APPENDICES

Appendix I	Traffic Impact Assessment
Appendix II	Tree Preservation and Landscape Proposal
Appendix III	Drainage Impact Assessment
Appendix IV	Fire Service Installations Proposal
Appendix V	Details of Alternative Sites for Relocation

Proposed Temporary Open Storage of Construction Materials, Construction Machineries and Vehicles with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land in "Green Belt" Zone and Area shown as 'Road', Various Lots in D.D. 125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories

Appendix I Traffic Impact Assessment

Appendices 20240131 Ver1.0

Various Lots in D.D.125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories

Final TIA Report January 2024

Ozzo Technology (HK) Ltd 15/F, Heng Shan Centre 145 Queen's Road East Wanchai, Hong Kong Tel: 3488 5449 Fax: 3020 0370 http:// www.ozzotec.com

Section 16 Planning Application

Proposed Temporary Open Storage of Construction Materials, Construction Machineries and Vehicles with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land

Various Lots in D.D.125 and Adjoining Government Land, Ha Tsuen, Yuen Long, New Territories

Final TIA Report January 2024

Contents Amendment Record

This report has been issued and amended as follows:

Revision	Description	Prepared / Date	Checked / Date	Approved / Date
0	Draft Report	13/10/2023 LL	16/10/2023 DP	16/10/2023 SC
0a	Draft Report	26/10/2023 LL	27/10/2023 DP	27/10/2023 SC
0b	Final Report	16/11/2023 LL	17/11/2023 DP	17/11/2023 SC
1a	Final Report	05/01/2024 LL	29/01/2024 DP	29/01/2024 SC

Content

Page

1	INTRC	DUCTION	1
	1.1	General	1
	1.2	Project Descriptions	1
	1.3	Study Objectives	1
	1.4	Report Structure	
2	DESC	RIPTONS OF THE PROJECT SITE	
	2.1	Site Location and Study Area	2
	2.2	Development Parameters for the Project Site	2
	2.3	Parking and Loading/Unloading Facilities	2
	2.4	Vehicular Access Arrangement and Proposed Access Road	2
3	EXIST	ING TRAFFIC AND TRANSPORT CONDITIONS	4
	3.1	Existing Road Network	4
	3.2	Traffic Surveys	
	3.3	Existing Vehicle Traffic Conditions	
4	ESTIM	IATION OF DEVELOPMENT FLOWS	7
	4.1	Peak Hour Vehicular Flows	
5	TRAFF	FIC IMPACT ASSESSMENT	8
	5.1	Design Year	
	5.2	Methodology	
	5.3	Future Year Reference Traffic Flows	
	5.4	Future Year Design Peak Hour Traffic Flows1	
	5.5	Future Year Junction Capacity Assessments1	
	5.6	Future Year Link Capacity Assessments1	
6	SUMM	IARY AND CONCLUSION1	
	6.1	Summary1	
	6.2	Conclusion1	15

List of Table

Page

Table 2-1	Ancillary Transport Facilities Based on User's Requirement	2
Table 3-1	Summary of Comprehensive Surveys	4
Table 3-2	Passenger Car Unit Conversion Factors	5
Table 3-3	2023 Peak Hour Junction Capacity Assessment	5
Table 3-4	2023 Peak Hour Road Link Capacity Assessment	6
Table 4-1	2023 Peak Hour Road Link Capacity Assessment	7
Table 5-1	Average Annual Daily Traffic from Annual Traffic Census	9
Table 5-2	2019-Based TPEDM for Northwest New Territories	9
Table 5-3	2026 Peak Hour Junction Capacity Assessment	11
Table 5-4	2026 Peak Hour Road Link Capacity Assessment	12

List of Figures

Figure 2-1	Site Location
Figure 2-2	Proposed Access Road
Figure 3-1	Locations of Types Traffic Surveys
Figure 3-2	2023 Observed Peak Hour Traffic Flows
Figure 5-1	2026 Reference Peak Hour Traffic Flows
Figure 5-2	Peak Hour Development Traffic Flows
Figure 5-3	2026 Design Peak Hour Traffic Flows
Figure 6-1	2024 Reference Peak Hour Traffic Flows
Figure 6-2	2024 Design Peak Hour Traffic Flows

Appendices

- Appendix A Layout Plan and Swept Path Analysis
- Appendix B 2023 Junction Calculation Sheets
- Appendix C 2026 Junction Calculation Sheets
- Appendix D 2024 Junction Calculation Sheets

Final TIA Report

1 INTRODUCTION

1.1 General

1.1.1 Ozzo Technology (HK) Limited was commissioned to undertake a Traffic Impact Assessment (TIA) Study in support of the S16 planning application for the Proposed Temporary Open Storage of Construction Materials, Construction Machineries and Vehicles with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land ("Project Site").

1.2 **Project Descriptions**

1.2.1 The Project Site is located at the east of Ling To Tsz, connecting with an existing access road leading to Kong Sham Western Highway in the east.

1.3 Study Objectives

- 1.3.1 The main objectives of this Traffic Impact Assessment ("TIA") Study are to:
 - evaluate the existing vehicular traffic and transport conditions of the project site and to assess the traffic and transport implications of the development to the adjacent road network and pedestrian facilities for the operation of the Project Site;
 - (ii) identify any existing and potential traffic and transport problems and to recommend possible mitigation measures and advise any necessary traffic arrangement;
 - (iii) recommend traffic improvement measures for the Project Site, as necessary.

1.4 Report Structure

- 1.4.1 Following this introductory chapter, this report is arranged as follow:
 - Chapter 2 describes the Project Site;
 - Chapter 3 summarizes the existing traffic conditions in the vicinity of the Project Site;
 - Chapter 4 describes the methodology for estimating the amount of vehicular traffic to be induced by the development;
 - Chapter 5 details the traffic forecast and the results of traffic impact assessment;
 - A summary of the findings and conclusion of this TIA study are given in Chapter 6.

Final TIA Report

2 DESCRIPTONS OF THE PROJECT SITE

2.1 Site Location and Study Area

2.1.1 **Figure 2-1** shows the location of the Project Site, located at the west of Kong Sham Western Highway and adjacent to Ling To Tsz.

2.2 Development Parameters for the Project Site

2.2.1 Based on the latest information, the Project Site involves a temporary open storage area for construction materials, construction machineries and vehicles, with a Project Site area of around 41,569m².

2.3 Parking and Loading/Unloading Facilities

2.3.1 **Table 2-1** summarizes the internal transport facilities to be provided in the Project Site. As there are no specific parking and loading/unloading requirements for temporary open storage development in accordance to HKPSG, ancillary transport facilities are provided based on users' requirements to meet operational needs.

Type of Ancillary Transport Facilities	Size	Provision based on User's Requirement
Private Car Parking Space	2.5m (W) x 5m (L)	23
Total Parking Facilities	-	23
L/UL Spaces for LGV	3.5m (W) x 7m (L)	3
L/UL Spaces for MGV	3.5m (W) x 11m (L)	10
Total L/UL Facilities	-	13

Table 2-1 Ancillary Transport Facilities Based on User's Requirement

2.3.2 The conceptual layout plan of the Project Site is included in **Appendix A** for easy reference.

2.4 Vehicular Access Arrangement and Proposed Access Road

- 2.4.1 The Project Site consists of 2 portions, with the larger portion (hereinafter named as "Portion A") located at the north of the existing access road and the smaller portion (hereinafter named as "Portion B") located at the south of the existing access road. Individual site accesses are proposed for Portion A and Portion B, with access locations are proposed at the eastern side of each portion. **Figure 2-2** also presents the locations for each portion.
- 2.4.2 To minimize the traffic impact to the existing single track access road, an access road with a single-2 configuration connecting Portion A is proposed. Layout of the proposed access road is also presented in **Figure 2-2**.

Final TIA Report

- 2.4.3 While Portion B only serves around 13.3% of the total development traffic and the operation traffic covers private cars and light goods vehicles only, development traffic to/from Portion B will travel via the existing access road.
- 2.4.4 Swept path analysis is also conducted for the vehicular accesses and the proposed access road, indicating sufficient turning spaces for goods vehicles. Appendix A also presents the swept path analysis for the access points and the access road.

Final TIA Report

3 EXISTING TRAFFIC AND TRANSPORT CONDITIONS

3.1 Existing Road Network

- 3.1.1 As shown in **Figure 2-1**, the Project Site is currently connecting to a local access road, with further connection to Kong Sham Western Highway. Current condition of the connecting carriageways are summarized as follows:
- 3.1.2 The connecting access road (Unnamed Road A) is a single track rural road connecting Ling To Tsz and in the west and access road underneath Kong Sham Western Highway in the east. Acting as single carriageway with 1-lane-2 way operation, passing bays are generally identified along the carriageway, while serving a low volume of traffic.
- 3.1.3 The access road underneath Kong Sham Western Highway (KSWH) is a current connecting road between local storage area / concrete plant and KSWH. The northern section of the access road is a single-2 carriageway (with no loading activities, standing vehicles and pedestrian crossings identified along the northern section) while the southern section of the access road is a single carriageway with 1-lane-2-way operation. Passing bays are generally identified the single carriageway section, while serving a low volume of traffic.

3.2 Traffic Surveys

3.2.1 To assess the existing traffic condition, vehicular traffic count surveys were conducted on 4 October 2023 (Wednesday) between 07:00 and 20:00. A summary of the types of surveys being undertaken and the survey locations are shown in **Figure 3-1** and **Table 3-1**.

Survey Type	Location	Figure	Survey Date	Data Collected
Vehicular Count Surveys	J1 to J5	Figure 3-1	2023-10-04 (Wednesday)	Manual Classified count in 15 min intervals
	L1 to L3	Figure 3-1	2023-10-04 (Wednesday)	Manual Classified count in 15 min intervals

 Table 3-1
 Summary of Comprehensive Surveys

3.3 Existing Vehicle Traffic Conditions

3.3.1 All vehicle flows recorded during the traffic surveys have been converted to passenger car unit (PCU) based on the PCU factors as indicated in Table 2.3.1.1 of Volume 2 of Transport Planning and Design Manual (TPDM) and shown in **Table 3-2**.

Final TIA Report

Table 3-2 Passenger Car Unit Conversion Factors					
Malata Toma	PCU Conversion Factor ⁽¹⁾				
Vehicle Type	Priority junction/ Roundabout				
Car / Taxi	1.00				
Public Light Bus / Minibus	1.50				
Light Goods Vehicle	1.50				
Medium/ Heavy Goods Vehicle	1.75				
Bus / Coach	2.00				

Notes: (1) Table 2.3.1.1, Chapter 2.3, Volume 2, TPDM-2021

- 3.3.2 By applying the above PCU factors, vehicular traffic flows in PCUs are calculated and the AM and PM peak hour is identified to occur at 10:45-11:45 and 15:15-16:15 for AM peak and PM peak respectively. **Figure 3-2** presents the 2023 observed Weekday AM and PM peak hour traffic flows on the road network in the vicinity of the Project Site.
- 3.3.3 Based on the existing traffic flows, the peak hour performance of the key junctions in the vicinity of the Project Site is assessed. The assessment results are indicated in **Table 3-3** and detailed junction calculation sheets are given in **Appendix B**.

Jn.		_	Capacity	2023 Weekday		
ID.	Location ⁽¹⁾	Туре	Index ⁽²⁾	AM Peak	PM Peak	
J1	Unnamed Road A / Access to Portion A	Priority	DFC	<0.01	<0.01	
J2	Unnamed Road A / Access to Existing Fish Farm	Priority	DFC	0.02	0.01	
J3	Unnamed Road A / Access Road underneath KSWH	Priority	DFC	0.02	0.02	
J4	Access Road underneath KSWH / Ha Tsuen Road	Priority	DFC	0.17	0.18	
J5	KSWH Roundabout	Roundabout	DFC	0.53	0.43	

 Table 3-3
 2023 Peak Hour Junction Capacity Assessment

Notes:

(1) Refer to Figure 3-1 for junction locations

(2) DFC = Design Flow to Capacity for priority junction and roundabout

Final TIA Report

- 3.3.4 The results reveal that all the assessed key junctions are operated satisfactorily during the peak hours.
- 3.3.5 Based on the existing traffic flows, the peak hour performances of the key road links in the vicinity of the Project Site are also assessed and the results are indicated in **Table 3-4**.

			Design ⁽²⁾	Weekday /	AM Peak	Weekday PM Peak	
No.	. Location ⁽¹⁾ Direction		Direction Capacity (veh/hr)	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾
L1	Unnamed Road A	2-way	100	11	0.11	12	0.12
L2	Access Road underneath HSWH (Section south of Ha Tsuen Road)	2-way	100	67	0.67	73	0.73
1.2	Access Road underneath KSWH		850	377	0.44	302	0.36
L3	(Section north of Ha Tsuen Road)	SB	850	375	0.44	325	0.38

Table 3-4 2023 Peak Hour Road Link Capacity Assessment

Notes: (1) Refer to Figure 3-1 for road link locations (2) TPDM Vol 2 Chapter 2.4.1.1 and TPDM Vol 3 Chapter 3.11.3.1 (3) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

3.3.6 The results reveal that all the key road links in the vicinity of the Project Site operate within capacity during the peak hours.

Final TIA Report

4 ESTIMATION OF DEVELOPMENT FLOWS

4.1 Peak Hour Vehicular Flows

4.1.1 With reference to the Planning Statement, the development trips during the identified peak hours are summarized in **Table 4-1**.

		Tr	rip Generatio	on and Attra	ction (veh/h	ır)	
Time Period	PC		LGV		MGV		2-Way
	In	Out	In	Out	In	Out	Total
Trips at AM Peak (10:45-11:45)	4	4	1	1	3	3	16
Trips at PM Peak (15:15-16:15)	4	4	1	1	3	3	16

Table 4-1 2023 Peak Hour Road Link Capacity Assessment

4.1.2 For the purpose of this TIA, the captioned peak hour development trips will be adopted in the traffic impact assessment.

Final TIA Report

5 TRAFFIC IMPACT ASSESSMENT

5.1 Design Year

5.1.1 With the planning application for the Proposed Open Storage development involves a period of 3 years, the expected end year for the Project Site would be year 2026. For conservative, 2026 is adopted as the design year for this Study.

5.2 Methodology

- 5.2.1 In forecasting the future traffic flows on the road network in the Study Area, due considerations are given to the following information and factors:
 - Historical traffic data from Annual Traffic Census (ATC) published by Transport Department;
 - The forecast population and employment from the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data published by Planning Department;
 - Committed and planned developments in the Study Area.
- 5.2.2 The following steps are undertaken to derive the 2026 Peak Hour Reference Flows (i.e. without the Project Site) and Design Flows (i.e. with the Project Site).

2026 Background Flows = 2023 Flows x annual growth factors				
2026 Reference Flows = 2026 Background Flows + additional traffic				
	planned and committed developments			
2026 Design Flows =	2026 Reference Flows + development traffic			

5.2.3 The traffic impact to be induced by the Development is assessed by comparing the Peak Hour Reference Traffic Flows against the Design Traffic Flows for both Design Years.

Final TIA Report

5.3 Future Year Reference Traffic Flows

Historical Traffic Growth

5.3.1 To gain an understanding of the historical trends of traffic growth on the nearby road network, relevant traffic data over the 5-year period of 2013 to 2018 are extracted from the Annual Traffic Census (ATC) Reports for the ATC stations within the Study Area. The traffic data in 2019 and 2021 are excluded from the analysis due to social activities and outbreak of COVID-19 respectively. **Table 5-1** describes the location of the nearby ATC station (Ping Ha Road and Lau Fau Shan Road) and provides the corresponding traffic data.

Table 5-1 Average Annual Daily Traffic from Annual Traffic Census

Station	Road	Between		2013	2014	2015	2016	2017	2018	Average Annual Growth
5007	5907 KSWH	Yick Yuen Bay B	Shenzhen Bay Bridge	18,410	18,290	19,140	19,470	19,080	19,690	1.35%
5907			(HK Section)	-	-0.65%	4.65%	1.72%	-2.0%	3.2%	1.5570
	TOTAL			18,410	18,290	19,140	19,470	19,080	19,690	1.35%
				-	-0.65%	4.65%	1.72%	-2.0%	3.2%	1.33%

5.3.2 As indicated in **Table 5-1**, the traffic on the road network within the Study Area is increased by 1.35% p.a. over the period from 2013 – 2018.

2019-Based TPEDM

5.3.3 **Table 5-2** presents the population and employment data in Tin Shui Wai District for 2019, 2026 and 2031 from the 2019-based Territorial Population and Employment Data Matrices (TPEDM) planning data provided by Planning Department.

Table 5-2	2019-Based TPEDM for Northwest New Territories
-----------	--

Category	2019	2023 ⁽¹⁾	2026	2023-2026 Average Growth (% p.a.)		
Population	222,800	232,200	239,250	1.00%		
Employment	584,00	68,943	76,850	3.69%		
Total	281,200	301,143	316,100	1.63%		

Source: 2019-based TPEDM published by Planning Department

Note (1): 2023 population and employment places are calculated by interpolation between 2019 and 2026.

Final TIA Report

- 5.3.4 It is anticipated that the population and employment places in Northwest New Territories would be increased by 1.00% and 3.69% p.a. respectively, i.e. an overall increase of 1.63% per annum.
- 5.3.5 For conservative, annual growth rate derived from 2019-Based TPEDM of 1.63% will be adopted in the Study.

Planned and Committed Developments

5.3.6 Based on the published information from Town Planning Board, no planned/committed developments in the site vicinity are identified in design year 2026 in the site vicinity.

2026 Reference Flows

5.3.7 Taking into account of the above factors, to summarize, the following steps are undertaken to derive the 2026 Reference Traffic Flows (i.e. without Project Site):

2026 Background Flows =2023 Flows x annual growth factors (+1.63% p.a.)2026 Reference Flows =2026 Background Flows + Planned / Committed

Development Traffic (refer to **Section 5.3.6**)

5.3.8 The 2026 Reference Traffic Flows (i.e. without Project Site) are presented in **Figure 5-1**.

Final TIA Report

5.4 Future Year Design Peak Hour Traffic Flows

- 5.4.1 The additional development traffic in **Table 4-1** is then assigned onto the nearby road network with reference to the existing traffic distribution pattern in the Study Area. The resulting peak hour development flows are shown in **Figure 5-2**.
- 5.4.2 By adding the development flows in **Figure 5-2** to the 2026 Reference Peak Hour Flows (i.e. without Project Site) in Figure 5-1, the 2026 Design Peak Hour Flows (i.e. with Project Site) are derived and shown in **Figure 5-3**.

