		εy L (sec) C (sec)	Peak Check 0.319 21 100 0.711 123%	Phase	Ey L (sec) C (sec) y pract.	Peak Check 0.249 21 100 0.711 185%	Phase
nge / Phase Diagrams	O Mild of the control	2 TSUI SING ROAD		18 0 Lp 2	RDAG	3 7SUI SIN ROAD	Cp dep	10 mg	dyn	ISUI SING		NEW .	355(315) 6 75U1 51NG ROAD	20(40) #0	PING HA							
	Jp Jp		0/0							0	/	Jp Jp		0 0 "	2							

Junction: (B) Ping Ha Roa Description: 2023 Reference Approach Tsui Sing Road W Tsui Sing Road W Tsui Sing Road R Ping Ha Road N N N Ping Ha Road S S S Pedestrian crossing	wojinou jinou jino	D H G E F F A B B D Npp Lp	4 2,3,5 5 3 1 1 2,3 1,2 4	3.5 7.0 9.5 3.5 3.5 3.5 4.1 3.5 4.0	Rad 10.0 20.0 0.0 20.0 0.0 0.0 15.0	12 0 15 15 0 0 12.5 0 0 0	1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0	Pro. Tu AM 32% / 68% 100% 100% 3% 0% 100% 0%	100% 100% 100% 3% 0% 100% 0%	(40,000) and it more many many many many many many many many	Mold (pipmed) 1461 2315 2705 4070 0 2165 4070	Revised Sa (pt AM 1290 2155 2460 1915 1960 2105	PM 1290 2155 2460 1915 1960 2105 1935 1965	Saturat	Revised ion Flow whr) PM 1290 2155 2460 1915 4065 0	Flow (peu/hr) 235 100 5 20 186 199	0.182 0.046 0.002 0.010 0.095 0.095	0.182	Flow (pcu/hr) 150 100 5 45 164 176	PM Peak y Value 0.116 0.046 0.002 0.023 0.084 0.084	0.116 0.084
Approach By B	$\leftarrow\leftarrow\leftarrow$ \rightarrow	D H G E F F D Np Jp	4 2,3,5 5 3 1 1 2,3 1,2 1,2	3.5 7.0 9.5 3.5 3.5 3.5 3.5 4.1 3.5 3.5	10.0 20.0 0.0 20.0 0.0 0.0 0.0	12 0 15 15 0 0	1 1 0 0 1 0 0 1 1 0 0 1 1	AM 32% / 68% 100% 100% 100% 3% 0% 100% 0%	PM 37% / 63% 100% 100% 3% 0% 100% 0%	1461 2315 2705 2105 1965 2105 2165	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	1290 2155 2460 1915 1960 2105	PM 1290 2155 2460 1915 1960 2105 1935	AM 1290 2155 2460 1915 4065 0	PM 1290 2155 2460 1915 4065 0	235 100 5 20 186 199	y Value 0.182 0.046 0.002 0.010 0.095 0.095	y 0.182	150 100 5 45 164	y Value 0.116 0.046 0.002 0.023 0.084	0.116
Tsui Sing Road W Tsui Sing Road E E Ping Ha Road N N N Ping Ha Road S S S Pedestrian crossing	Average A	D H G E F F D Np Jp	4 2,3,5 5 3 1 1 2,3 1,2 1,2	3.5 7.0 9.5 3.5 3.5 3.5 3.5 4.1 3.5 3.5	10.0 20.0 0.0 20.0 0.0 0.0 0.0	12 0 15 15 0 0	1 1 0 0 1 0 0 1 1 0 0 1 1	AM 32% / 68% 100% 100% 100% 3% 0% 100% 0%	PM 37% / 63% 100% 100% 3% 0% 100% 0%	1461 2315 2705 2105 1965 2105 2165	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	1290 2155 2460 1915 1960 2105	PM 1290 2155 2460 1915 1960 2105 1935	AM 1290 2155 2460 1915 4065 0	PM 1290 2155 2460 1915 4065 0	235 100 5 20 186 199	y Value 0.182 0.046 0.002 0.010 0.095 0.095	y 0.182	150 100 5 45 164	y Value 0.116 0.046 0.002 0.023 0.084	0.116
Tsui Sing Road W Tsui Sing Road E E Ping Ha Road N N N Ping Ha Road S S S Pedestrian crossing	Average A	D H G E F F D Np Jp	4 2,3,5 5 3 1 1 2,3 1,2 1,2	3.5 7.0 9.5 3.5 3.5 3.5 3.5 4.1 3.5 3.5	10.0 20.0 0.0 0.0 20.0 0.0 0.0	12 0 15 15 0 0	1 1 0 0 1 0 0 1 1 0 0 1 1	32% / 68% 100% 100% 100% 3% 0%	37% / 63% 100% 100% 3% 0% 100% 0% 100%	1461 2315 2705 2105 1965 2105 2165	1461 2315 2705 2105 4070 0 2165	1290 2155 2460 1915 1960 2105	1290 2155 2460 1915 1960 2105	1290 2155 2460 1915 4065 0	1290 2155 2460 1915 4065 0	235 100 5 20 186 199	0.182 0.046 0.002 0.010 0.095 0.095	y 0.182	150 100 5 45 164	0.116 0.046 0.002 0.023 0.084	0.116
