Traffic Impact Assessment

# SECTION 16 PLANNING APPLICATION FOR PROPOSED TEMPORARY OPEN STORAGE OF MODULAR INTEGRATED CONSTRUCTION (MIC) COMPONENTS AND CONSTRUCTION MATERIALS WITH ANCILLARY WORKSHOPS, OFFICE, STAFF CAR PARK AND MACHINERY FOR A PERIOD OF 3 YEARS AT VARIOUS LOTS IN D.D. 107, SHA PO, YUEN LONG, NEW TERRITORIES 

TRAFFIC IMPACT ASSESSMENT

SYSTrA
MVA 0 -

TABLE OF CONTENTS
PAGE

| 1 | INTRODUCTION | 5 |
| :---: | :---: | :---: |
| 1.1 | BACKGround | 5 |
| 1.2 | Study Objectives | 5 |
| 1.3 | Structure of the Report | 5 |
| 2 | EXISTING TRAFFIC CONTEXT | 6 |
| 2.1 | Existing Road Network | 6 |
| 2.2 | Critical Junctions and Road Links | 7 |
| 2.3 | Public Transport Services | 9 |
| 3 | PROPOSED DEVELOPMENT | 10 |
| 3.1 | Proposed Uses and Site Configurations | 10 |
| 3.2 | Vehicular Access Arrangements | 10 |
| 4 | FUTURE TRAFFIC CONDITIONS | 11 |
| 4.1 | Design Year | 11 |
| 4.2 | Reference Traffic Forecasts | 11 |
| 4.3 | Design Traffic Forecasts | 12 |
| 5 | TRAFFIC IMPACT ASSESSMENT | 13 |
| 5.1 | Junction and Road Link Assessment | 13 |
| 6 | SUMMARY AND CONCLUSION | 15 |
| 6.1 | SUMMARY | 15 |
| 6.2 | Conclusion | 16 |

## TABLE OF CONTENTS

Table 2.1 Identified Critical Junctions and Road Links for Assessment ..... 7
Table $2.2 \quad$ Operational Performance of Critical Junctions in 2023 ..... 7
Table $2.3 \quad$ Operational Performance of Critical Road Links in 2023 ..... 8
Table $2.4 \quad$ Existing Public Transport Services in the Vicinity ..... 9
Table $4.1 \quad$ ATC Counting Station Records in the Local Area ..... 11
Table $4.2 \quad$ Population Projection of Tuen Mun/ Yuen Long Other Area from 2021-2027 ..... 11
Table $4.3 \quad$ Estimated Trip Generation for the Proposed Development ..... 12
Table 5.1 Layout and Arrangement of Critical Junctions in 2027 ..... 13
Table 5.2 Operational Performance of Critical Junctions in 2027 ..... 13
Table 5.3 Operational Performance of Critical Road Links in 2027 ..... 14

## APPENDICES

## Appendix A Calculation Details

Appendix B Swept Path Analysis

## LIST OF FIGURES

Drawing 1.1 Site Location
Drawing 2.1 Existing Road Network
Drawing 2.2 Junction Layout of San Tam Road / Fung Kat Heung Road (J1)
Drawing 2.3 Junction Layout of Fung Kat Heung Road / Mei Fung Road (J2)
Drawing 2.4 Junction Layout of Mei Fung Road / Shui Mei Road (J3)
Drawing 2.5 Junction Layout of Shui Mei Road / Castle Peak Road - Tam Mi (J4)
Drawing 2.6 Junction Layout of San Tam Road / Castle Peak Road - Tam Mi (J5)
Drawing 2.7 Observed Traffic Flows (NOV 2023)
Drawing 2.8 Availability of Public Transport Services
Drawing 3.1 Indicative Layout Plan
Drawing 3.2 Ingress / Egress Routes
Drawing 4.1 2027 Reference Traffic Flows
Drawing 4.2 2027 Design Traffic Flows

[^0]
## 1 INTRODUCTION

### 1.1 Background

1.1.1 This Section 16 Planning Application is submitted in support of the proposed temporary open storage of Modular Integrated Construction (MiC) Components and Construction Materials with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at various lots in D.D. 107, Sha Po, Yuen Long, New Territories.
1.1.2 The location of the Application Site is indicated in Figure 1.1, which has a total area of about $9,705 \mathrm{~m}^{2}$. The Proposed Temporary Use aims to serve as a transhipment depot for MiC components and a hub for modular construction materials being used for housing project sites, with the objective of meeting the growing demand for MiC applications while ensuring efficient logistics and seamless implementation of MiC in housing projects.

### 1.2 Study Objectives

1.2.1 In support of the Section 16 Planning Application, a Traffic Impact Assessment (TIA) study is prepared with following key objectives:

- To assess the existing traffic conditions in the vicinity of the Application Site;
- To estimate the likely traffic generated by the Application Site;
- To forecast the future traffic condition in the design year 2027;
- To assess the impacts of traffic generation by the Application Site on the surrounding road network and recommend any improvement measures if necessary.