5.5 Future Year Junction Capacity Assessments

5.5.1 Based on the Reference Flows (i.e. without Project Site) and Design Flows (i.e. with Project Site) for the Design Year, junction capacity assessment are undertaken and the results shown in **Table 5-3** with detailed calculation sheets provided in **Appendix C**.

Jn.	L = = = 4 ² = = = (4)	T	Capacity	2026 Refere	nce Scenario	2026 Design Scenario	
ID.	Location ⁽¹⁾	Туре	Index ⁽²⁾	AM Peak	PM Peak	AM Peak	PM Peak
J1	Unnamed Road A / Access to Portion A	Priority	DFC	<0.01	<0.01	<0.01	<0.01
J2	Unnamed Road A / Proposed Access Road ⁽³⁾	Priority	DFC	0.02	0.02	0.02	0.02
J3	Unnamed Road A / Access Road underneath KSWH	Priority	DFC	0.03	0.02	0.05	0.04
J4	Access Road underneath KSWH / Ha Tsuen Road	VH / Ha Priority		0.18	0.19	0.21	0.23
J5	KSWH Roundabout	Roundabout	DFC	0.56	0.45	0.57	0.46

Table 5-32026 Peak Hour Junction Capacity Assessment

Notes:

(1) Refer to Figure 3-1 for junction locations

(2) DFC = Design Flow to Capacity for priority junction and roundabout

(3) With the Proposed Access Road in place, geometry of J2 has also been modified.

5.5.2 It is indicated in **Table 5-3** that all the key junctions in the vicinity of the Project Site will operate within capacity during peak hours for both the Reference (without Project Site) and Design (with Project Site) scenarios.

Final TIA Report

5.6 Future Year Link Capacity Assessments

- 5.6.1 Based on the Reference Flows (i.e. without Project Site) and Design Flows (i.e. with Project Site), link capacity assessments for Design Year 2026 are carried out and the results are presented in **Table 5-4**.
- 5.6.2 The results in the table indicate that all the key road links in the Study Area will operate within capacity during the peak hours for both Reference scenario (i.e. without Project Site) and Design scenario (i.e. with Project Site).

No.	Location ⁽¹⁾		Design ⁽²⁾ Capacity (veh/hr)	2026 Reference Scenario (AM Peak)		2026 Reference Scenario (PM Peak)		2026 Design Scenario (AM Peak)		2026 Design Scenario (PM Peak)	
		Dir.		Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾
L1	Unnamed Road A	2-way	100	13	0.13	14	0.14	19	0.19	17	0.17
L2	Access Road underneath HSWH (Section south of Ha Tsuen Road)	2-way	100	73	0.73	79	0.79	89	0.89	95	0.95
	Access Road underneath	NB	850	397	0.47	318	0.37	405	0.48	326	0.38
L3	KSWH (Section north of Ha Tsuen Road)	SB	850	394	0.46	342	0.40	402	0.47	350	0.41
L4	Proposed Access Road	EB	400	0	0.00	0	0.00	7	0.02	7	0.02
		WB	400	0	0.00	0	0.00	7	0.02	7	0.02

Table 5-4 2026 Peak Hour Road Link Capacity Assessment

Notes: (1) Refer to Figure 3-1 for road link locations

(2) TPDM Vol 2 Chapter 2.4.1.1 and TPDM Vol 3 Chapter 3.11.3.1

(3) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

Final TIA Report

6 CONSTRUCTION TRAFFIC IMPACT ASSESSMENT

6.1 Design Year and Peak Hour Construction Traffic

- 6.1.1 Under current programme, the construction works will be completed in year 2024. Thus 2024 will be adopted as the design year for construction traffic impact assessment.
- 6.1.2 The construction traffic mainly consists of concrete delivery and dump trucks. To limit the construction traffic onto nearby road network (particularly for the Access Road underneath HSWH), construction traffic for the Project Site during peak hour is limited to 8 veh/hr, which is equivalent to 16 pcu/hr.
- 6.1.3 The same approach in forecasting the 2026 Design Peak Hour Traffic (refers to Chapter 5) is adopted to forecast the 2024 Design Peak Hour Traffic as summarized below:

2024 Background Flows = 2024 Flows x annual growth factors

2024 Reference Flows =	2024 Background Flows + additional traffic by
	planned and committed developments
2024 Design Flows =	2024 Reference Flows + construction traffic

6.2 Construction Traffic Impact Assessment

6.2.1 The 2024 Peak Hour Traffic Flows during construction period are shown in Figure 6-1 and Figure 6-2 respectively. Based on the traffic forecasts, results of the junction and link capacity assessments during the construction year are presented in Table 6-1 and Table 6-2 respectively. Detailed calculation sheets of the junction assessment are provided in Appendix D.

Table 6-1	2024 Peak Hour Junction Capacity Assessment
-----------	---

Jn.		_	Capacity	2024 Referer	nce Scenario	2024 Design Scenario		
ID.	Location ⁽¹⁾	Туре	Index ⁽²⁾	AM Peak	PM Peak	AM Peak	PM Peak	
J1	Unnamed Road A / Access to Portion A	Priority	DFC	<0.01	<0.01	<0.01	<0.01	
J2	Unnamed Road A / Proposed Access Road ⁽³⁾	Priority	DFC	0.02	0.02	0.02	0.02	
J3	Unnamed Road A / Access Road underneath KSWH	Priority	DFC	0.03	0.02	0.05	0.05	
J4	Access Road underneath KSWH / Ha Tsuen Road	Priority	DFC	0.17	0.19	0.22	0.23	
J5	KSWH Roundabout	Roundabout	DFC	0.54	0.44	0.55	0.45	

Final TIA Report

Notes:

(1) Refer to Figure 3-1 for junction locations
(2) DFC = Design Flow to Capacity for priority junction and roundabout
(3) With the Proposed Access Road in place, geometry of J2 has also been modified.

Table 6-2			2024 Peak Hour Road Link Capacity Assessment								
No.	Location ⁽¹⁾	Dir.	Design ⁽²⁾ Capacity (veh/hr)	2024 Reference Scenario (AM Peak)		2024 Reference Scenario (PM Peak)		2024 Design Scenario (AM Peak)		2024 Design Scenario (PM Peak)	
				Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾	Flows (veh/hr)	P/Df ⁽³⁾
L1	Unnamed Road A	2-way	100	13	0.13	14	0.14	19	0.19	17	0.17
L2	Access Road underneath HSWH (Section south of Ha Tsuen Road)	2-way	100	71	0.71	77	0.77	87	0.87	93	0.93
	Access Road underneath	NB	850	384	0.45	308	0.36	392	0.46	316	0.37
	KSWH (Section north of Ha Tsuen Road)	SB	850	382	0.45	331	0.39	390	0.46	339	0.40
L4	Proposed Access Road	EB	400	0	0.00	0	0.00	7	0.02	7	0.02
		WB	400	0	0.00	0	0.00	7	0.02	7	0.02

Notes: (1) Refer to Figure 3-1 for road link locations

(2) TPDM Vol 2 Chapter 2.4.1.1 and TPDM Vol 3 Chapter 3.11.3.1
 (3) P/Df = Peak Hourly Flows/Design Flow Ratios (P/Df) for road links

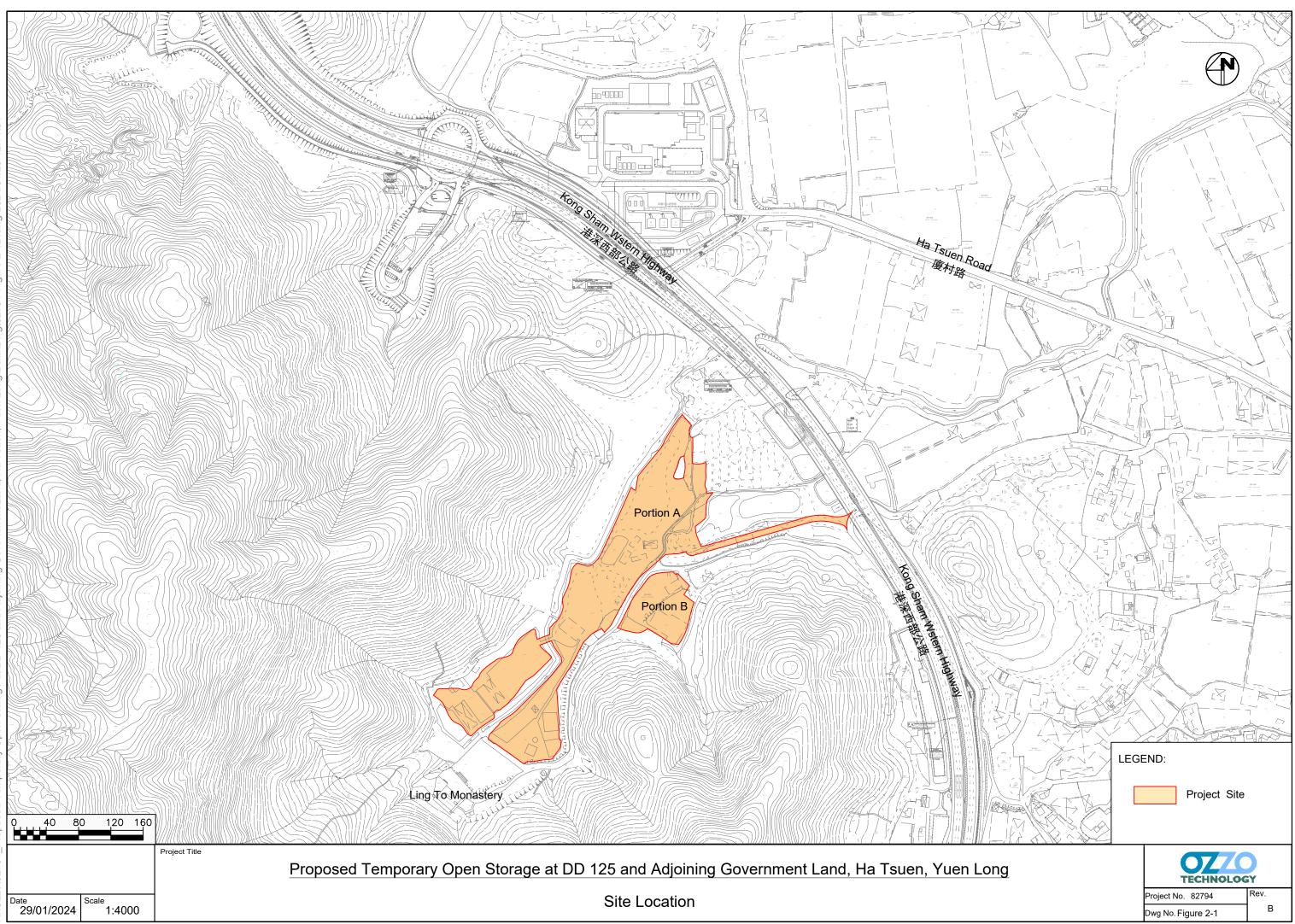
^{6.2.2} The results indicate that the key junctions and road links in the vicinity of the project site would operate at an acceptable level during the weekday AM and PM peak hours even with the construction traffic to be generated during the construction period.