Tsui Sing Road E E Ping Ha Road N N N Ping Ha Road S S S S Pedestrian crossing	$\exists $	H G E F F A B D Np	2,3,5 5 3 1 1 2,3 1,2	7.0 9.5 3.5 3.5 3.5 4.1 3.5 4.0	20.0 0.0 0.0 20.0 0.0 0.0	0 15 15 0 0	1 0 0 1 0	100% 100% 100% 3% 0% 100%	100% 100% 100% 3% 0% 100% 0%	2315 2705 2105 1965 2105 2165	2315 2705 2105 4070 0	2155 2460 1915 1960 2105	2155 2460 1915 1960 2105	2155 2460 1915 4065 0	2155 2460 1915 4065 0	100 5 20 186 199	0.046 0.002 0.010 0.095 0.095		100 5 45 164	0.046 0.002 0.023 0.084	
Ping Ha Road N N N Ping Ha Road S S S S Pedestrian crossing	$ \uparrow \qquad \uparrow \qquad \downarrow \qquad $	G E F A B D Np	3 1 1 2,3 1,2	9.5 3.5 3.5 3.5 4.1 3.5 3.5 4.0	0.0 0.0 20.0 0.0 0.0 0.0	15 0 0 12.5 0	0 1 0 0 1	100% 100% 3% 0% 100% 0%	100% 100% 3% 0% 100% 0%	2705 2105 1965 2105 2165	2705 2105 4070 0	2460 1915 1960 2105	2460 1915 1960 2105	2460 1915 4065 0	2460 1915 4065 0	5 20 186 199	0.002 0.010 0.095 0.095	0.095	5 45 164	0.002 0.023 0.084	0.084
Ping Ha Road N N N Ping Ha Road S S S S Pedestrian crossing	^	E F A B D Np	3 1 1 2,3 1,2	3.5 3.5 3.5 4.1 3.5 3.5 4.0	0.0 20.0 0.0 0.0 0.0	15 0 0 12.5 0	0 1 0	100% 3% 0% 100%	100% 3% 0% 100%	2105 1965 2105	2105 4070 0 2165	1915 1960 2105	1915 1960 2105	1915 4065 0	1915 4065 0	20 186 199	0.010 0.095 0.095	0.095	45 164	0.023 0.084	0.084
Ping Ha Road S S S S Pedestrian crossing		F A B B D Np	1 1 2,3 1,2	3.5 3.5 4.1 3.5 3.5 4.0	20.0 0.0 0.0 0.0 0.0	0 0 12.5 0	1 0 0	3% 0% 100% 0%	3% 0% 100% 0%	1965 2105 2165	4070 0 2165	1960 2105 1935	1960 2105 1935	4065 0 1935	4065 0 1935	186 199	0.095 0.095	0.095	164	0.084	0.084
Ping Ha Road S S S Pedestrian crossing		F A B D Np	1 2,3 1,2 1,2	3.5 4.1 3.5 3.5 4.0	0.0 0.0 0.0 0.0	0 12.5 0	0 0 1	0% 100% 0%	0% 100% 0%	2105 2165	0 2165	2105 1935	2105 1935	0 1935	0 1935	199	0.095	0.095			0.084
Ping Ha Road S S S S Pedestrian crossing	↓ ↓	A B B D	2,3 1,2 1,2	4.1 3.5 3.5 4.0	0.0 0.0 0.0	12.5 0 0	0	100%	100%	2165	2165	1935	1935	1935	1935				176		
S S S	\downarrow	B B D	1,2	3.5 3.5 4.0	0.0	0	1	0%	0%							125					
S S	\downarrow	B D Np Jp	1,2	3.5 4.0	0.0	0				1965	4070	1965	1065	4070	1070		0.065	0.065	150	0.078	0.078
S Pedestrian crossing		D Np Jp		4.0			0								4070	92	0.047		118	0.060	
		Jp		Min			1	100%	0% 100%	2105 2015	0 2015	2105 1830	2105 1830	0 1830	0 1830	98 105	0.047 0.057		127 90	0.060	
		Jp				Γime = 5Gm +	. erc 12														
des:						Fime = 5Gm +															
des:						ime = 5Gm +															
etce:		Ср				Γime = 7Gm +															
otes:		Mp Kp		Min	. Crossing	Γime = 5Gm +	+ 7FGm =12s														
an)								Traffic Flow (peu/hr)	100(100 <u>)</u> 5(5)		190(245)		160(95) 75(35)		Ey L (sec) C (sec)	Peak Check 0.342 21 100 0.711 108%		Ey L (sec) C (sec) y pract.	Peak Check 0.277 21 100 0.711 156%	Phase
age / Phase Diagrams	2	##° / 4	1 0 to 1 3		3	//// /40	//ın /=			/ / / O LO	AH O	5 /) to = 9	_						
	TSUI SING ROAD NO!	0 0			TSUI SING	0 0			SUI SING	// 00	KD /	TSUI SING ROAD NP/		See A							