### 1.3 Structure of the Report

1.3.1 Following this introductory chapter, there are five further chapters.

- Chapter 2 - Existing Traffic Conditions, which describes the existing transport context in the vicinity of the Application Site, including current road network, assessment of existing traffic conditions and availability of public transport services.
- Chapter 3 - The Application Site, which briefs the planning parameters of the Application Site, including the access arrangements and internal transport provisions.
- Chapter 4 - Future Traffic Conditions, which presents the traffic forecasting methodology and estimates the future traffic conditions in the vicinity.
- Chapter 5 - Traffic Impact Assessment, which estimates the traffic generation and assesses the traffic impacts of the proposed uses in the future design year. Recommendation of improvement measures will be included if necessary.
- Chapter 6 - Summary and Conclusion, which summarises the findings of the study and presents the conclusion regarding the potential traffic impact by the Proposed Temporary Use.

[^1] Modular Integrated Construction (MiC) Components and Construction Materials with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at Various Lots in D.D. 107, Sha Po, Yuen Long, New Territories

## 2 EXISTING TRAFFIC CONTEXT

### 2.1 Existing Road Network

2.1.1 The existing road network in the vicinity is shown in Figure 2.1, which comprises the following public roads:

- Castle Peak Road - Tam Mi Section;
- San Tam Road;
- Fung Kat Heung Road;
- Fung Mei Road;
- Shui Mei Road
2.1.2 Castle Peak Road - Tam Mi Section is a single 2-lane carriageway running in north-south direction. This rural road connects Au Tau Interchange in the south for further linkage to Kam Tin and Yuen Long Town Centre.
2.1.3 San Tam Road is a single 2-lane carriageway running in north-south direction. This rural road starts from the junction with Park Yoho in the south and provides access for the local developments to the east of San Tin Highway.
2.1.4 Fung Kat Heung Road is a single track access road running in east-west direction connecting San Tam Road in the west and Fung Kat Heung in the east.
2.1.5 Fung Mei Road is a single track access road running in north-south direction connecting Fung Kat Heung Road in the north and Shui Mei Road in the south.
2.1.6 Shui Mei Road is a single track access road running in east-west direction connecting Castle Peak Road - Tam Mi Section in the west and Shui Mei Tsuen in the east.


### 2.2 Critical Junctions and Road Links

2.2.1 The critical junctions were identified for assessment of traffic impact due to the Application Site. It is listed in Table 2.1 below.

Table 2.1 Identified Critical Junctions and Road Links for Assessment

| Ref. | Junction | Type | Figure No. |
| :---: | :--- | :---: | :---: |
| J1 | San Tam Road / Fung Kat Heung Road | Priority | Figure 2.2 |
| J2 | Fung Kat Heung Road / Mei Fung Road | Priority | Figure 2.3 |
| J3 | Mei Fung Road / Shui Mei Road | Priority | Figure 2.4 |
| J4 | Shui Mei Road / Castle Peak Road - Tam Mi | Priority | Figure 2.5 |
| J5 | San Tam Road / Castle Peak Road - Tam Mi | Signalised | Figure 2.6 |

2.2.2 The location of the above junctions are illustrated in Figure 2.1. The existing junction layout are shown in Drawings 2.2-2.6.
2.2.3 In order to appraise the existing traffic conditions of the above junctions, a traffic survey in form of manual classified count was conducted at a typical weekday in November 2023. The background traffic flows are shown in Drawing 2.7.
2.2.4 Operational performance of the critical junctions have been assessed in accordance with the existing traffic flows and the results are summarised in Table 2.2 below.

Table 2.2 Operational Performance of Critical Junctions in 2023

| Index | Junction | Type | RC $^{(1)} /$ DFC $^{(2)}$ | Operational Performance |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | AM Peak | PM Peak |  |  |
| J1 | San Tam Road / Fung Kat Heung <br> Road | Priority | DFC | 0.28 | 0.27 |
| J2 | Fung Kat Heung Road / Mei <br> Fung Road | Priority | DFC | 0.05 | 0.07 |
| J3 | Mei Fung Road / Shui Mei Road | Priority | DFC | 0.04 | 0.05 |
| J4 | Shui Mei Road / Castle Peak <br> Road - Tam Mi | Priority | DFC | 0.22 | 0.18 |
| J5 | San Tam Road / Castle Peak <br> Road - Tam Mi | Signalised | RC | $48 \%$ | $73 \%$ |

Notes:
(1) $\mathrm{RC}=$ Reserve Capacity;
(2) $\mathrm{DFC}=$ Design Flow/Capacity
2.2.5 All critical junctions in the vicinity are currently operating within capacities. Details of junction assessment are enclosed in the Appendix A.