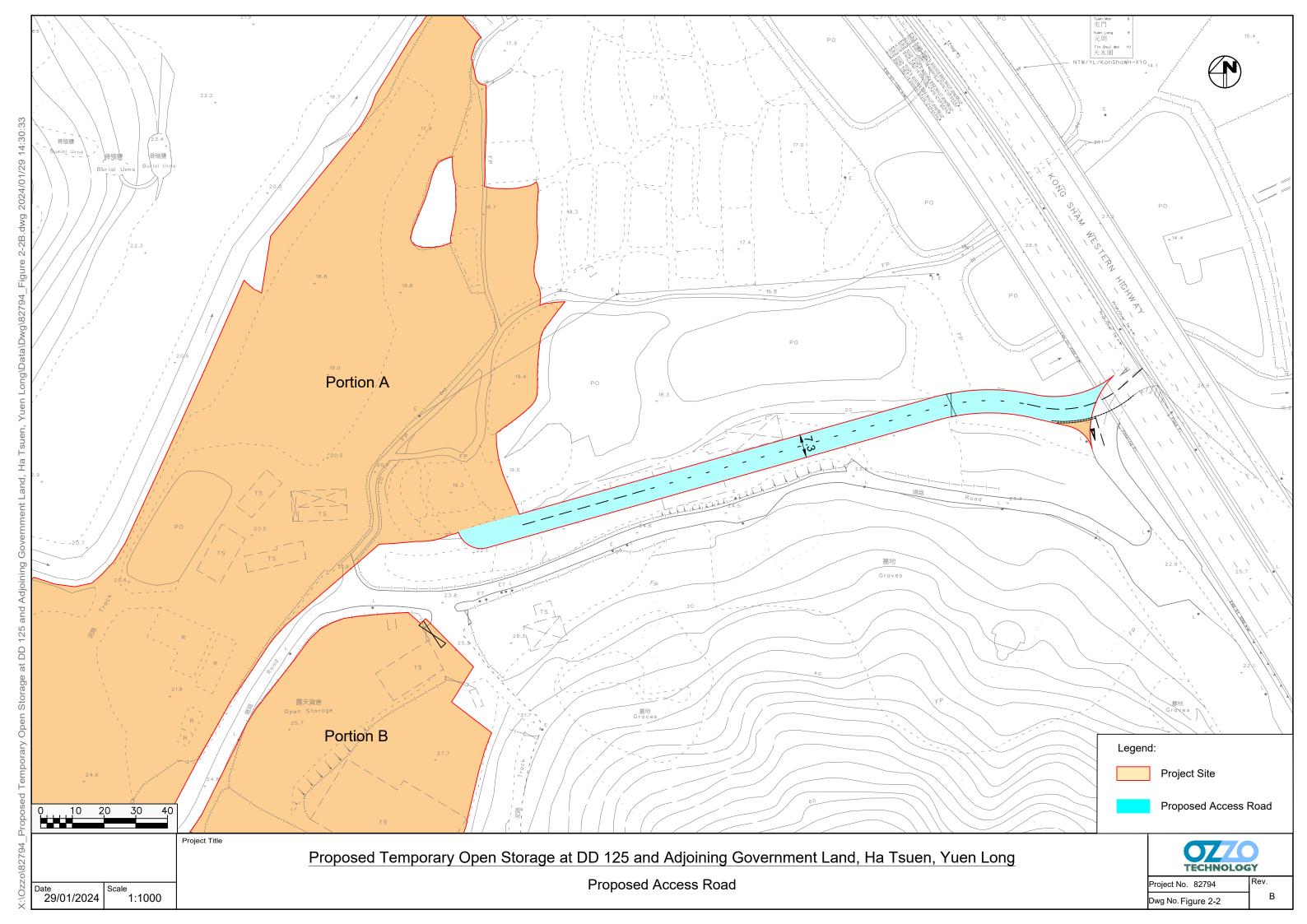
Final TIA Report

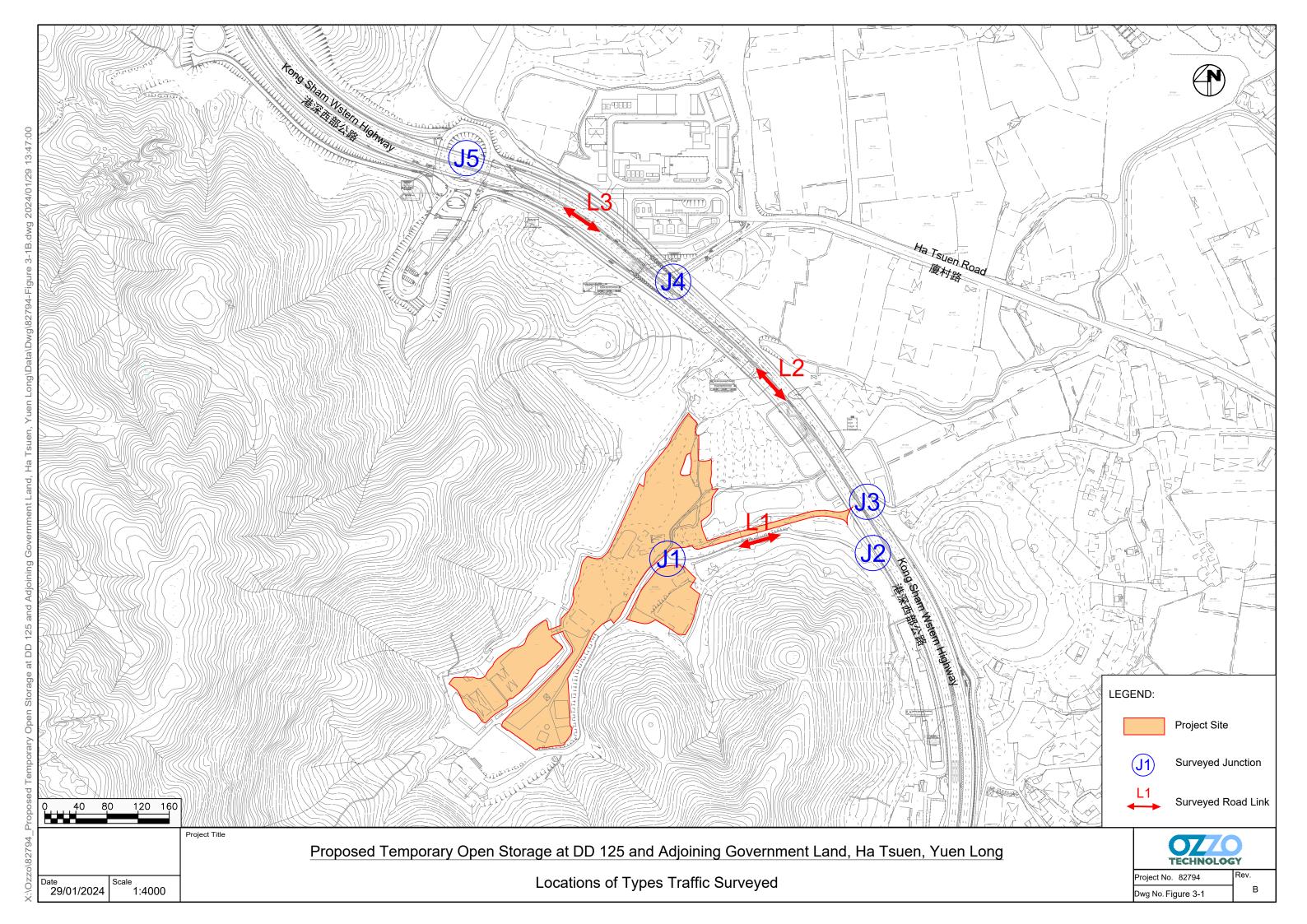
7 SUMMARY AND CONCLUSION

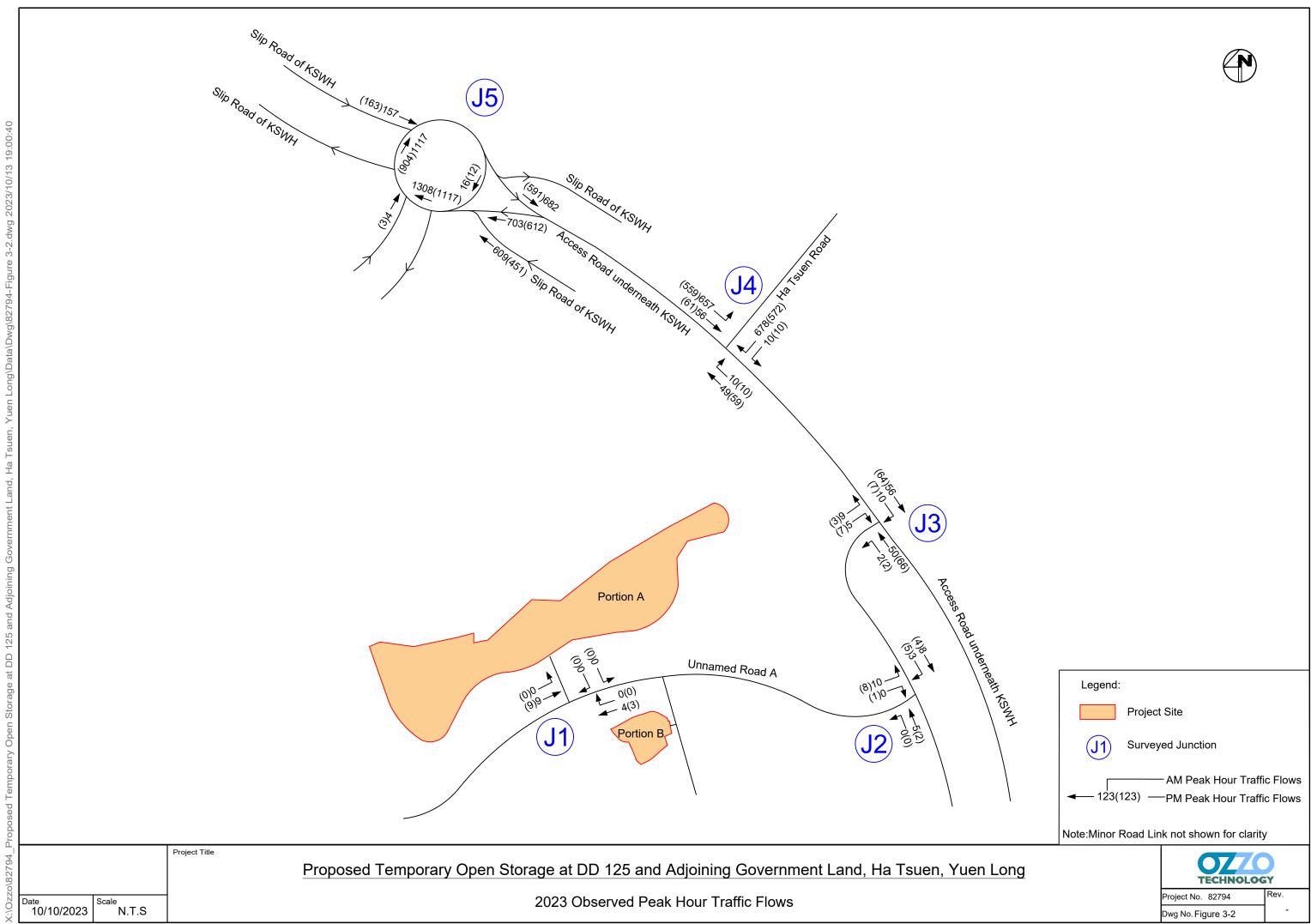
7.1 Summary

- 7.1.1 Ozzo Technology (HK) Limited is commissioned to undertake this Traffic Impact Assessment (TIA) Study to assess the traffic impact to be induced by the Project Site on the nearby road network.
- 7.1.2 Capacity assessments are undertaken to reveal the 2023 AM and PM peak hour traffic conditions in the vicinity of the Project Site. The assessment results indicate that all the key junctions and road links perform satisfactorily during the AM and PM peak hours on a normal weekday.
- 7.1.3 To minimize the traffic impact to the existing single track access road, an access road with a single-2 configuration connecting Portion A is proposed.
- 7.1.4 With the planning application for the Temporary Open Storage development involves a period of 3 years, while the expected end year for the Project Site would be year 2026, year 2026 is adopted as the design year for this Study.
- 7.1.5 For traffic impact assessments, junction and link capacity assessments are undertaken for the 2026 AM and PM peak hours on a normal weekday. With the trivial development traffic generated from the Project Site, assessment results indicate that all the key junctions and road links would perform satisfactorily in the Design Year even with the Project Site in place.
- 7.1.6 Construction traffic impact assessment also indicate that the key junctions and road links in the vicinity of the project site would operate at an acceptable level during the weekday AM and PM peak hours even with the construction traffic to be generated during the construction period.

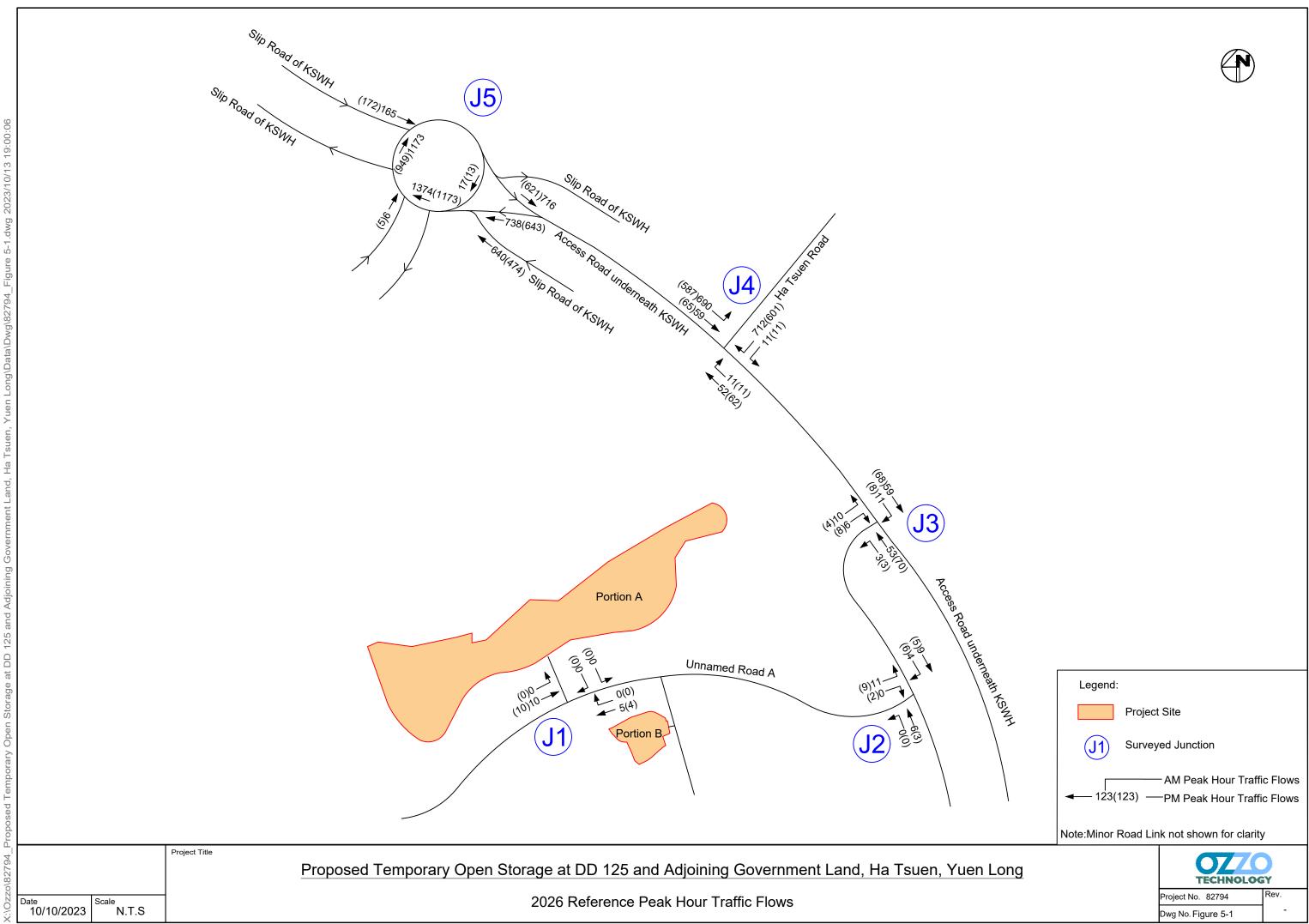

7.2 Conclusion

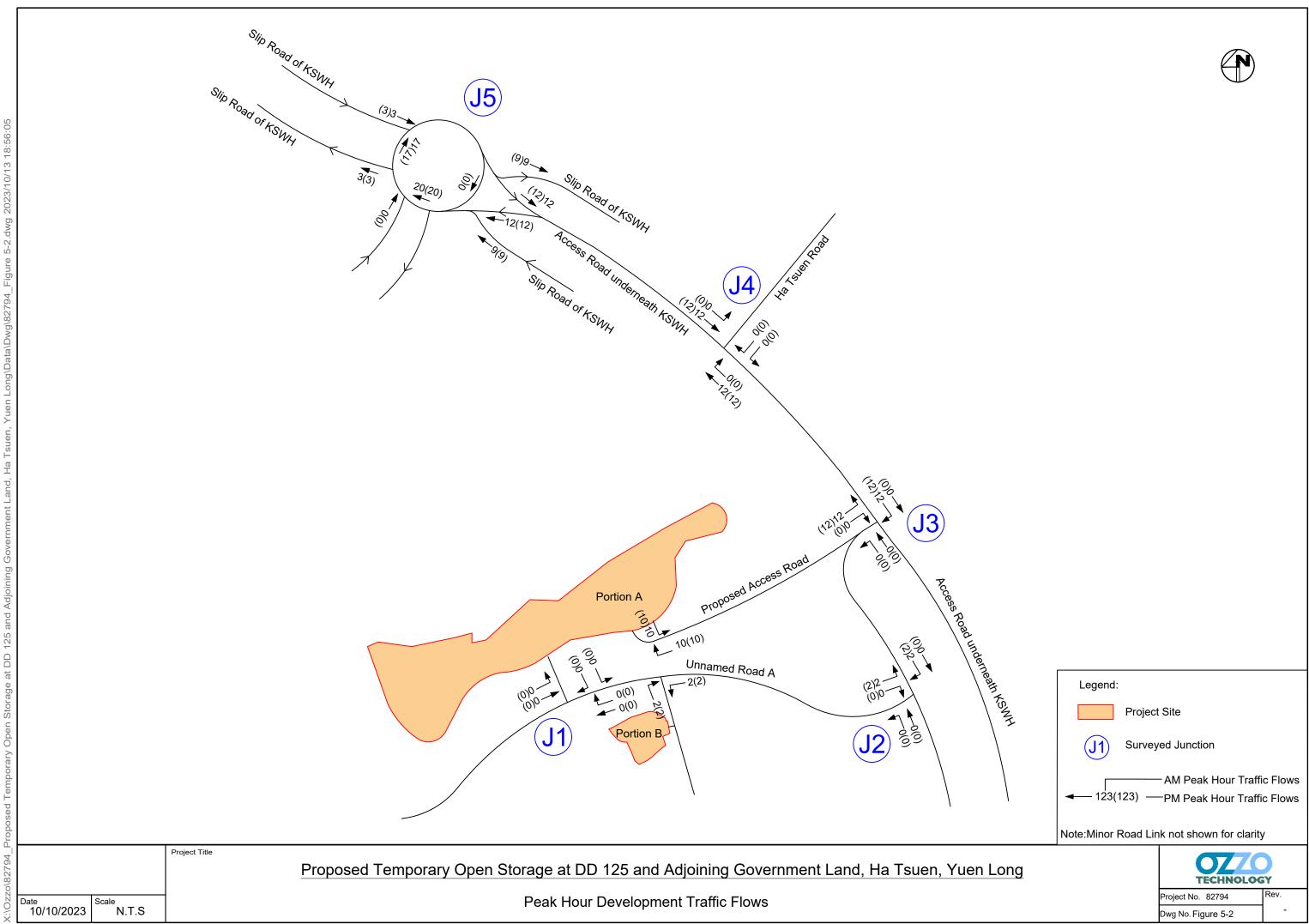

7.2.1 The impact assessment results indicate that the Project Site would not create adverse impact on the surrounding road network.