	LCULATION								Job No:	23061HK								(TΑ	Consu	ıltants	Ltd.
Junction: Description:	(B) Ping Ha Road/ 2023 Design Flow	Tsui Sing F	Road											_								
Destipuoi	2020 Design Flow													-								
	uo	notation			(ii)	Ra	lius (m)	1/0:	Pro. Tu	ning (%)	w (pcu/hr)	ion How		aturation Flow cu/hr)	Saturat	Revised tion Flow tu/hr)		AM Peak			PM Peak	
Approach	Direction	Movement	Phase	Stage	Width (m)	Left	Right	Nearside 0/1	AM	PM	Saturation Flow (peu/hr)	Total Saturation F (pcu/hr)	AM	PM	AM	PM	Flow (pcu/hr)	y Value	Critical y	Flow (pcu/hr)	y Value	Critical y
Tsui Sing Road	w	₽	D	4	3.5	10.0	12	1	32% / 68%	37% / 63%	1461	1461	1290	1290	1290	1290	235	0.182	0.182	150	0.116	0.116
Tsui Sing Road	E	_1	Н	2,3,5	7.0	20.0	0	1	100%	100%	2315	2315	2155	2155	2155	2155	100	0.046		100	0.046	
	E	\neg	G	5	9.5	0.0	15	0	100%	100%	2705	2705	2460	2460	2460	2460	5	0.002		5	0.002	
Ping Ha Road	N		E	3	3.5	0.0	15	0	100%	100%	2105	2105	1915	1915	1915	1915	20	0.010		45	0.023	
	N	\uparrow	F	1	3.5	20.0	0	1	3%	3%	1965	4070	1960	1960	4065	4065	186	0.095	0.095	164	0.084	0.084
	N	ď	F	1	3.5	0.0	0	0	0%	0%	2105	0	2105	2105	0	0	199	0.095		176	0.084	
Ping Ha Road	S	Ļ	A	2,3	4.1	0.0	12.5	0	100%	100%	2165	2165	1935	1935	1935	1935	135	0.070	0.070	160	0.083	0.083
	S	\downarrow	В	1,2	3.5	0.0	0	1	0%	0%	1965	4070	1965	1965	4070	4070	92	0.047		118	0.060	
	s s	↓ 	В	1,2	3.5	0.0	0	0	0% 100%	0%	2105	0	2105	2105	0	0	98	0.047		127 90	0.060	
	S	← J	D	4	4.0	15.0	0	1	100%	100%	2015	2015	1830	1830	1830	1830	105	0.057		90	0.049	
Pedestrian crossing			Np		Mir	n. Crossing	Time = 5Gm	+ 8FGm =13s	i													
			Jp		Mir	n. Crossing	Time = 5Gm	+ 6FGm =11s	i													
			Lp		Min	. Crossing	Γime = 5Gm +	10FGm=15	s													
			Cp				Time = 7Gm															
			Mp Kp				Time = 5Gm - Time = 5Gm -															
otes:									Traffic Flow (peu/hr)	100(10 <u>0</u>)		190(245)	_	160(95) 75(55)		Ey L (sec) C (sec)	Peak Check 0.347 21 100 0.711 105%	Phase	Ey L (sec) C (sec) y pract.	Peak Check 0.283 21 100 0.711 152%	Phase
tage / Phase Diagrams	0 80	2	#° /1	18 1 0 Lp 13	000	3 TSUI SIN	∭ _{co} ∤••	10 10	9	· III a	11/100		s /		LS WE HA	_						
" ## / f //	U 55 4	TSUI SING	HH II				11110						TSUI SING #									
SUI SING	A Jap	200	0 0			ROAD E				SUI SINC		KD / JD	NO/))((