[^2]Modular Integrated Construction (MiC) Components and Construction Materials with
Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years
2.2.6 The performance of the single track access road in the vicinity of the Application Site have also been reviewed in terms of the Flow to Capacity (V/C) ratio. Table 2.3 below shows that all of the road links are operating with ample capacity.

Table 2.3 Operational Performance of Critical Road Links in 2023

| Index | Road Links | Type $^{(\mathbf{1})}$ | Design <br> Flow <br> (veh/hr) | AM Peak |  | PM Peak Flow (veh/hr) and V/C Ratio |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 800 | 156 | 0.20 | 178 | 0.22 |
| L1 | Fung Kat Heung Road <br> (near San Tam Road) | F2 | Fung Kat Heung Road <br> (near Fung Mei Road) | ST | 100 | 73 | 0.73 |
| L3 | Mei Fung Road <br> (near Fung Kat Heung <br> Road) | ST | 100 | 46 | 0.46 | 56 | 0.84 |
| L4 | Mei Fung Road <br> (near Shui Mei Road) | ST | 100 | 52 | 0.52 | 62 | 0.62 |
| L5 | Shui Mei Road <br> (near Fung Mei Road) | ST | 100 | 76 | 0.76 | 76 | 0.76 |
| L6 | Shui Mei Road <br> (near Castle Peak Road - <br> Tam Mi) | ST | 100 | 74 | 0.74 | 57 | 0.57 |

Notes:
(1) Road Type: ST = Single Track Access Road; RR = Rural Road (Single 2-lanes)

### 2.3 Public Transport Services

2.3.1 Public transport services are available at Castle Peak Road - Tam Mi and San Tam Road near Sha Po Tsuen to the west of the Application Site, whilst most bus and GMB routes are connecting to Yuen Long Town Centre.
2.3.2 There is also a public transport interchange within the comprehensive development of Park Yoho.
2.3.3 The existing public transport services in the vicinity of Application Site are indicated on Figure 2.8 and summarised Table 2.4 below.

Table 2.4 Existing Public Transport Services in the Vicinity

| Bus Route | Destinations |  | Stop $^{(1)}$ |
| :---: | :---: | :---: | :---: |
| KMB 68 | Park Yoho | Yoho Mall II | (C) |
| KMB 68F | Park Yoho | Yuen Long Park | (C) |
| KMB 268M | Park Yoho | Tsuen Wan West Station | (C) |
| KMB 76K | Sheung Shui (Ching Ho) | Long Ping Estate | (A) (B) |
| CTB 976 | Lok Ma Chau (San Tin) | Sai Wan Ho | (A) (B) |
| CTB 976A | Lok Ma Chau (San Tin) | Siu Sai Wan | (A) (B) |
| GMB Route | Destinations |  |  |
| GMB 36 | Tai Shang Wai | Yuen Long (Fook Hong Street) | (A) (B) |
| GMB 37 | Yau Tam Mei | Yuen Long (Fook Hong Street) | (A) (B) |
| GMB 38 | Ha Chuk Yuen | Yuen Long (Fook Hong Street) | (A) (B) |
| GMB 75 | Ha Wan Tsuen | Yuen Long (Fook Hong Street) | (A) (B) |
| GMB 76 | Siu Hum Tsuen | Yuen Long (Fook Hong Street) | (A) (B) |
| GMB 78 | Lok Ma Chau (San Tin) | Pat Heung Road | (A) (B) |
| GMB 603 | Fung Kat Heung | Yuen Long (Fung Cheung Road) | (A) (B) |
| GMB 620 | Park Yoho | Kam Sheung Road Station | (C) |

Notes:
(1) Stop (A): Sha Po Tsuen (Castle Peak Road - Tam Mi) northbound

Stop (B): Sha Po Tsuen (San Tam Road) southbound
Stop (C): Park Yoho (Public Transport Interchange)

## 3 PROPOSED DEVELOPMENT

### 3.1 Proposed Uses and Site Configurations

3.1.1 The Application Site is proposed for "Temporary Open Storage of Modular Integrated Construction (MiC) Components with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years".
3.1.2 It aims to serve as a transhipment depot for MiC components, with the objective of meeting the growing demand for MiC applications while ensuring efficient logistics and seamless implementation of MiC in housing projects. It will also serve as the hub for the modular construction material being used for the project site in order to promote more Green Construction Methodology.
3.1.3 The Application Site comprises an open storage area, providing a secure location for the temporary storage of MiC components and modular construction material, along with ancillary facilities, including three workshops, an office, a staff car park, a guardhouse and machinery (i.e. tower crane and hoisting crane etc) to support its operational needs. The Indicative Layout Plan is shown in Figure 3.1.