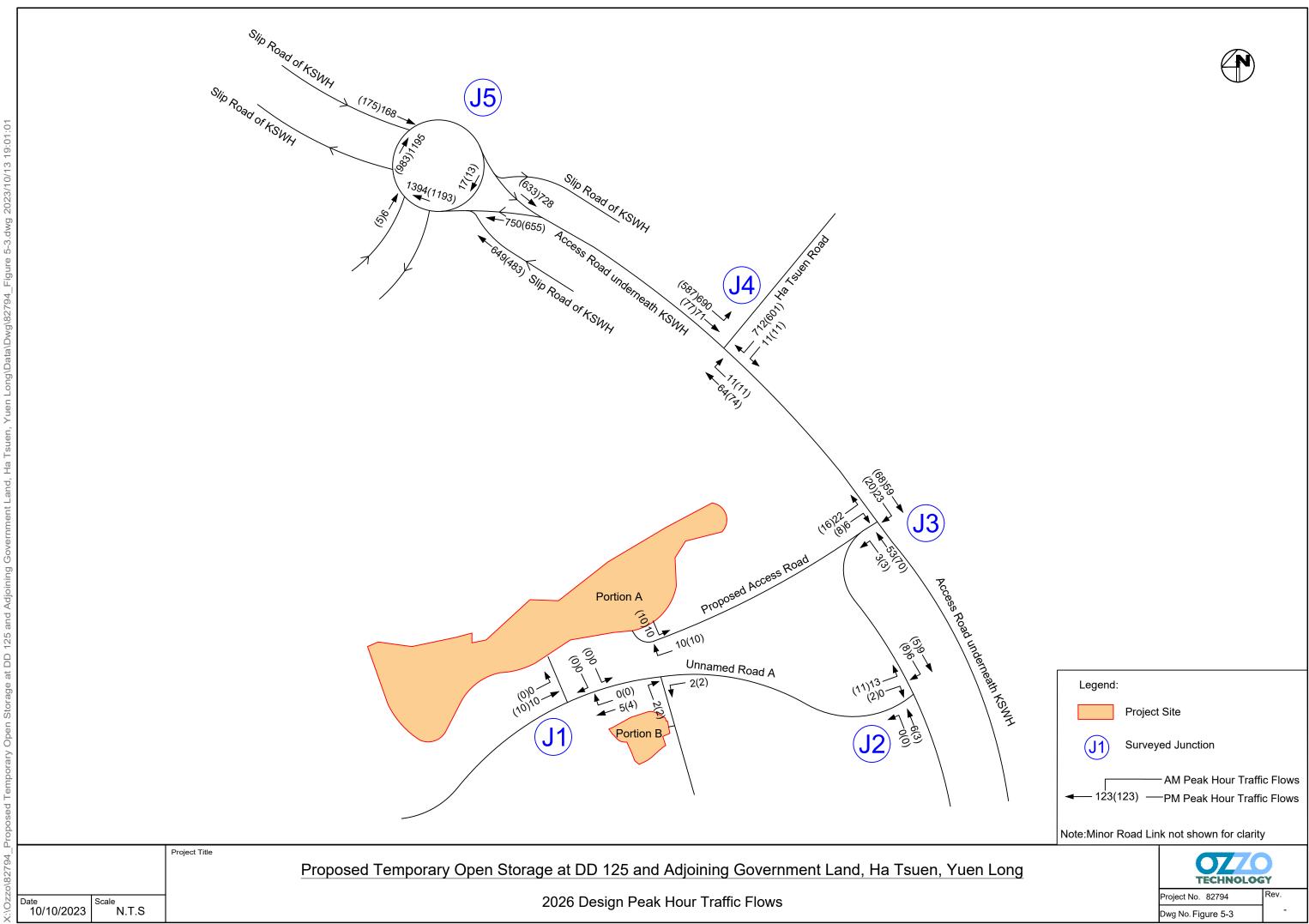


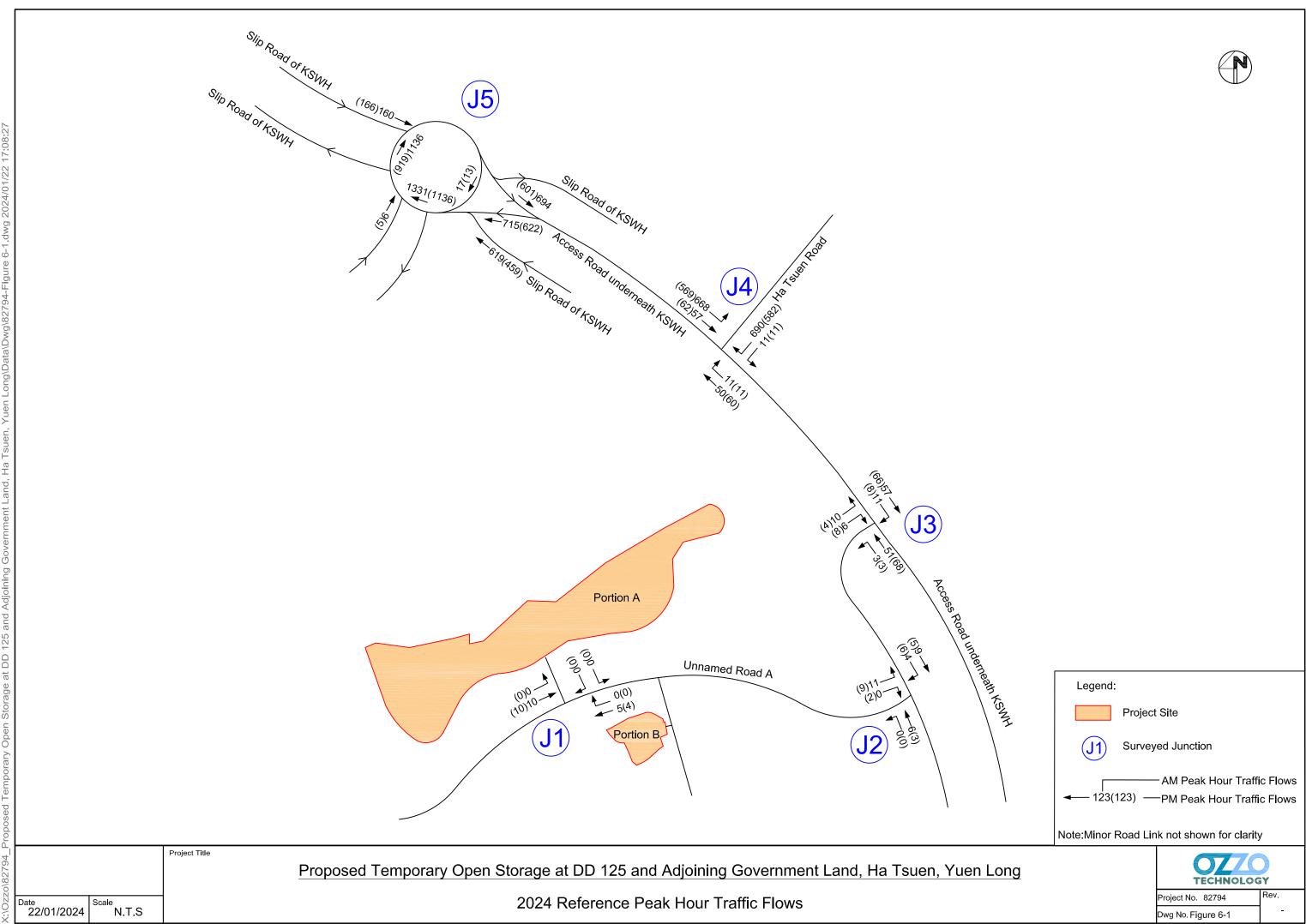

Final TIA Report

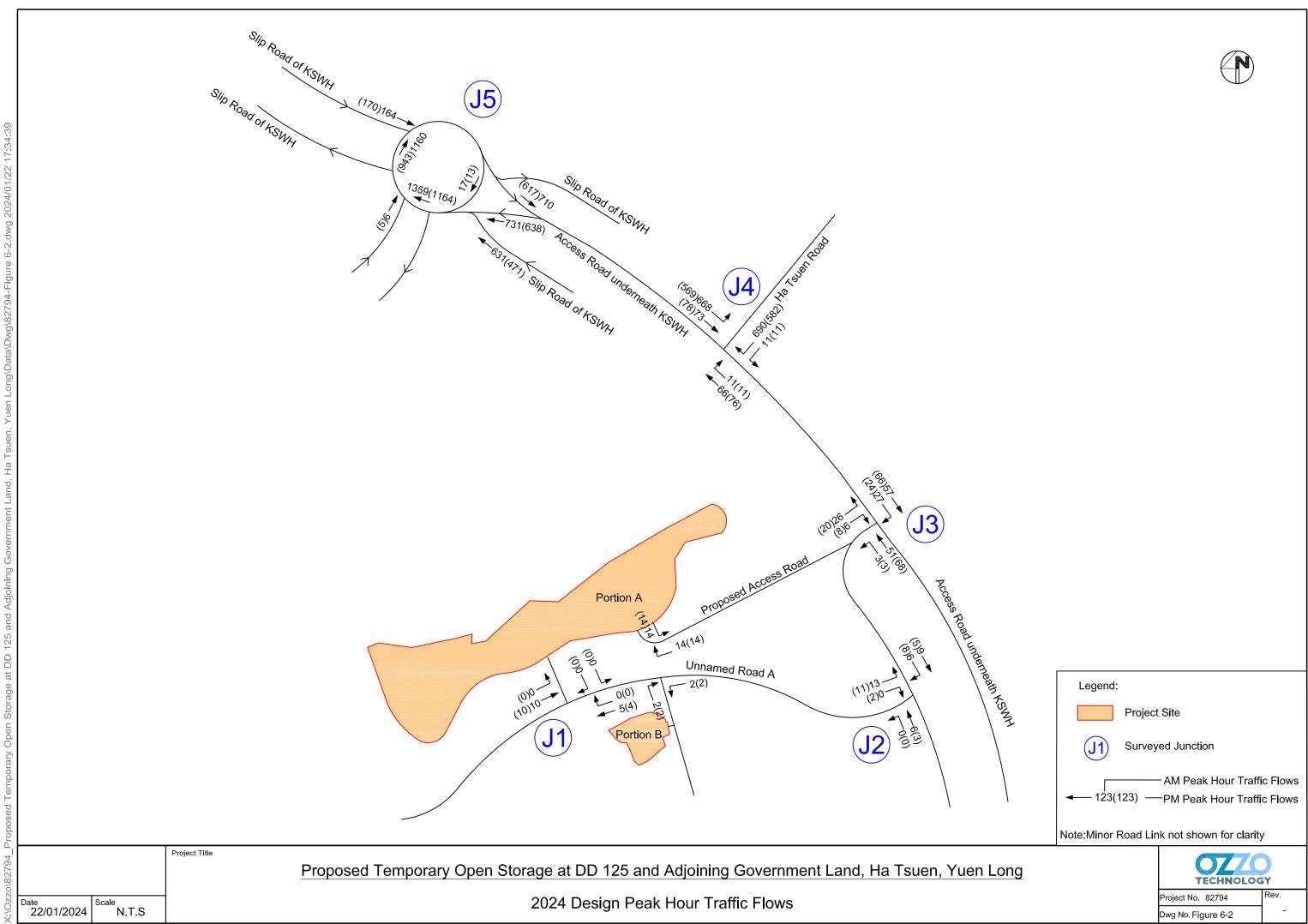
Figures

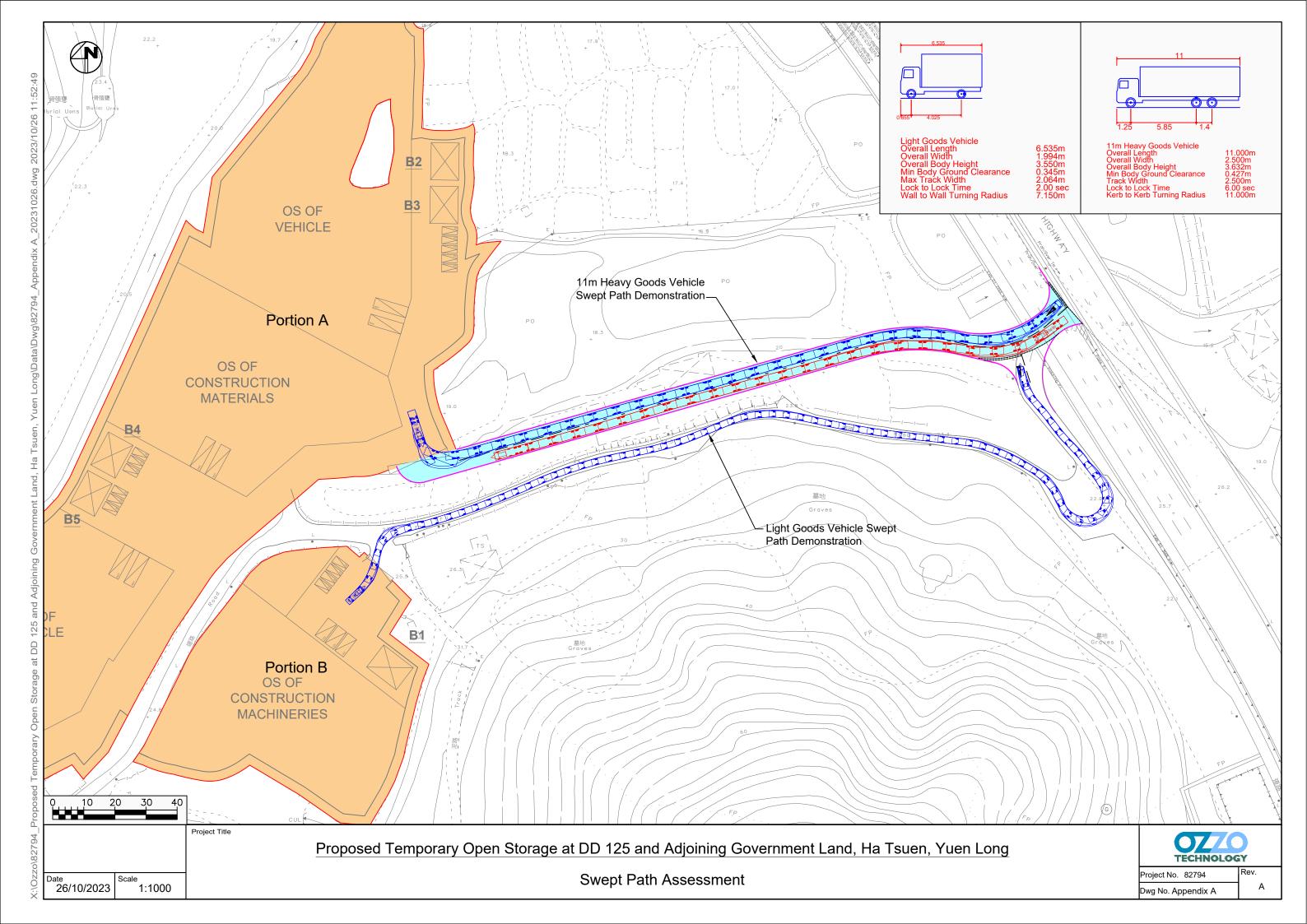








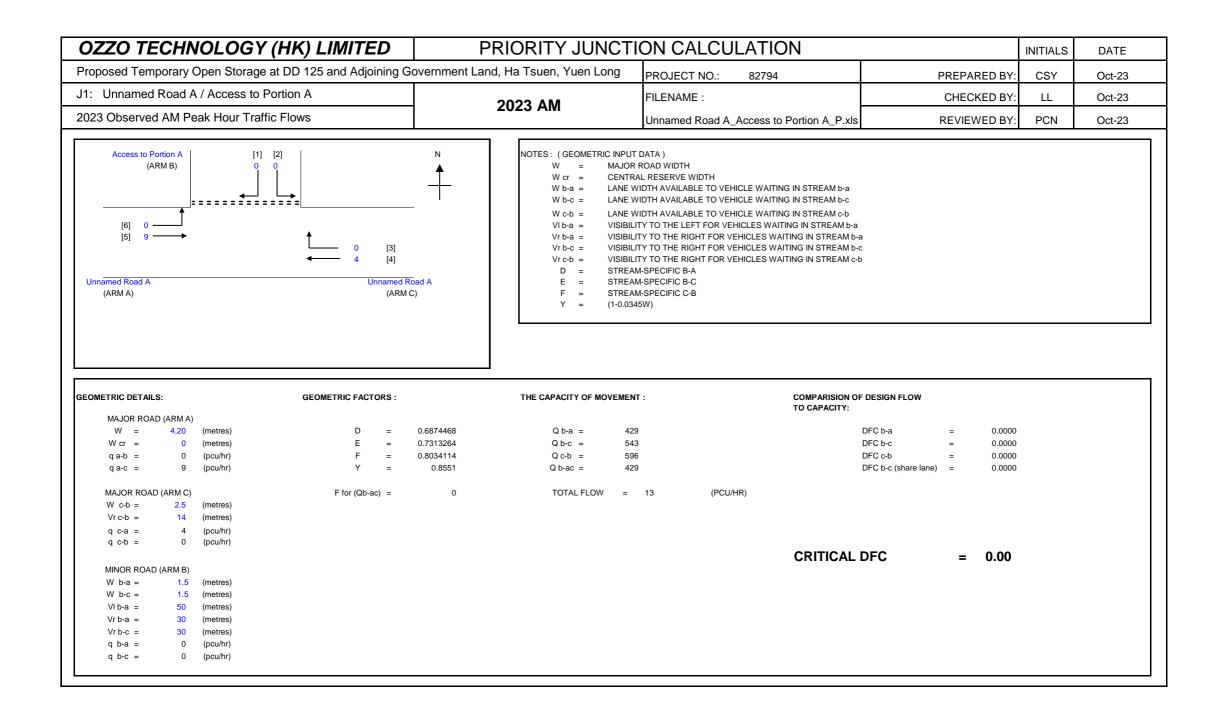


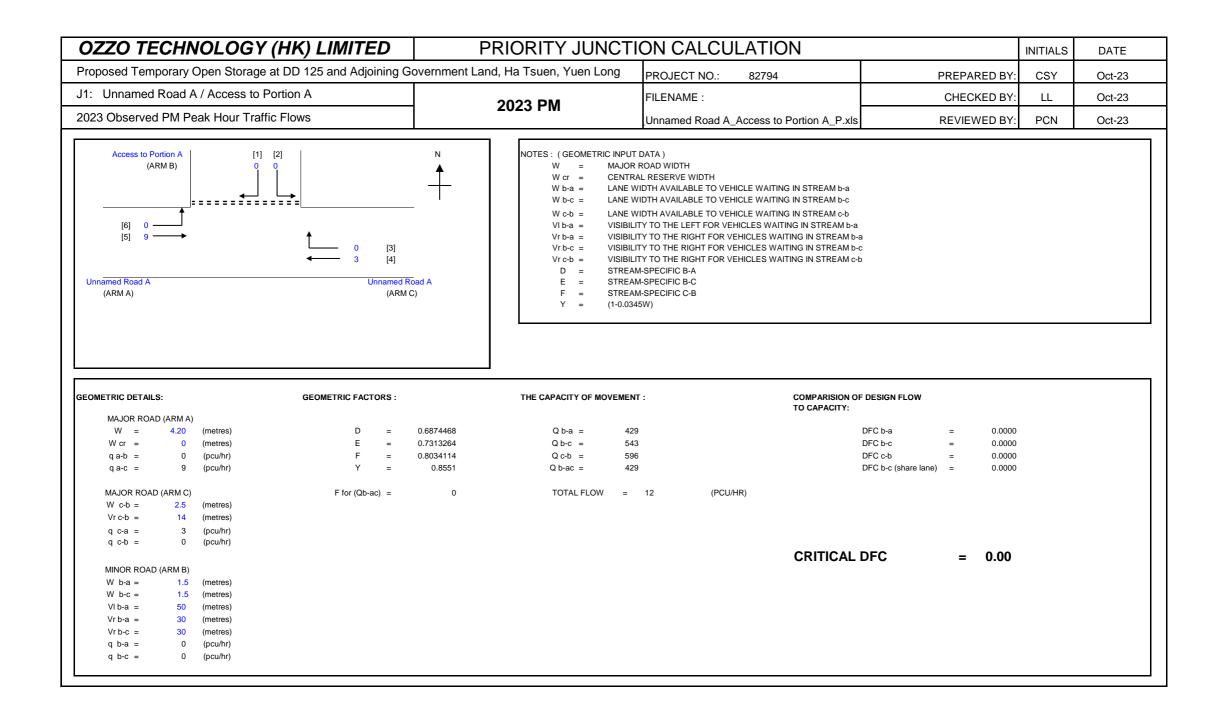


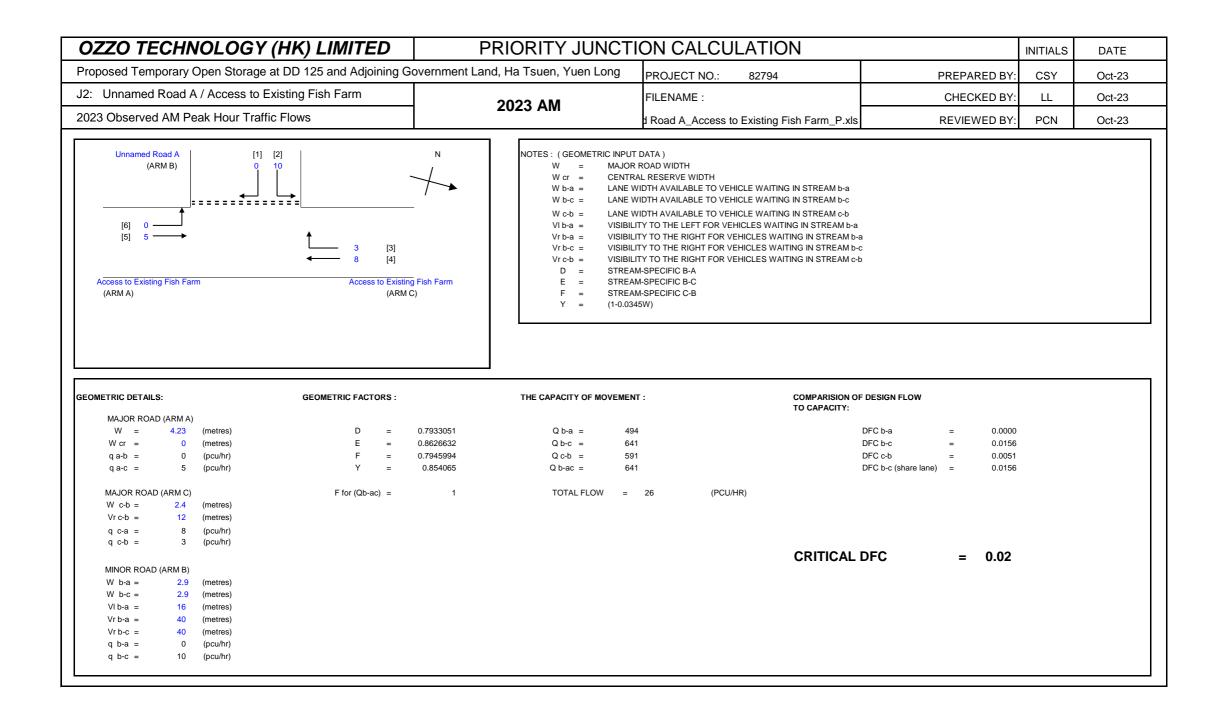
Final TIA Report

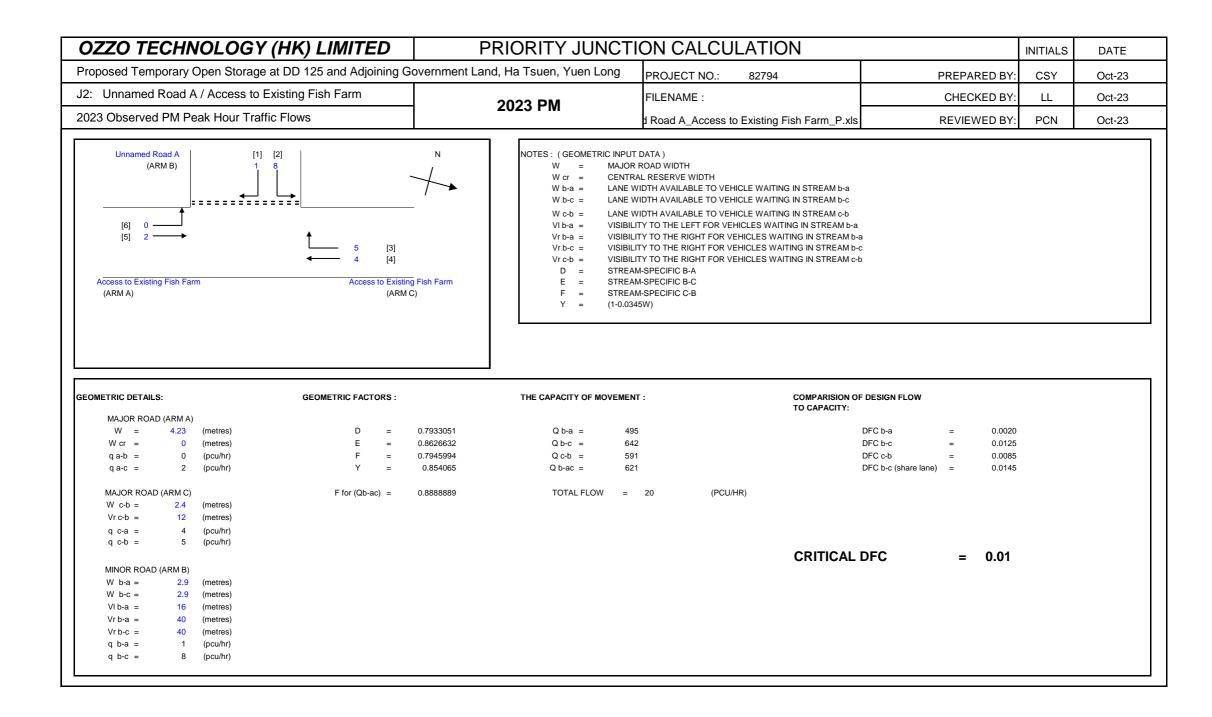
Appendix A

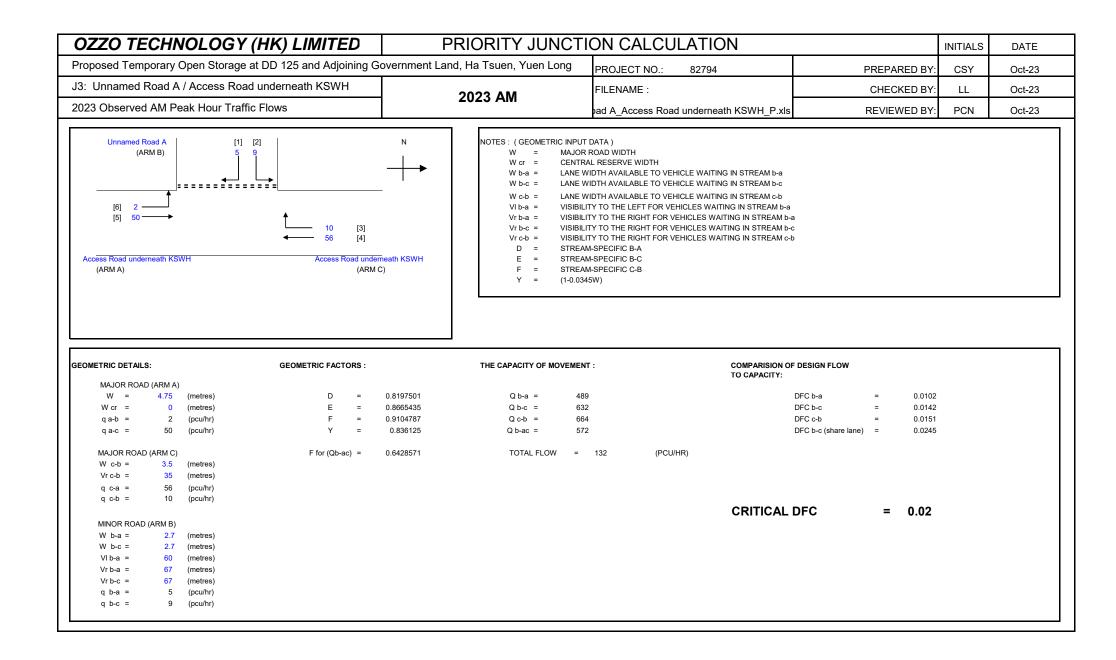
Conceptual Layout Plan and Swept Path Analysis