Junctions 8

PICADY 8 - Priority Intersection Module

Version: 8.0.5.523 [19102,19/06/2015] © Copyright TRL Limited, 2023

For sales and distribution information, program advice and maintenance, contact TRL: Tel: +44 (0)1344 770758 email: software@trl.co.uk Web: http://www.trlsoftware.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: JunC.arc8

Path: \CTA_NAS01\Project\CTA Consultants Limited\CTA - Project\23061HK (mwy) - RCHE and Senior Hostel in GIC in Ping

Shan Tin Shui Wai Yuen Long\Cal\2023.09.19 Report generation date: 19/9/2023 16:24:37

- « (Default Analysis Set) 2032 Des Flow, PM
- » Junction Network
- » Arms
- » Traffic Flows
- » Entry Flows
- » Turning Proportions
- » Vehicle Mix
- » Results

Summary of junction performance

		AM				PM		ĺ
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
		A1	- 20	23 Ok	served Flow			
Stream B-C	0.09	5.71	0.08	Α	0.13	6.04	0.11	Α
Stream B-A	0.33	8.99	0.25	Α	0.47	9.75	0.32	Α
Stream C-A	-	-	-	-	-	-	-	-
Stream C-B	0.13	7.50	0.11	Α	0.06	7.00	0.06	Α
Stream A-B	-	-	-	-	-	-	-	-
Stream A-C	-	-	-	-	-	-	-	-
			A1 -	2032	des Flow			
Stream B-C	0.15	6.11	0.13	Α				
Stream B-A	0.38	9.68	0.28	Α				
Stream C-A	-	-	-	-				
Stream C-B	0.24	8.32	0.19	Α				
Stream A-B	-	-	-	-				
Stream A-C	-	-	-	-				
			A1 -	2032	Des Flow			
Stream B-C					0.20	6.47	0.17	Α
Stream B-A					0.53	10.32	0.35	В
Stream C-A					-	-	-	-
Stream C-B					0.11	7.35	0.10	Α
Stream A-B					-	-	-	-
Stream A-C					-	-	-	-
			A1 -	2032	Ref Flow			
Stream B-C	0.10	5.81	0.09	Α	0.15	6.20	0.13	Α
Stream B-A	0.36	9.22	0.27	Α	0.52	10.06	0.34	В
Stream C-A	-	-	-	-	-	-	-	
Stream C-B	0.11	7.45	0.10	Α	0.06	7.02	0.06	Α
Stream A-B	_	-	-	-	-	-	-	-
Stream A-C	-	-	-	-	-	-	-	-

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle.