### 3.2 Vehicular Access Arrangements

3.2.1 An ingress/egress will be established at the south-west corner abutting Shui Mei Road with about 8 m in width. It is also proposed a setback of 4 m from Shui Mei Road to facilitate the delivery of MiC components and modular construction materials by articulated trailers up to 15 m in length, of which the corresponding swept path analysis is shown in Appendix B.
3.2.2 The operation hours of the proposed uses will be restricted to from 08:00 to 19:00 (Monday to Saturday, excluding Sunday and Public Holidays). Advanced reservation will be mandatory for all loading and unloading activities in order to arrange the delivery and collection activities in a more organised manner.
3.2.3 To minimize the potential implications to Shui Mei Road with close proximity to residential developments of Park Yoho, the ingress and egress routes of articulated trailers will adopt an alternative route to San Tam Road via Mei Fung Road and Fung Kat Heung Road as shown in Figure 3.2, which is currently used by heavy vehicles for temporary open storage and industrial uses en-route.
3.2.4 The proposed ancillary office is a two-story structure designed to accommodate about 50 staff members. The office is intended to provide administrative/supporting services to facilitate the seamless transhipment of MiC components.
3.2.5 Ten private car parking spaces are proposed to serve the staff, which is consistent with the number of parking spaces in the previously approved application (No. A/YL-KTN/715). The application site will not open to the public or any unauthorised persons at any time. Only senior-level staffs are allowed to commute to and from work using private vehicles, whereas other staff members will access the application site via public transportation.

[^3]
## 4 FUTURE TRAFFIC CONDITIONS

### 4.1 Design Year

4.1.1 This application is tentatively for a period of 3 years which starts from 2024 and ends in 2027. For conservative purpose, Year 2027 is hence adopted to be the design year.

### 4.2 Reference Traffic Forecasts

## Historical Growth Trend

4.2.1 The Annual Traffic Census (ATC) published by the Transport Department provides a comprehensive record of traffic flows in the territory. The records from the ATC stations in the vicinity of the Application Site for 2016-2022 were summarized in Table 4.1.

Table 4.1 ATC Counting Station Records in the Local Area

| ATC Station No. | Road Name | Average Annual Daily Traffic (A.A.D.T) |  |  |  |  |  |  | Growth Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | $\begin{gathered} 2022 / \\ 2016 \end{gathered}$ |
| 5505 | San Tam Road | 12,590 | 12,390 | 12,700 | 13,330 | 13,420 | 13,960 | 13,540 | +1.2\% |

4.2.2 As indicated in Table 4.1, it can be noted that over the last 6 years, the average growth pattern in the area from 2016 to 2022 has a increase rate of $+1.2 \%$ per annum.

## Population Projection Data

4.2.3 With reference to the Population Distribution Projections published by Planning Department dated March 2021, the population projection of Tuen Mun/Yuen Long Other Area for year 2021 to 2027 are extracted as shown in Table 4.2.

Table 4.2 Population Projection of Tuen Mun/ Yuen Long Other Area from 2021-2027

| Population ${ }^{(1)}$ | Year 2021 | Year 2027 |
| :---: | :---: | :---: |
| Tuen Mun/Yuen Long Other Area | 204,900 | 230,800 |
| Average Growth (p.a.) | $+2.0 \%$ |  |
| (2021-2027) |  |  |

(1) Projections of Population Distribution published by Planning Department dated March 2021
4.2.4 As indicated in Table 4.2, the average growth between 2021 and 2027 can be represented by a growth of $+2.0 \%$ per annum.

## Adopted Growth Rate

4.2.5 Taking account of the historical traffic pattern and the future population projection, a conservative estimation of $\mathbf{+ 2 . 0 \%}$ per annum is adopted for the traffic projection from 2023 to 2027.
4.2.6 The anticipated 2027 reference traffic flows, as presented in Figure 4.1 can be derived by the equation below:

$$
2027 \text { Reference Flows } \begin{aligned}
& =2023 \text { Observed Flows x Growth Factor of } 2.0 \% \text { p.a. for } 4 \text { years } \\
& =2023 \text { Observed Flows x }(1+2.0 \%)^{4}
\end{aligned}
$$

### 4.3 Design Traffic Forecasts

4.3.1 At present, the trip generation rates for Open Storage are not covered by the Transport Planning and Design Manual (TPDM).
4.3.2 Based on the operation of the proposed temporary uses, the vehicular traffic generation and attraction for the Application Site are estimated to be 2 vehicles per hour (each direction) at maximum, assuming a minimum duration of 30 minutes for each vehicle.
4.3.3 Nevertheless, it is also assumed an attraction of 10 private cars (inbound) during the AM peak and a generation of 10 private cars (outbound) during the PM peak for the proposed parking spaces within the Application Site. The estimated trip generation and attraction are summarised in Table 4.3.