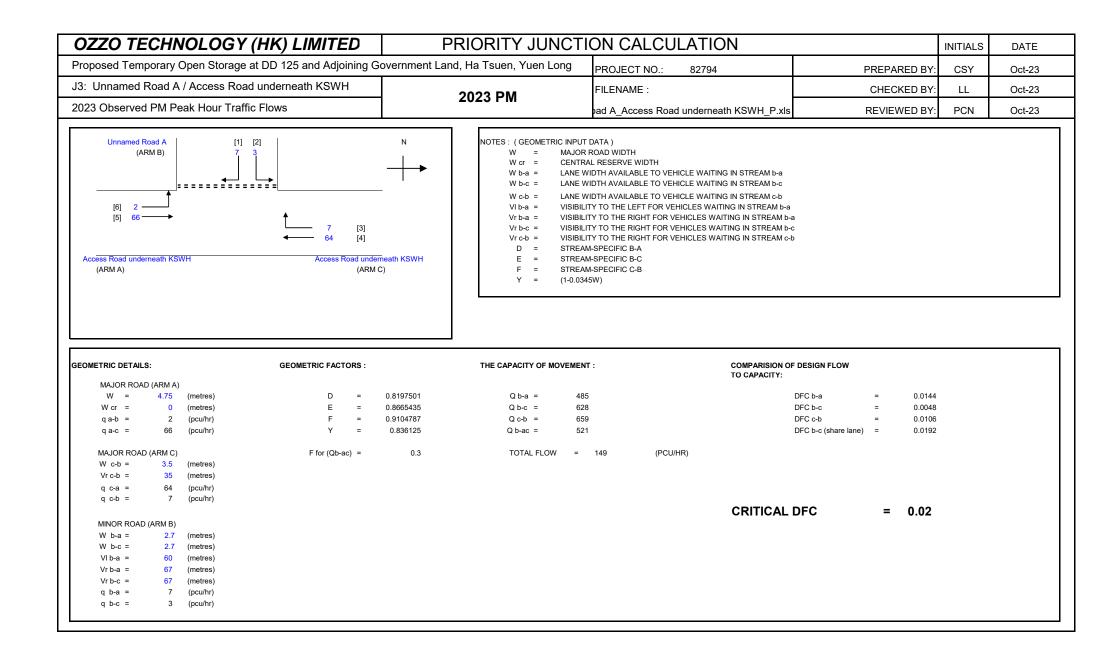


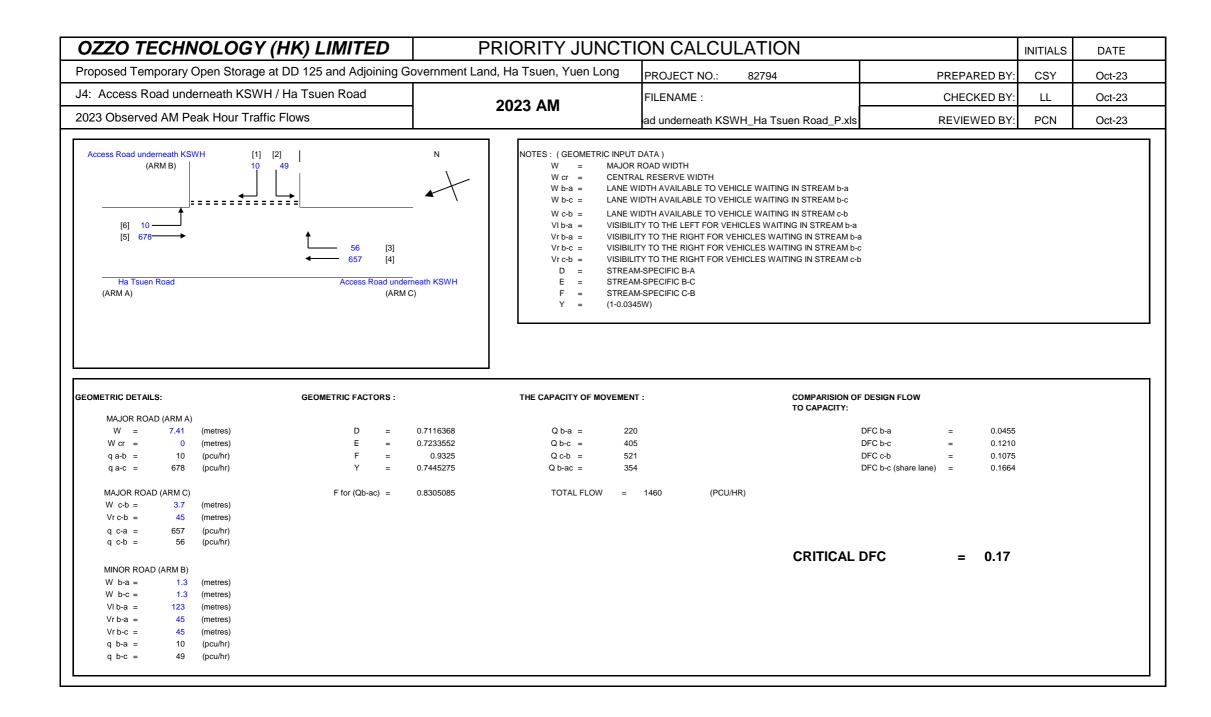


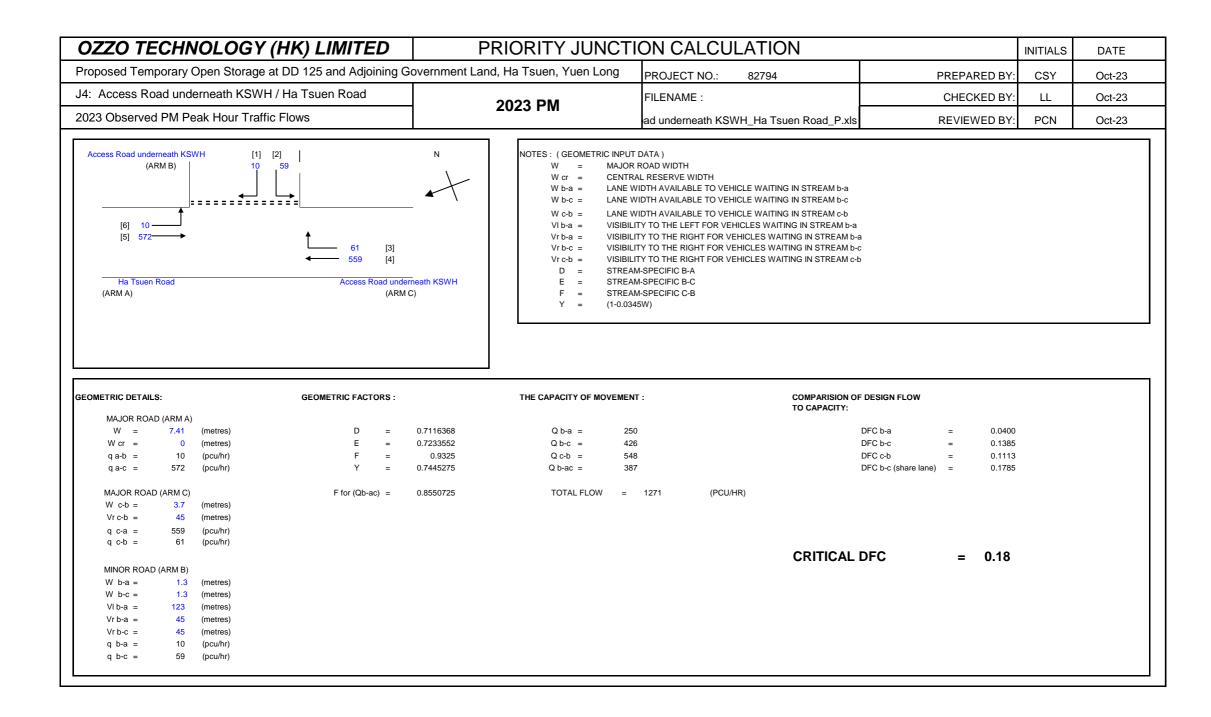

Final TIA Report


Appendix B


2023 Junction Calculations

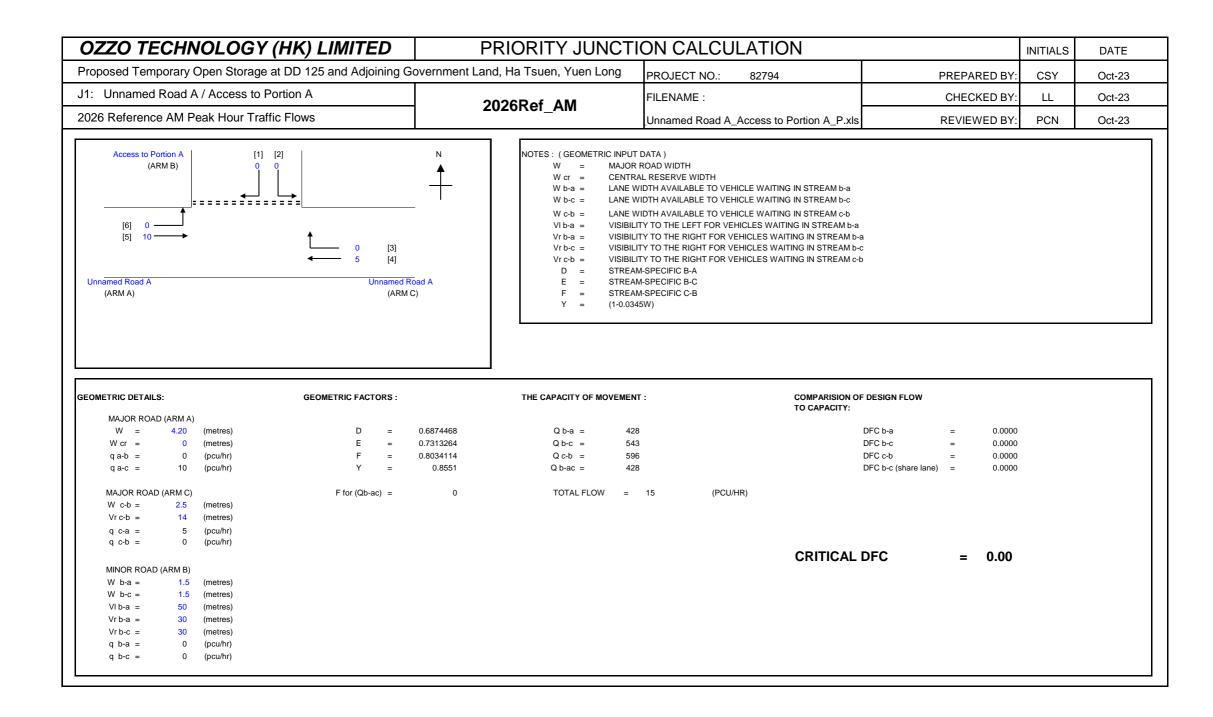


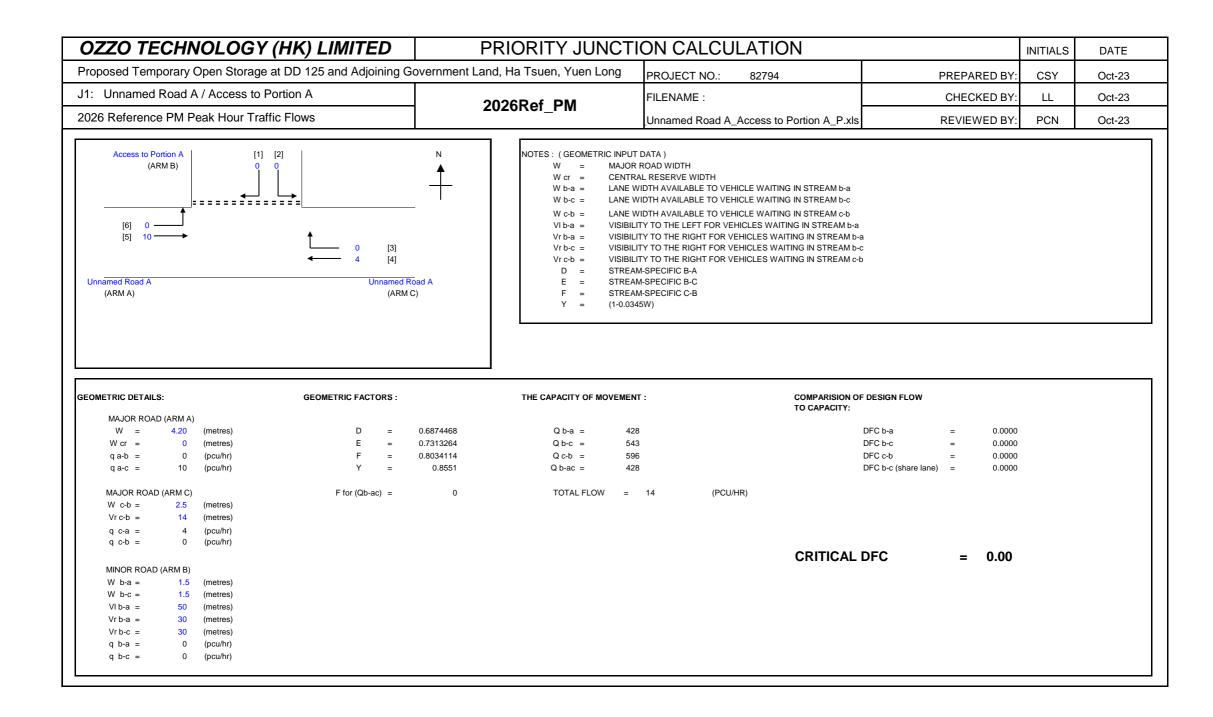


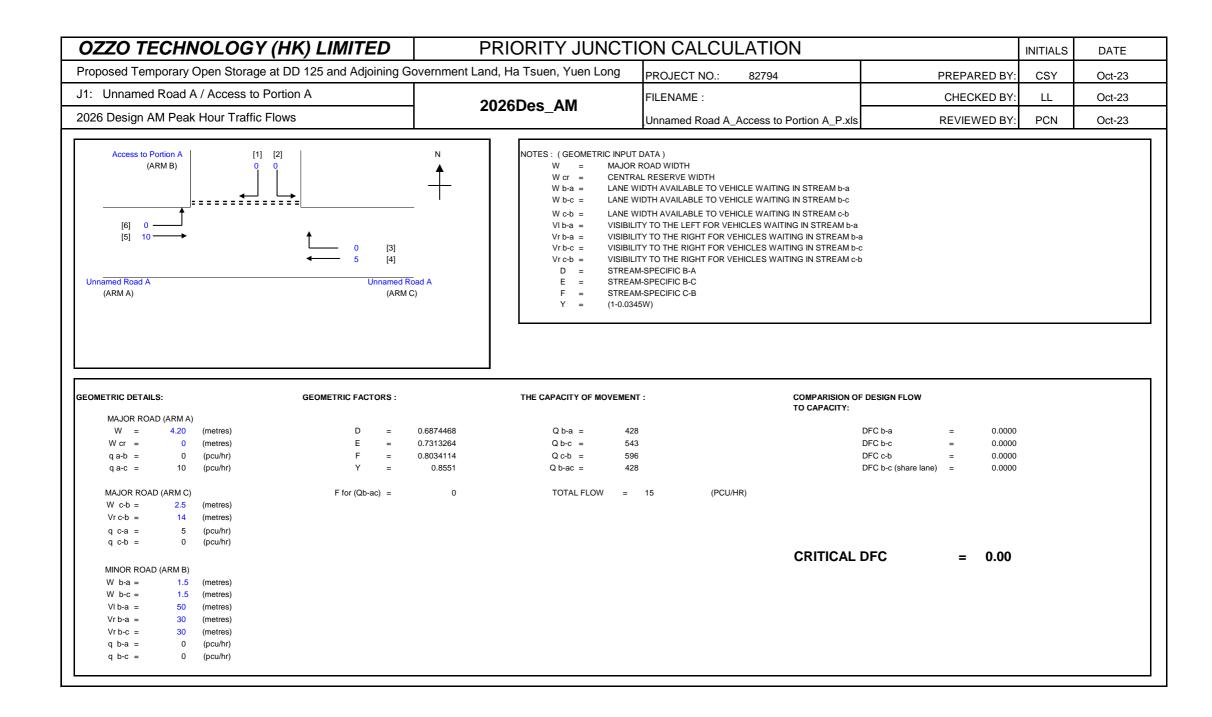


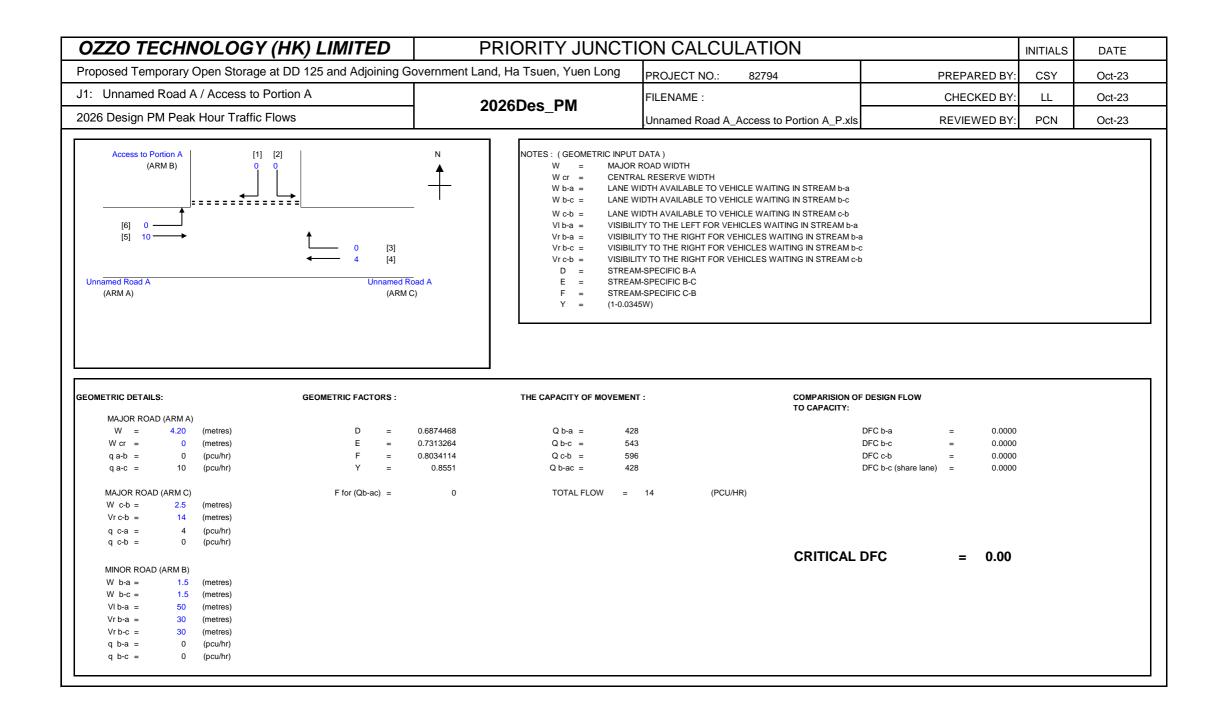
			(HK) LIMITED			FIC SIGNAL CALCULATION	1	INITIALS	DATE
Prop		Temporary Open Storage at DD 1		Land,	Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY	r: CSY	Oct-23
J5: ł	SWI	H Roundabout			2023 AM	FILENAME :	CHECKED BY	/: LL	Oct-23
2023	8 Obs	served AM Peak Hour Traffic Flows	3		ZUZJ AIVI	J5_KSWH Roundabout_R.xls	REVIEWED BY	Y: PCN	Oct-23
			(ARM D) 4 – Access Road	1117 308	157 157 16 1312 (ARM C)	×			
				Slip	Road of Kong Sham Western Higl	hway			
			A	Slip C	Road of Kong Sham Western Higl	hway			
	ΓPAR	AMETERS:	A			hway			
NPU [.] /	ΓPAR =	Approach half width (m)	4.0	C	D	hway			
NPU [.] /	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	B.2 9.3	hway			
NPU' / =	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	8.2 9.3 1.8	hway			
NPU' / = R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	8.2 9.3 1.8 10.0	hway			
NPU [*] / E R	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	8.2 9.3 1.8 10.0 71.0	hway			
NPU [*] - - - - - -	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	8.2 9.3 1.8 10.0 71.0 21.0	hway			
NPU [*] - - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 157	C 7.9 7.9 1.0 100.0 71.0 31.0 1312	8.2 9.3 1.8 10.0 71.0 21.0 4	hway			
NPU [*] - - - - - - - - - - - - - - - - - - -	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0 157	C 7.9 7.9 1.0 100.0 71.0 31.0	8.2 9.3 1.8 10.0 71.0 21.0	hway			
NPU ⁻ - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 157	C 7.9 7.9 1.0 100.0 71.0 31.0 1312	8.2 9.3 1.8 10.0 71.0 21.0 4	hway			
NPU' : : : : : : : : : : : : : : : : : : :	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 157 1117	C 7.9 1.0 100.0 71.0 31.0 1312 16 0.00	B.2 9.3 1.8 10.0 71.0 21.0 4 1308	hway			
NPU [*] - - - - - - - - - - - - -	= = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04	D 8.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98	hway			
NPU / - - R D 2 2 2 2 2 2 2 2 2 2 2 2 2	= = = = = PUT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57	hway			
NPU / = - - - - - - - - - - - - -	= = = = = = VUT P/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3	hway			
NPU' / = - - - - - - - - - - - - - - - - - -	= = = = = PUT P/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597	hway			
V E L R D A A Q Q C OUTF S K X2 M F Td	= = = = = = ?UT P/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12	hway			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12 0.61	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12 0.64				
NPU V = - - - - - - - - - - - - -	= = = = = = ?UT P/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1473	PCU	