Run using Junctions 8.0.5.523 at 19/9/2023 16:24:36

[&]quot;D1 - 2023 Observed Flow, AM" model duration: 8:00 - 9:30
"D2 - 2023 Observed Flow, PM" model duration: 8:00 - 9:30

[&]quot;D3 - 2032 Ref Flow, AM" model duration: 8:00 - 9:30

[&]quot;D4 - 2032 Ref Flow, PM" model duration: 8:00 - 9:30

[&]quot;D5 - 2032 des Flow, AM" model duration: 8:00 - 9:30

[&]quot;D6 - 2032 Des Flow, PM " model duration: 8:00 - 9:30

File summary

Title	23061HK
Location	
Site Number	
Date	19/9/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	user
Description	

Analysis Options

Vehicle Length (m)	Do Queue Variations	Calculate Residual Capacity	Residual Capacity Criteria Type	RFC Threshold	Average Delay Threshold (s)	Queue Threshold (PCU)
5.75			N/A	0.85	36.00	20.00

Units

Distance Units	Speed Units	Traffic Units Input	Traffic Units Results	Flow Units	Average Delay Units	Total Delay Units	Rate Of Delay Units
m	kph	PCU	PCU	perHour	S	-Min	perMin

(Default Analysis Set) - 2032 Des Flow, PM

Data Errors and Warnings

No errors or warnings

Analysis Set Details

Name	Roundabout Capacity Model	Description	Locked	Network Flow Scaling Factor (%)	Reason For Scaling Factors
(Default Analysis Set)	N/A			100.000	

Demand Set Details

N	lame	Scenario Name	Time Period Name	Description	Traffic Profile Type	Model Start Time (HH:mm)	Model Finish Time (HH:mm)	Model Time Period Length (min)	Time Segment Length (min)	Single Time Segment Only	Locked
	32 Des ow, PM	2032 Des Flow	FM		ONE HOUR	08:00	09:30	90	15		

Junction Network

Junctions

Junction	Name	Junction Type	Major Road Direction	Arm Order	Junction Delay (s)	Junction LOS
1	(untitled)	T-Junction	Two-way	A,B,C	8.65	Α

Junction Network Options

Driving Side	Lighting
Left	Normal/unknown

3

Arms

Arms

Arm	Arm	Name	Description	Arm Type
Α	Α	(untitled)		Major
В	В	(untitled)		Minor
С	С	(untitled)		Major

Major Arm Geometry

A	ırm	Width of carriageway (m)	Has kerbed central reserve	Width of kerbed central reserve (m)	Has right turn bay	Width For Right Turn (m)	Visibility For Right Turn (m)	Blocks?	Blocking Queue (PCU)
	С	8.00		0.00		2.20	0.00		

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arr	Minor Arm Type	Lane Width (m)	Lane Width (Left) (m)	Lane Width (Right) (m)	Width at give-way (m)	Width at 5m (m)	Width at 10m (m)	Width at 15m (m)	Width at 20m (m)	Estimate Flare Length	Flare Length (PCU)	Visibility To Left (m)	Visibility To Right (m)
В	Two lanes		5.00	5.00								0	0

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	573.534	0.095	0.241	0.152	0.344
1	B-C	748.870	0.105	0.265	-	-
1	C-B	573.963	0.203	0.203	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Traffic Flows

Demand Set Data Options

Default Vehicle Mix	Vehicle Mix Varies Over Time	Vehicle Mix Varies Over Turn	Vehicle Mix Varies Over Entry	Vehicle Mix Source	PCU Factor for a HV (PCU)	Default Turning Proportions	Estimate from entry/exit counts	Turning Proportions Vary Over Time	Turning Proportions Vary Over Turn	Turning Proportions Vary Over Entry
		√	✓	HV Percentages	2.00				✓	✓

Entry Flows

General Flows Data

Arm	Profile Type	Use Turning Counts	Average Demand Flow (PCU/hr)	Flow Scaling Factor (%)
Α	ONE HOUR	✓	130.00	100.000
В	ONE HOUR	✓	270.00	100.000
С	ONE HOUR	✓	65.00	100.000

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Turning Proportions

Turning Counts / Proportions (PCU/hr) - Junction 1 (for whole period)

	То						
From		Α	В	С			
	Α	0.000	115.000	15.000			
	В	170.000	0.000	100.000			
	С	15.000	50.000	0.000			

Turning Proportions (PCU) - Junction 1 (for whole period)