Table 4.3 Estimated Trip Generation for the Proposed Development

| The Application Site | Estimated Number of Trips (veh/hr) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AM Peak |  | PM Peak |  |
|  | Generation | Attraction | Generation | Attraction |
| MiC Operation <br> (15m Articulated Trailers) | 2 | 2 | 2 | 2 |
| Staff Parking <br> (Private Cars) | - | 10 | 10 | - |

4.3.4 By superimposing the above development traffic flows and the 2027 reference traffic forecast (without Proposed Development), the design traffic forecasts (with Proposed Development) in 2027 can be derived as below:

2027 Design Flows = 2027 Reference Flows + Estimated Trip Generation
4.3.6 The 2027 AM and PM peak design traffic forecasts (with Proposed Development) are presented in Figure 4.2.

[^4]
## 5 TRAFFIC IMPACT ASSESSMENT

### 5.1 Junction and Road Link Assessment

5.1.1 The existing layouts will be adopted in design year 2027 for the operational assessments of the critical junctions were summarised in Table 5.1.

Table 5.1 Layout and Arrangement of Critical Junctions in 2027

| Ref. | Junction | Type | Layout | Figure No. |
| :---: | :--- | :--- | :--- | :--- |
| J1 | San Tam Road / Fung Kat Heung Road | Priority | Existing | Figure 2.2 |
| J2 | Fung Kat Heung Road / Mei Fung Road | Priority | Existing | Figure 2.3 |
| J3 | Mei Fung Road / Shui Mei Road | Priority | Existing | Figure 2.4 |
| J4 | Shui Mei Road / Castle Peak Road - Tam Mi | Priority | Existing | Figure 2.5 |
| J5 | San Tam Road / Castle Peak Road - Tam Mi | Signalised | Existing | Figure 2.6 |

5.1.2 To assess the traffic impact due to the Application Site, capacity analysis of the identified critical junctions in the study area for both reference and design scenarios in year 2027 has been carried out. The results are summarised and presented in Table 5.2.

Table 5.2 Operational Performance of Critical Junctions in 2027

| Index | Junction | Type | $\begin{aligned} & \mathbf{R C}^{(1)} / \\ & \mathrm{DFC}^{(2)} \end{aligned}$ | Operational Performance |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Reference 2027 <br> (Without Dev.) |  | Design 2027 <br> (With Dev.) |  |
|  |  |  |  | AM Peak | PM Peak | AM Peak | PM Peak |
| J1 | San Tam Road / Fung Kat Heung Road | Priority | DFC | 0.33 | 0.31 | 0.34 | 0.32 |
| J2 | Fung Kat Heung Road / Mei Fung Road | Priority | DFC | 0.05 | 0.07 | 0.06 | 0.08 |
| J3 | Mei Fung Road / Shui Mei Road | Priority | DFC | 0.05 | 0.05 | 0.05 | 0.06 |
| J4 | Shui Mei Road / Castle Peak Road - Tam Mi | Priority | DFC | 0.26 | 0.20 | 0.26 | 0.23 |
| J5 | San Tam Road / Castle Peak Road - Tam Mi | Signalised | RC | 36\% | 60\% | 35\% | 59\% |

Notes:
(1) $\mathrm{RC}=$ Reserve Capacity;
(2) $\mathrm{DFC}=$ Design Flow/Capacity
5.1.3 It can be revealed that the all critical junctions in the vicinity will operate with ample capacity in Year 2027 with or without the proposed open storage.
5.1.4 Based on the design flow of corresponding road type, it can be shown in Table 5.3 below that all of the local road links in the vicinity of will operate in good conditions in year 2027.

Table 5.3 Operational Performance of Critical Road Links in 2027

| Index | Road Links | Type ${ }^{(1)}$ | Design <br> Flow (veh/hr) | 2-way Flow (veh/hr) and V/C Ratio |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Reference 2027 <br> (Without Dev.) |  | Design 2027 <br> (With Dev.) |  |
|  |  |  |  | AM Peak | PM Peak | AM Peak | PM Peak |
| L1 | Fung Kat Heung Road (near San Tam Road) | RR | 800 | 168 | 193 | 172 | 197 |
|  |  |  |  | 0.21 | 0.24 | 0.22 | 0.25 |
| L2 | Fung Kat Heung Road (near Fung Mei Road) | ST | 100 | 80 | 90 | 84 | 94 |
|  |  |  |  | 0.80 | 0.90 | 0.84 | 0.94 |
| L3 | Fung Mei Road (near Fung Kat Heung Road) | ST | 100 | 50 | 60 | 54 | 64 |
|  |  |  |  | 0.50 | 0.60 | 0.54 | 0.64 |
| L4 | Fung Mei Road (near Shui Mei Road) | ST | 100 | 56 | 66 | 60 | 70 |
|  |  |  |  | 0.56 | 0.66 | 0.60 | 0.70 |
| L5 | Shui Mei Road (near Fung Mei Road) | ST | 100 | 83 | 82 | 87 | 86 |
|  |  |  |  | 0.83 | 0.82 | 0.87 | 0.86 |
| L6 | Shui Mei Road (near Castle Peak Road Tam Mi) | ST | 100 | 81 | 61 | 91 | 71 |
|  |  |  |  | 0.81 | 0.61 | 0.91 | 0.71 |

Notes:
(1) Road Type: ST = Single Track Access Road; RR = Rural Road (Single 2-lanes)
5.1.5 Therefore, it can be concluded that the proposed temporary uses at the Application Site would not cause any adverse traffic impact to the surrounding road network from the traffic point-of-view.