NPU ⁻ / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 157 1117 0.90 1.08 4.96 3 1504 1.12 0.47 1055	C 7.9 7.9 1.0 100.0 71.0 31.0 1312 16 0.00 1.04 7.90 3 2394 1.12 0.61	B.2 9.3 1.8 10.0 71.0 21.0 4 1308 0.98 0.98 8.57 3 2597 1.12 0.64		1473 0.53	PCU	

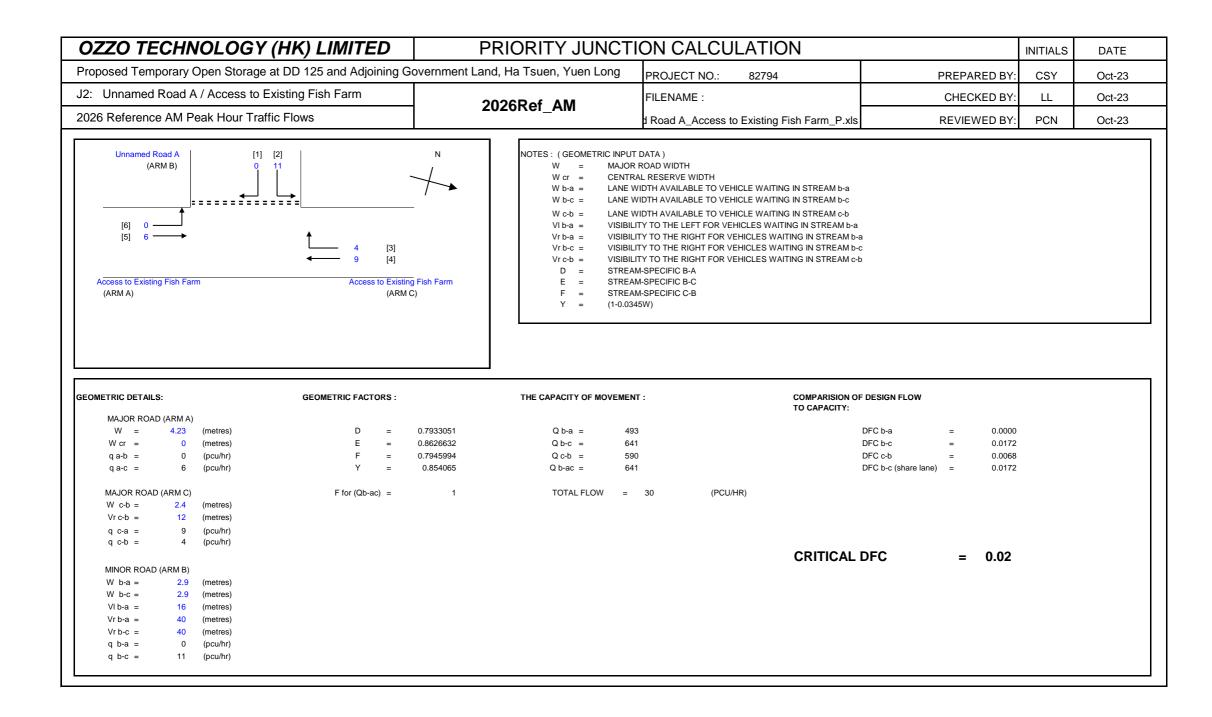
			' (HK) LIMITED		IRAFF	FIC SIGNAL CALCULATION		INITIALS	DATE
Prop	osed	d Temporary Open Storage at DD		nt Land,	Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY	CSY	Oct-23
J5: ł	SW	/H Roundabout			2023 PM	FILENAME :	CHECKED BY	/: LL	Oct-23
2023	3 Obs	served PM Peak Hour Traffic Flo	WS		2023 F IVI	J5_KSWH Roundabout_R.xls	REVIEWED BY	: PCN	Oct-23
			(ARM D) 3	904 		×			
				Silp	Road of Kong Sham Western Highv	way			
			A	C	D	w ay			
	T PAR	RAMETERS:	Α			w ay			
NPU	T PAR =		A 4.0			w ay			
NPU /		Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	B.2 9.3	w ay			
NPU / :	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	B.2 9.3 1.8	w ay			
NPU / :	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	B.2 9.3 1.8 10.0	w ay			
NPU / E R	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	D 8.2 9.3 1.8 10.0 71.0	w ay			
NPU / : : : : :	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	w ay			
NPU 2 3 3 3 3	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1063	B.2 9.3 1.8 10.0 71.0 21.0 3	w ay			
NPU 2 3 3 3 3	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0				
NPU 2 3 3 3 3 2 2 0 2 0 2 0	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1063	B.2 9.3 1.8 10.0 71.0 21.0 3	w ay			
NPU / - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 163	C 7.9 7.9 1.0 100.0 71.0 31.0 1063	B.2 9.3 1.8 10.0 71.0 21.0 3	w ay			
NPU / E A A A A A D D U T F A A A A A A A A A A A A A	= = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98	w ay			
NPU / - - - - - - - - - - - - -	= = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96	7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57	w ay			
NPU / - - - - - - - - - - - - -	= = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3	7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3	w ay			
NPU / = - - - - - - - - - - - - - - - - - -	= = = = = = 20T P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504	7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597	w ay			
NPU / = - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12	w ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12 0.61	B 2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12 0.64				
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12	B.2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1229	PCU	
V = - R D A Q Q	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) PARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 163 904 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1063 12 0.00 1.04 7.90 3 2394 1.12 0.61	B 2 9.3 1.8 10.0 71.0 21.0 3 1117 0.98 0.98 8.57 3 2597 1.12 0.64		1229 0.43	PCU	

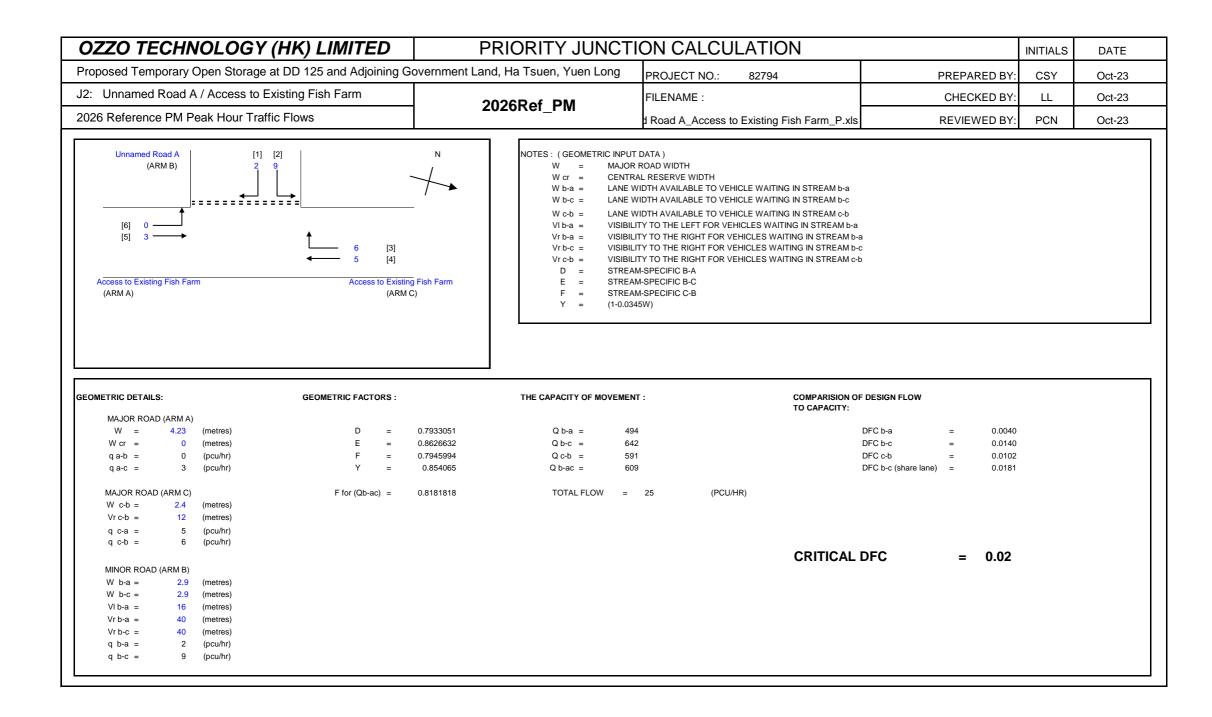

Proposed Temporary Open Storage of Construction Materials, Construction Machineries and Vehicles with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land