	То					
From		Α	В	С		
	Α	0.00	0.88	0.12		
	В	0.63	0.00	0.37		
	С	0.23	0.77	0.00		

Vehicle Mix

Average PCU Per Vehicle - Junction 1 (for whole period)

		То						
		Α	В	С				
	Α	1.000	1.000	1.000				
From	В	1.000	1.000	1.000				
	С	1.000	1.000	1.000				

Heavy Vehicle Percentages - Junction 1 (for whole period)

	То					
From		Α	В	С		
	Α	0.0	0.0	0.0		
	В	0.0	0.0	0.0		
	С	0.0	0.0	0.0		

Results

Results Summary for whole modelled period

		_		
Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-C	0.17	6.47	0.20	Α
B-A	0.35	10.32	0.53	В
C-A	-	-	-	-
С-В	0.10	7.35	0.11	Α
А-В	-	-	-	-
A-C	-	-	-	-

5

Main Results for each time segment

Main results: (08:00-08:15)

Stream	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
B-C	75.29	74.80	0.00	693.78	0.109	0.12	5.816	Α
B-A	127.98	126.78	0.00	547.88	0.234	0.30	8.526	Α
C-A	11.29	11.29	0.00	-	-	-	-	-
С-В	37.64	37.35	0.00	554.09	0.068	0.07	6.964	Α
A-B	86.58	86.58	0.00	-	-	-	-	-
A-C	11.29	11.29	0.00	-	-	-	-	-

Main results: (08:15-08:30)

Stream	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
B-C	89.90	89.78	0.00	682.36	0.132	0.15	6.073	Α
B-A	152.83	152.48	0.00	542.80	0.282	0.39	9.214	Α
C-A	13.48	13.48	0.00	-	-	-	-	-
С-В	44.95	44.89	0.00	550.24	0.082	0.09	7.123	Α
A-B	103.38	103.38	0.00	-	-	-	-	-
A-C	13.48	13.48	0.00	-	-	-	-	-

Main results: (08:30-08:45)

Stream	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
B-C	110.10	109.92	0.00	666.85	0.165	0.20	6.462	Α
B-A	187.17	186.61	0.00	535.89	0.349	0.53	10.290	В
C-A	16.52	16.52	0.00	-	-	-	-	-
С-В	55.05	54.96	0.00	544.90	0.101	0.11	7.348	Α
A-B	126.62	126.62	0.00	-	-	-	-	-
A-C	16.52	16.52	0.00	-	-	-	-	-

Main results: (08:45-09:00)

Stream	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
B-C	110.10	110.10	0.00	666.65	0.165	0.20	6.467	Α
B-A	187.17	187.16	0.00	535.86	0.349	0.53	10.321	В
C-A	16.52	16.52	0.00	-	-	-	-	-
С-В	55.05	55.05	0.00	544.90	0.101	0.11	7.348	Α
A-B	126.62	126.62	0.00	-	-	-	-	-
A-C	16.52	16.52	0.00	-	-	-	-	-

Main results: (09:00-09:15)

Stream	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
В-С	89.90	90.07	0.00	682.04	0.132	0.15	6.082	Α
B-A	152.83	153.37	0.00	542.75	0.282	0.40	9.258	Α
C-A	13.48	13.48	0.00	-	-	-	-	-
С-В	44.95	45.04	0.00	550.24	0.082	0.09	7.126	Α
A-B	103.38	103.38	0.00	-	-	-	-	-
A-C	13.48	13.48	0.00	-	-	-	-	-

6

Main results: (09:15-09:30)

Stream	Total Demand (PCU/hr)	Entry Flow (PCU/hr)	Pedestrian Demand (Ped/hr)	Capacity (PCU/hr)	RFC	End Queue (PCU)	Delay (s)	LOS
B-C	75.29	75.41	0.00	693.23	0.109	0.12	5.827	Α
B-A	127.98	128.34	0.00	547.76	0.234	0.31	8.592	Α
C-A	11.29	11.29	0.00	-	-	-	-	-
С-В	37.64	37.71	0.00	554.09	0.068	0.07	6.974	Α
A-B	86.58	86.58	0.00	-	-	-	-	-
A-C	11.29	11.29	0.00	-	1	-	-	-