## 6 SUMMARY AND CONCLUSION

### 6.1 Summary

6.1.1 This Traffic Impact Assessment (TIA) Report is prepared in support of the Section 16 Planning Application for the proposed temporary open storage of Modular Integrated Construction (MiC) Components and Construction Materials with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at various lots in D.D. 107, Sha Po, Yuen Long, New Territories.
6.1.2 The Application Site has a total area of about 9,705m². The Proposed Temporary Use aims to serve as a transhipment depot for MiC components and a hub for modular construction materials being used for housing project sites, with the objective of meeting the growing demand for MiC applications while ensuring efficient logistics and seamless implementation of MiC in housing projects.
6.1.3 The Application Site comprises an open storage area, providing a secure location for the temporary storage of MiC components and modular construction material, along with ancillary facilities, including three workshops, an office, a staff car park, a guardhouse and machinery (i.e. tower crane and hoisting crane etc) to support its operational needs.
6.1.4 An ingress/egress will be established at the south-west corner abutting Shui Mei Road with about 8 m in width. It is also proposed a setback of 4 m from Shui Mei Road to facilitate the delivery of MiC components and modular construction materials by articulated trailers up to 15 m in length.
6.1.5 The operation hours of the proposed uses will be restricted to from 08:00 to 19:00 (Monday to Saturday, excluding Sunday and Public Holidays).
6.1.6 To minimize the potential implications to Shui Mei Road with close proximity to residential developments of Park Yoho, the ingress and egress routes of articulated trailers will adopt an alternative route via Mei Fung Road and Fung Kat Heung Road, which is currently used by heavy vehicles for temporary open storage and industrial uses en-route.
6.1.7 The proposed ancillary office is a two-story structure designed to accommodate about 50 staff members for administrative/supporting services to facilitate the seamless transhipment of MiC components.
6.1.8 Ten private car parking spaces are proposed to serve the staff, which is consistent with the number of parking spaces in the previously approved application (No. A/YL-KTN/715). The application site will not open to the public or any unauthorised persons at any time. Only senior-level staffs are allowed to commute to and from work using private vehicles, whereas other staff members will access the application site via public transportation
6.1.9 Traffic count surveys were conducted in the surrounding road network of the Application Site. According to the junction and link capacity assessments, it is revealed that the critical junction and all road links at present are operating with ample capacities.

[^5] Modular Integrated Construction (MiC) Components and Construction Materials with
Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at Various Lots in D.D. 107, Sha Po, Yuen Long, New Territories
6.1.10 Year 2027 is adopted to be the design year, which is the end of the proposed used period of this application. The 2027 reference traffic forecasts have been projected from the observed year 2023 with a growth factor of $+2.0 \%$ per annum.
6.1.11 Based on the operation of the proposed temporary uses, the vehicular traffic generation and attraction for the Application Site are estimated to be 2 vehicles per hour (each direction) at maximum, assuming a minimum duration of 30 minutes for each vehicle.
6.1.12 Nevertheless, it is also assumed an attraction of 10 private cars (inbound) during the AM peak and a generation of 10 private cars (outbound) during the PM peak for the proposed parking spaces within the Application Site.
6.1.13 The traffic assessments revealed that the critical junction and all road links in the vicinity will continue to operate with ample capacities upon the design year 2027.

### 6.2 Conclusion

6.2.1 The TIA has demonstrated that the traffic generation by the Application Site can all be absorbed by the external road network, including the junctions and road links.
6.2.2 To facilitate the delivery of MiC components and modular construction materials, the vehicular access arrangements have been optimized with relocated run-in/out and setback from Shui Mei Road. Alternative access routes have also been considered to minimize the potential implications to Shui Mei Road.
6.2.3 Therefore, it can be concluded that the Proposed Open Storage is considered acceptable in view of traffic engineering.

[^6]
## FIGURES















## CALCULATION DETAILS

## Simplified Priority Junction Capacity Calculation



Simplified Priority Junction Capacity Calculation
sYST「A
MV
VA


Simplified Priority Junction Capacity Calculation
sYSTrA
MV
VA $\square$



Junction: $\quad$ J5-Castle Peak Road - Tam Mi/San Tam Road
$\qquad$
Description: Observed 2023