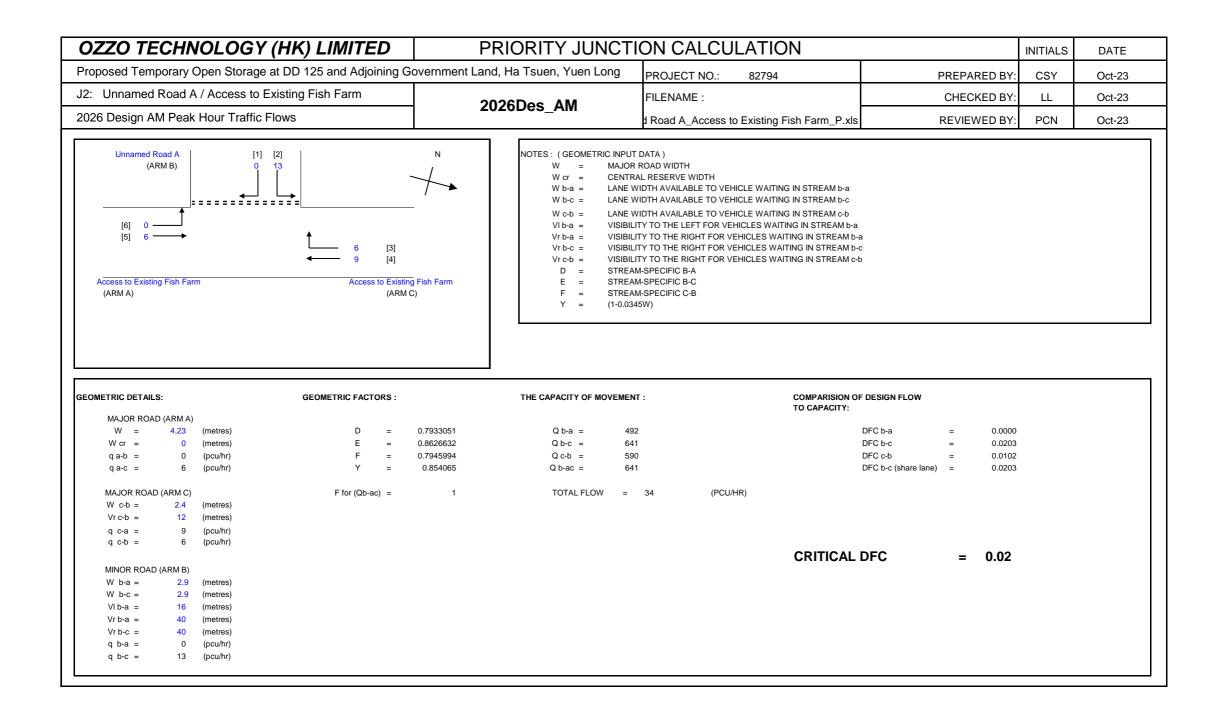


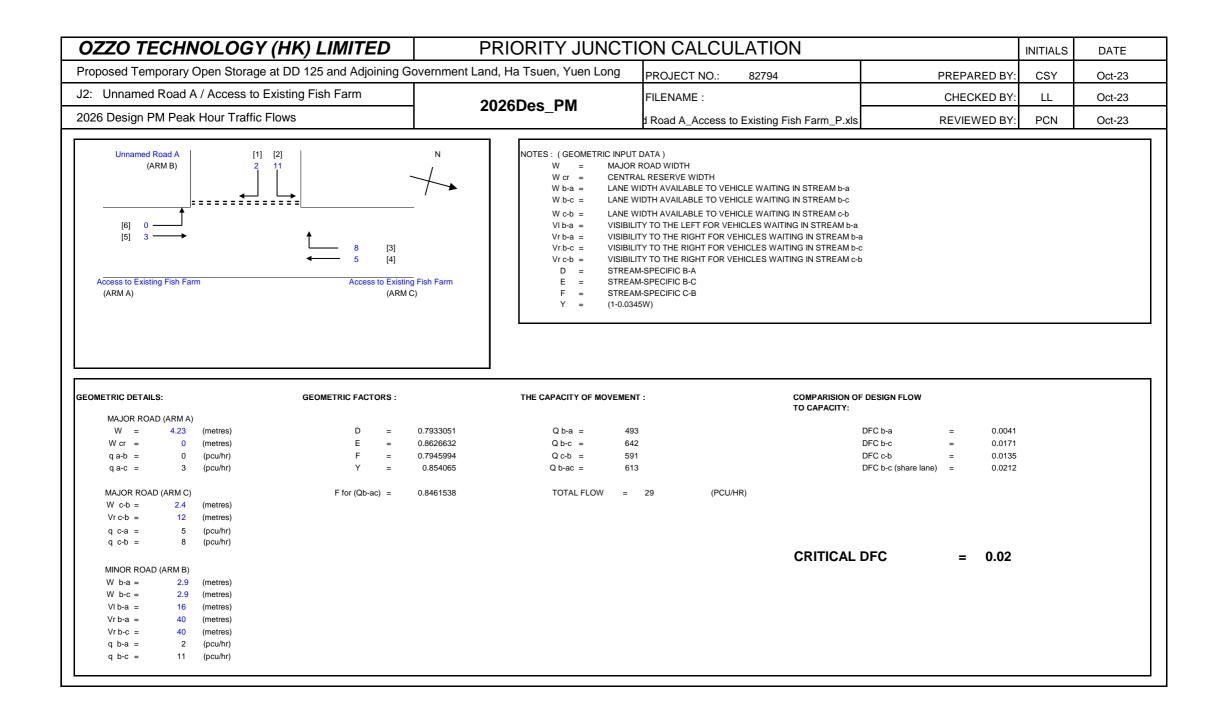

Final TIA Report

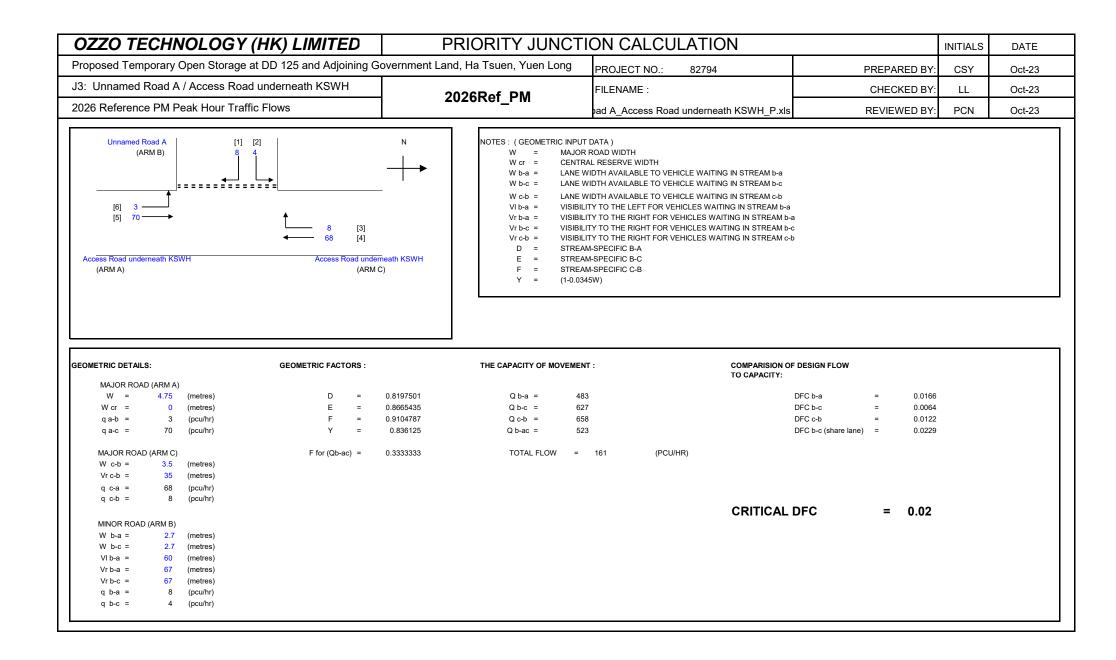

Appendix C

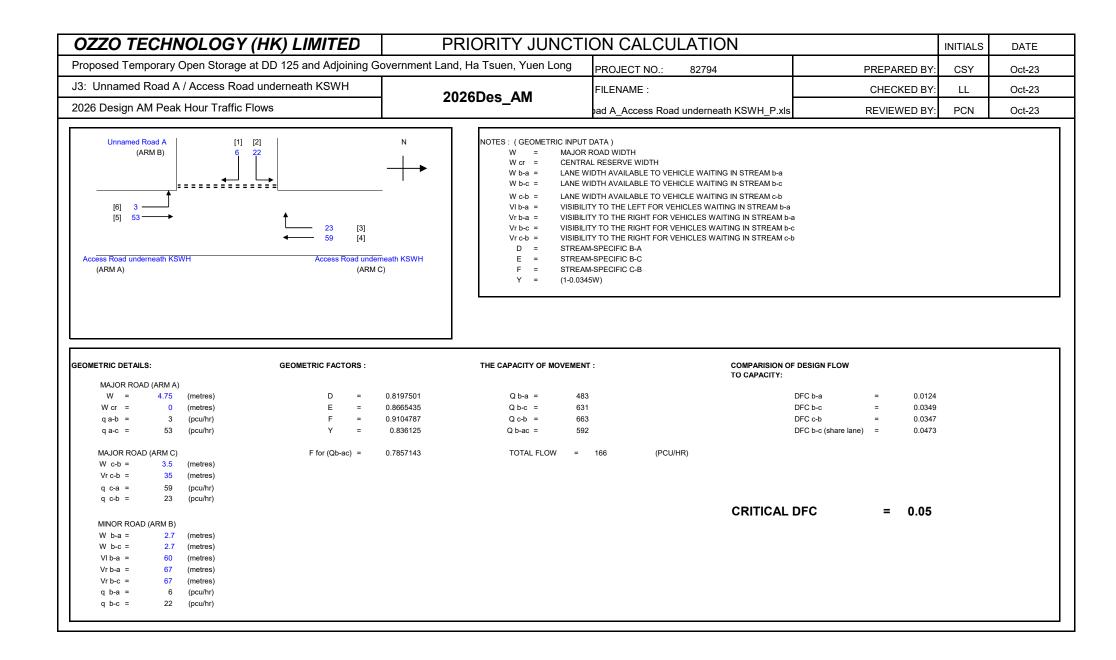

2026 Junction Calculations

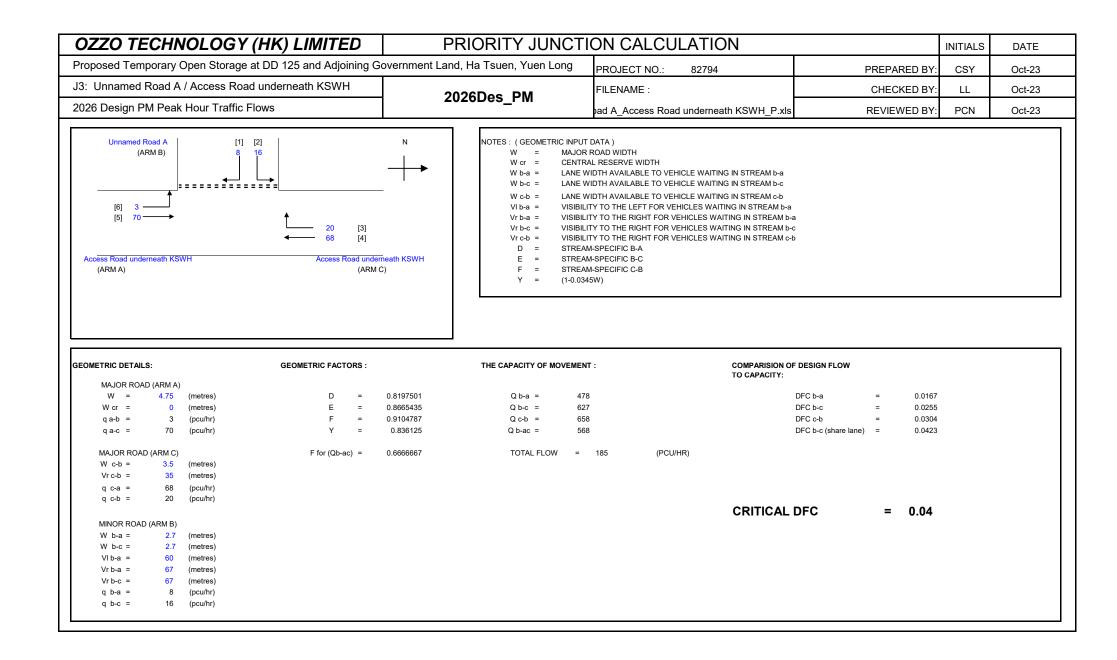


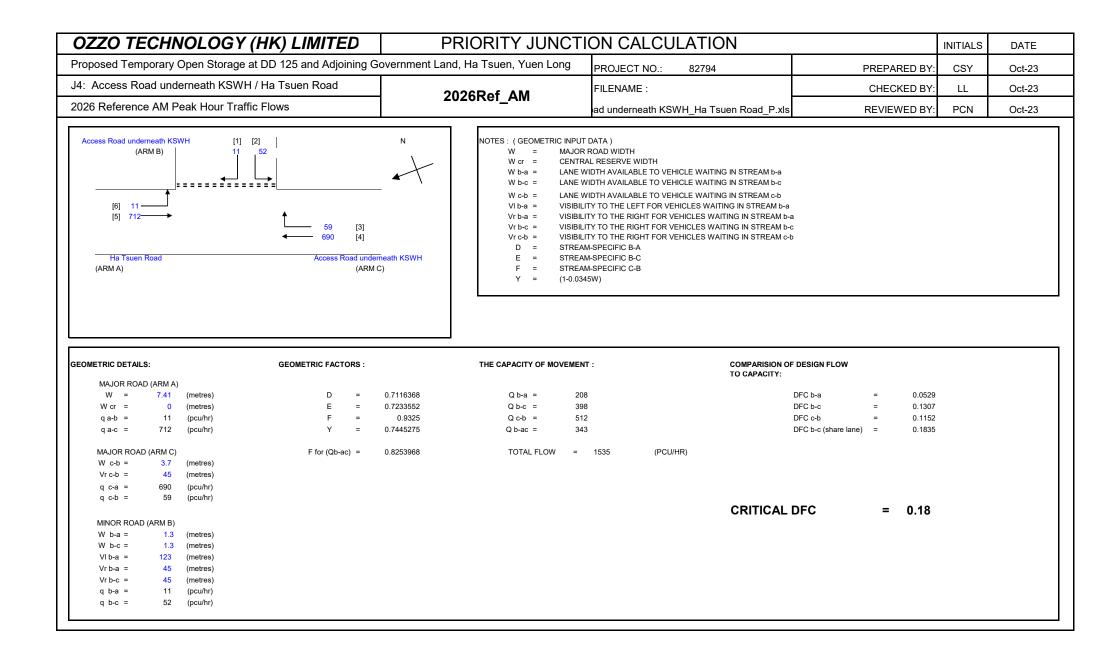


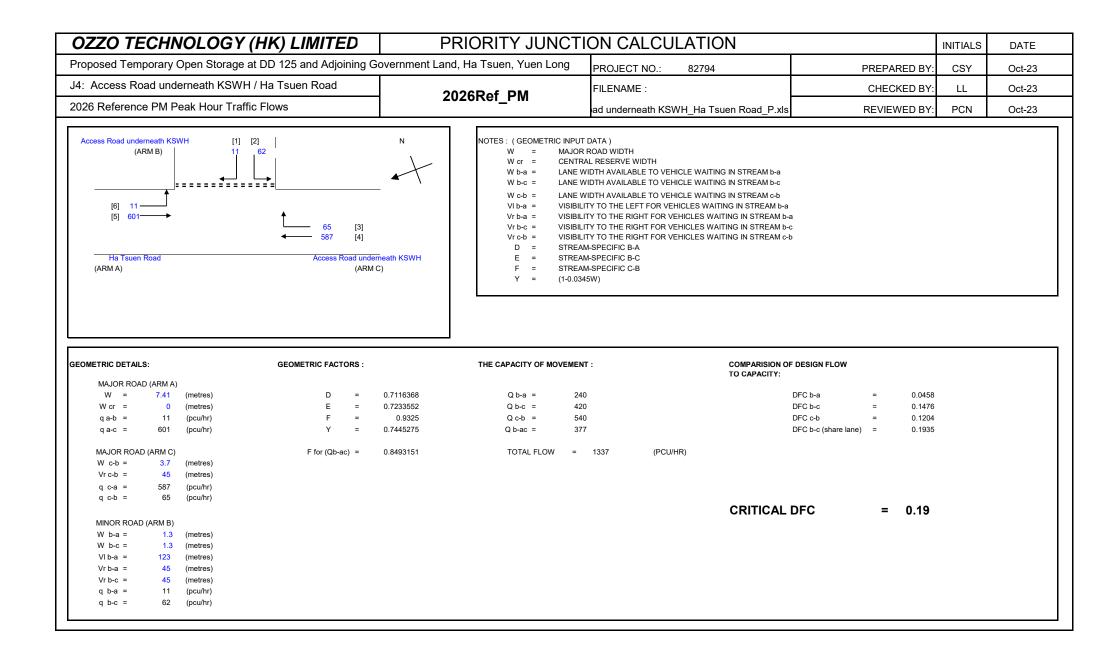


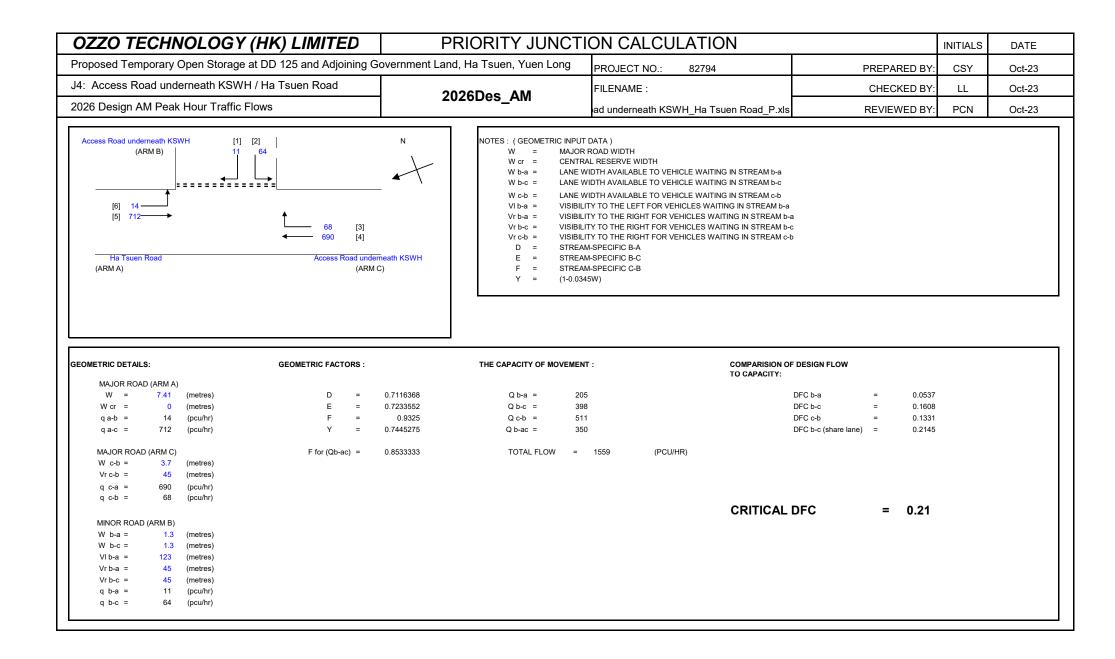


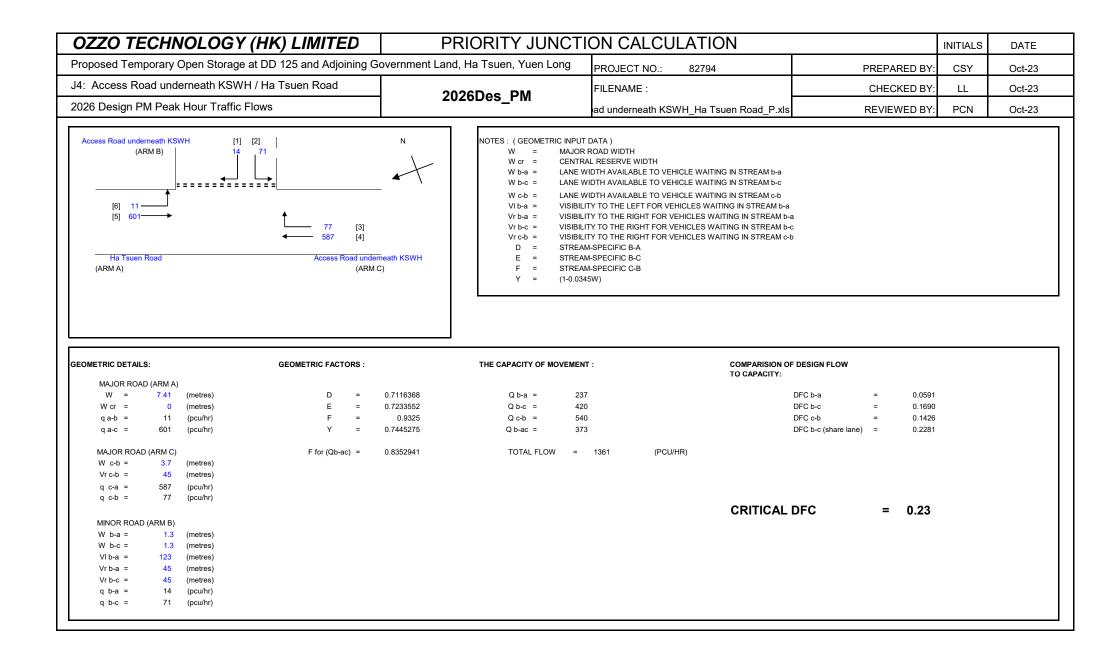










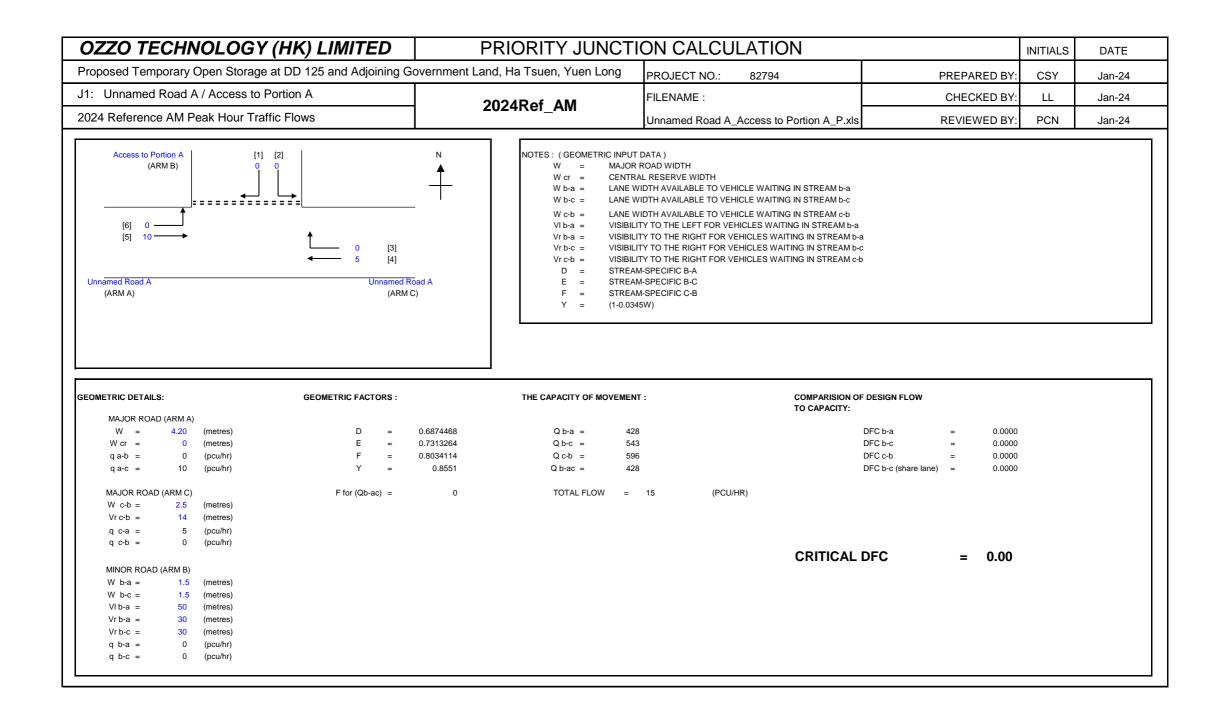


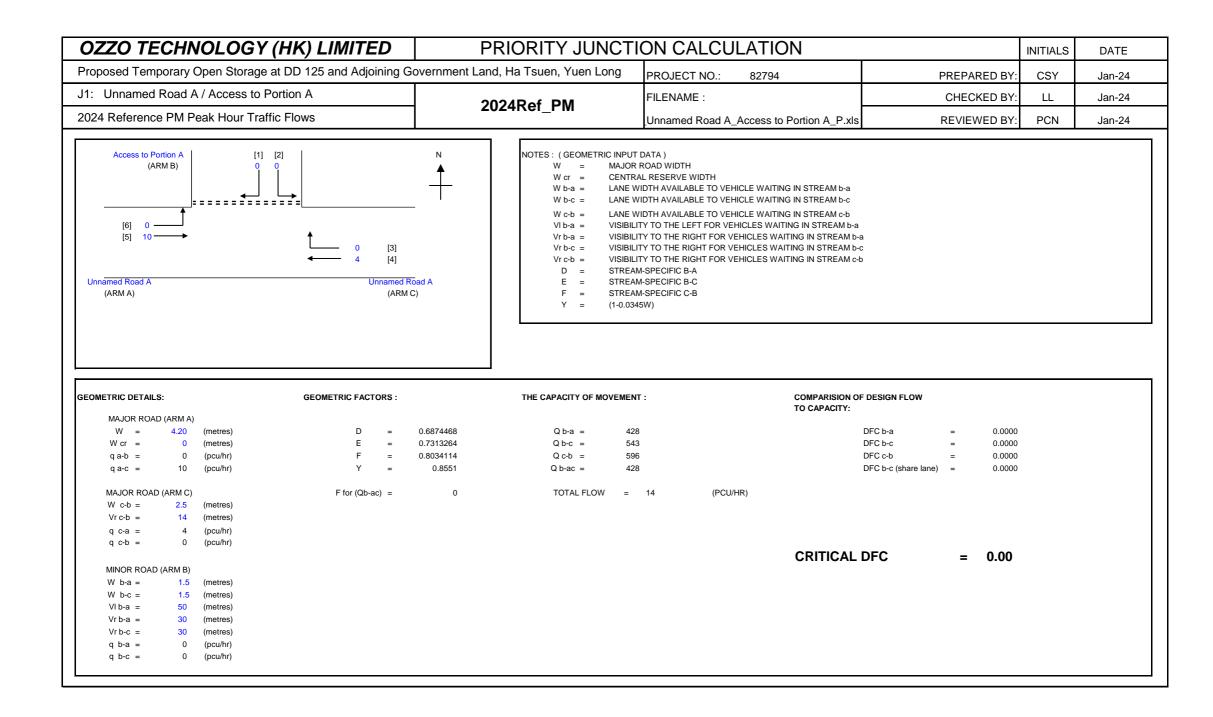
		<u>O TECHNOLOGY (</u>						INITIALS	
Prop	osed	Temporary Open Storage at DD 12			, Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED B	CSY	Oct-23
J5: k	SWI	H Roundabout			2026Ref_AM	FILENAME :	CHECKED BY	/: LL	Oct-23
2026	6 Refe	erence AM Peak Hour Traffic Flows	;		ZUZOREI_AN	J5_KSWH Roundabout_R.xls	REVIEWED BY	7: PCN	Oct-23
			(ARM D) 6 Access Road	1173					
				Slip	(ARM C) Road of Kong Sham Western H	lighway			
			A	Slip		lighway			
	ΓPAR	AMETERS:	A	-	Road of Kong Sham Western H	lighway			
ARM NPU ⁻	Γ PAR. =	AMETERS: Approach half width (m)	A	-	Road of Kong Sham Western H	lighway			
NPU				C	Road of Kong Sham Western H	lighway			
NPU	=	Approach half width (m)	4.0	C 7.9	Road of Kong Sham Western H	lighway			
NPU ⁻ V E	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	Road of Kong Sham Western H	lighway			
NPU ⁻ V E R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0	Road of Kong Sham Western H	lighway			
NPU ⁻ / E R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0	lighway			
NPU ⁻ - - - - - - - - - - - - - - - - - -	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 165	C 7.9 7.9 1.0 100.0 71.0 31.0 1378	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6	lighway			
NPU ⁻ - - - - - - - - - - - - - - - - - -	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0	lighway			
NPU ⁻ = - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 165	C 7.9 7.9 1.0 100.0 71.0 31.0 1378	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6	lighway			
NPU" - - - - - - - - - - - - - - - - - - -	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 165 1173	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374	lighway			
NPU - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 165	C 7.9 7.9 1.0 100.0 71.0 31.0 1378	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6	lighway			
NPU [*] - - - - - - - - - - - - -	= = = = = = PUT P4 =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 165 1173 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17 0.00	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374 0.98	lighway			
NPU ⁻ - - - - - - - - - - - - -	= = = = = = PUT P4 = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 165 1173 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17 0.00 1.04	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374 0.98 0.98	lighway			
NPU ⁻ = - - - - - - - - - - - - - - - - - -	= = = = = PUT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 165 1173 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17 0.00 1.04 7.90	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374 0.98 0.98 8.57	lighway			
NPU ⁻ - - - - - - - - - - - - -	= = = = = PUT P4 = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 165 1173 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17 0.00 1.04 7.90 3	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374 0.98 0.98 8.57 3	lighway			