| Description: Observed 2023 |  |  |  |  |  |  |  | Designed By: TSO |  |  |  |  |  |  | hecked B | LHW |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathscr{0} \\ & \stackrel{\overleftarrow{\circ}}{2} \end{aligned}$ | $\begin{aligned} & \stackrel{\otimes}{\overleftarrow{5}} \\ & \text { 心 } \end{aligned}$ | Width (m) | Radius (m) |  |  | Pro. Turning (\%) |  | Revised Saturation Flow (pcu/hr) |  | AM Peak |  |  | PM Peak |  |  |
| Approach |  |  |  |  | ¢ | $\begin{aligned} & \frac{\mathrm{t}}{\overline{0}} \\ & \stackrel{\rightharpoonup}{\mathrm{x}} \end{aligned}$ |  | AM | PM | AM | PM | Flow (pcu/hr) | y Value | Critical y | Flow (pcu/hr) | y Value | Critical y |
| Western Access Road | $\downarrow$ | D | $2$ | $3.500$ | $70$ |  |  |  |  | $2060$ $1920$ | $2060$ | $104$ | $0.050$ |  | $83$ | $0.040$ |  |
| San Tam Road (SB) | $\rightarrow$ | E | 3 | 6.000 | 58 |  |  |  |  | 2160 | 2160 | 35 | 0.016 |  | 30 | 0.014 |  |
|  | $\downarrow$ | E | 3 | 4.000 |  |  |  |  |  | 2155 | 2155 | 391 | 0.181 | 0.181 | 360 | 0.167 |  |
|  | $\ddagger$ | E | 3 | 3.700 |  | 30 |  | 4\% | 4\% | 2120 | 2120 | 384 | 0.181 |  | 355 | 0.167 | 0.167 |
| Castle Peak Road Tam Mi (EB) | $\stackrel{\uparrow}{\downarrow}$ | A | 1 | 3.500 | 28 | 20 |  | 98\% | 100\% | 1865 | 1865 | 5 | 0.003 |  | 5 | 0.003 |  |
|  |  | A | 1 | 3.500 |  |  |  | 1960 |  | 1960 | 245 | 0.125 | 0.125 | 185 | 0.094 | 0.094 |
| Castle Peak Road Tam Mi (NB) | 4 | B | 1,2 | 3.650 | 60 | 30 |  |  | 60\% | 65\% | 1930 | 1930 | 320 | 0.166 |  | 300 | 0.155 |  |
|  |  | C | 2 | 3.650 |  |  |  | 2120 |  |  | 2120 | 299 | 0.141 |  | 254 | 0.120 | 0.120 |
|  |  | C | 2 | 3.650 |  |  |  | 2060 |  |  | 2055 | 291 | 0.141 | 0.141 | 246 | 0.120 |  |

Pedestrian Crossing

| Pedestrian Crossing | Fp | 3 | MI |
| :---: | :---: | :---: | :---: |
|  | Gp | 1,2 | MI |
|  | Hp | 3,1 | MI |
|  | Ip | 3 | MI |
|  | Jp | 2 | MI |
|  | Kp | 3,1 | MI |


Stage / Phase Diagrams


## Simplified Priority Junction Capacity Calculation



Simplified Priority Junction Capacity Calculation
sYSTrA
MV
VA $\square$





| Stage / Phase Diagrams |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | 2. |  |  | $\begin{aligned} & \hline \\ & E \\ & \\ & \\ & -\rightarrow \end{aligned}$ | 4. | 5. |
| AM Critical Case: A,C,E |  |  |  |  |  |  |
| $1 / \mathrm{G}=7 \quad \mathrm{~F}=16$ | $\mathrm{l} / \mathrm{G}=9$ | $\mathrm{G}=18$ | $\mathrm{I} / \mathrm{G}=9$ | $\mathrm{G}=24$ | //G= | I/G= |
| PM Critical Case: $\mathrm{A}, \mathrm{C}, \mathrm{E}$  |  |  |  |  |  |  |
| I/G=7 $\quad \mathrm{G}=14$ | $\mathrm{l} / \mathrm{G}=9$ | $\mathrm{G}=18$ | $\mathrm{I} / \mathrm{G}=9$ | $\mathrm{G}=26$ | $1 / \mathrm{G}=$ | I/G= |

## Simplified Priority Junction Capacity Calculation



Simplified Priority Junction Capacity Calculation


Simplified Priority Junction Capacity Calculation


## Simplified Priority Junction Capacity Calculation

(

| Job Title: | Section 16 Planning Application for Proposed Temporary Workshop and Storage Yard |  |  |
| :--- | :--- | :--- | :--- |
| Junction: | Castle Peak Road - Tam Mei / Shui Mei Road | Designed by: | TSO |
| Scheme: | Design | Job No.: CHK50769210 | Checked by: |
| Lesign Year: 2027 | Date: |  |  |
| Arm A: | Castle Peak Road - Tam Mei (Southbound) | Dec-23 |  |
| Arm B: | Shui Mei Road |  |  |
| Arm C: | Castle Peak Road - Tam Mei (Northbound) |  |  |



Arm B Shui Mei Road

| GEOMETRY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Major Road Width (m) Central Reserve Width (m) Blockage of major road right turn Combined stream on minor arm | W <br> Wcr <br> Y/N? <br> Y/N? | $\begin{gathered} 8.00 \\ 4.00 \\ \mathrm{~N} \\ \mathrm{Y} \end{gathered}$ | Lane widths (m) | $\begin{aligned} & w(b-a) \\ & w(b-c) \end{aligned}$ | $\begin{aligned} & 5.50 \\ & 4.80 \end{aligned}$ |
| Visibility Distances (m) | $\begin{aligned} & \operatorname{Vr}(b-a) \\ & \operatorname{VI}(b-a) \\ & \operatorname{Vr}(b-c) \\ & \operatorname{Vr}(c-b) \end{aligned}$ | $\begin{aligned} & 40 \\ & 70 \\ & 40 \\ & 50 \end{aligned}$ | Calculated Parameters | $\begin{aligned} & D \\ & E \\ & F \\ & Y \end{aligned}$ | $\begin{aligned} & 1.037 \\ & 1.028 \\ & 0.616 \\ & 0.724 \end{aligned}$ |
| ANALYSIS |  |  |  | AM PEAK | PM PEAK |
| TRAFFIC FLOWS (pcu/hr) | q(a-b) $q(a-c)$ <br> $q(b-c)$ <br> f |  |  | $\begin{array}{r} 60 \\ 1255 \\ \\ 110 \\ 1.00 \end{array}$ | $\begin{array}{r} 50 \\ 1090 \\ \\ 105 \\ 1.00 \end{array}$ |
| CAPACITIES (pcu/hr) | $\begin{aligned} & Q(b-a c) \\ & Q(c-b) \end{aligned}$ |  |  | $\begin{array}{r} 419.56 \\ 245.252 \end{array}$ | $\begin{aligned} & 465.3 \\ & 273.6 \end{aligned}$ |
| RFC's | $b-a c$ |  |  | 0.26 | 0.23 |
| RFC |  |  |  | 0.26 | 0.23 |

[^7]Junction: $\quad$ J5-Castle Peak Road - Tam Mi/San Tam Road
$\qquad$
Description: Design 2027

|  |
| :---: |
| Approach |

Western Access Road
San Tam Road (SB)

## Castle Peak Road - Tam Mi (EB)

$$
\begin{aligned}
& \text { Castle Peak Road - } \\
& \text { Tam Mi (NB) }
\end{aligned}
$$

Designed By: TSO
Design Year: 2023
Checked By: LHW $\qquad$
$\qquad$

SWEPT PATH ANALYSIS

Open Storage Area

Open Storage Area



[^0]:    Section 16 Planning Application for Proposed Temporary Open Storage of Modular Integrated Construction (MiC) Components and Construction Materials with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at Various Lots in D.D. 107, Sha Po, Yuen Long, New Territories

[^1]:    Section 16 Planning Application for Proposed Temporary Open Storage of

[^2]:    Section 16 Planning Application for Proposed Temporary Open Storage of

[^3]:    Section 16 Planning Application for Proposed Temporary Open Storage of Modular Integrated Construction (MiC) Components and Construction Materials with
    Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at Various Lots in D.D. 107, Sha Po, Yuen Long, New Territories

[^4]:    Section 16 Planning Application for Proposed Temporary Open Storage of Modular Integrated Construction (MiC) Components and Construction Materials with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at Various Lots in D.D. 107, Sha Po, Yuen Long, New Territories

[^5]:    Section 16 Planning Application for Proposed Temporary Open Storage of

[^6]:    Section 16 Planning Application for Proposed Temporary Open Storage of Modular Integrated Construction (MiC) Components and Construction Materials with Ancillary Workshops, Office, Staff Car Park and Machinery for a Period of 3 Years at Various Lots in D.D. 107, Sha Po, Yuen Long, New Territories

[^7]:    Where VI and Vr are visibility distances to the left or right of the respective streams
    $\mathrm{D}=(1+0.094(\mathrm{w}(\mathrm{b}-\mathrm{a})-3.65))(1+0.0009(\mathrm{Vr}(\mathrm{b}-\mathrm{a})-120))(1+0.0006(\mathrm{VI}(\mathrm{b}-\mathrm{a})-150))$
    $E=(1+0.094(w(b-c)-3.65))(1+0.0009(\mathrm{Vr}(\mathrm{b}-\mathrm{c})-120))$
    $\mathrm{F}=(1+0.094(\mathrm{wc}-\mathrm{b})-3.65))(1+0.0009(\mathrm{Vr}(\mathrm{c}-\mathrm{b})-120))$
    $Y=1-0.0345 \mathrm{~W}$
    $\mathrm{f}=$ proportion of minor traffic turning left
    $Q(b-a c)=Q(b-c) * Q(b-a) /(1-f)^{*} Q(b-c)+f^{*} Q(b-a) \quad$ Capacity of combined streams
    All the above formulas are in accordance to T.P.D.M. Volume 2 Chapter 4 Appendix 1