NPU ⁻ / = - - - - - - - - - - - - -	= = = = = PUT P/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	4.0 6.7 4.8 30.0 71.0 12.0 165 1173 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17 0.00 1.04 7.90 3 2394	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374 0.98 8.57 3 2597	lighway			
NPU ⁻ / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 165 1173 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1378 17 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western H D 8.2 9.3 1.8 10.0 71.0 21.0 6 1374 0.98 0.98 8.57 3 2597 1.12	lighway		PCU	

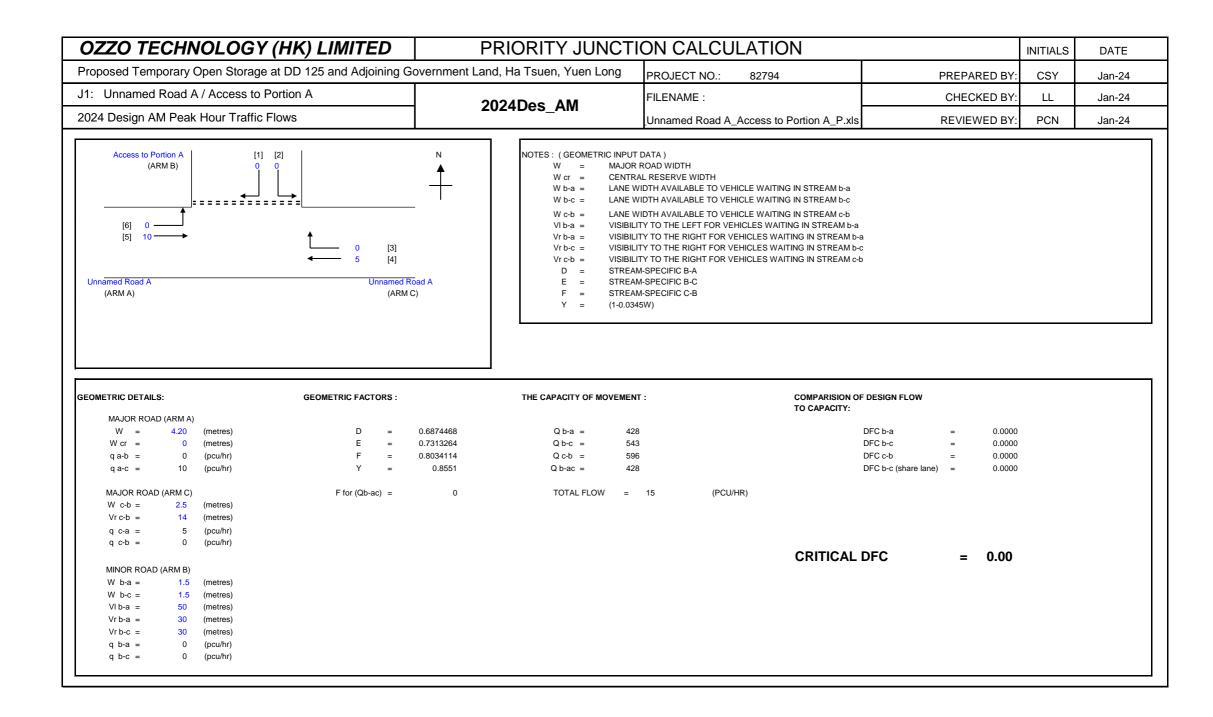
		• • • • • • • • • •	(HK) LIMITED	IRAFI	FIC SIGNAL CALCULATION		INITIALS	DATE
Prop	osed	Temporary Open Storage at DD 1		d, Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY	CSY	Oct-23
J5: I	KSWI	H Roundabout		2026Ref_PM	FILENAME :	CHECKED BY	': LL	Oct-23
2026	6 Ref	erence PM Peak Hour Traffic Flow	S	2026Rel_Fivi	J5_KSWH Roundabout_R.xls	REVIEWED BY	: PCN	Oct-23
			(ARM D) <u>5</u> → Access Road 1173					
			Sli	o Road of Kong Sham Western High	wav			
ARM			Sii A C	p Road of Kong Sham Western High	w ay			
	T PAR	AMETERS:			w ay			
NPU	T PAR =		A C		w ay			
NPU		AMETERS: Approach half width (m) Entry width (m)	A C	D	w ay			
NPU	=	Approach half width (m)	A C 4.0 7.9	D 8.2	w ay			
NPU / =	= =	Approach half width (m) Entry width (m)	A C 4.0 7.9 6.7 7.9	D 8.2 9.3	w ay			
NPU / :	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	A C 4.0 7.9 6.7 7.9 4.8 1.0	D 8.2 9.3 1.8	w ay			
NPU / = R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0	D 8.2 9.3 1.8 10.0	w ay			
NPU / = - R D	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0	D 8.2 9.3 1.8 10.0 71.0	w ay			
NPU - - - 2 2 2	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	w ay			
NPU / = - R D D A Q Qc	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117	D 8.2 9.3 1.8 10.0 71.0 21.0 5	w ay			
NPU / =	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173	w ay			
NPU / =	= = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98	w ay			
NPU / = - R D 2 2 2 2 2 2 2 2 2 2 2 2 2	= = = = = = PUT P/ =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173	w ay			
NPU / = - - R D D Q Q Q C D UTF S C C C 2	= = = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00 1.08 1.04	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98 0.98	w ay			
NPU / = - R 2 2 2 2 2 2 2 2 2 2 2 2 2	= = = = = = PUT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00 1.08 1.04 4.96 7.90	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98 0.98 0.98 8.57	w ay			
NPU / = - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= = = = = = PUT P/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00 1.08 1.04 4.96 7.90 3 3	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98 0.98 8.57 3	w ay			
NPU / = - - - - - - - - - - - - - - - - - -	= = = = = = PUT P/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00 1.08 1.04 4.96 7.90 3 3 1504 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98 0.98 8.57 3 2597	w ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00 1.08 1.04 4.96 7.90 3 3 1504 2394 1.12 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1294	PCU	
V = - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.0 71.0 71.0 12.0 31.0 172 1117 949 13 0.90 0.00 1.08 1.04 4.96 7.90 3 3 1504 2394 1.12 1.12 0.47 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1173 0.98 0.98 8.57 3 2597 1.12 0.64		1294 0.45	PCU	

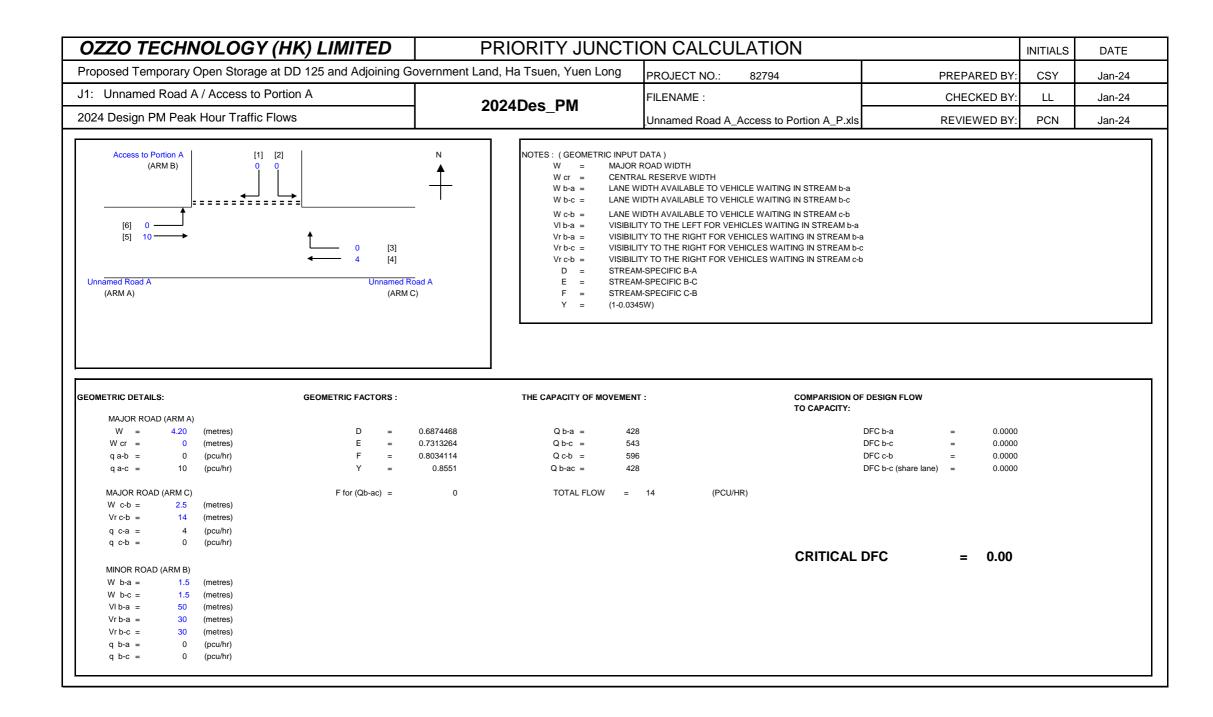
			(HK) LIMITED		IRAFF	IC SIGNAL C	CALCULATION	l	INITIALS	DATE
Prop	osed	Temporary Open Storage at DD 1		nd, Ha Tsuen, Y	/uen Long	PROJECT NO .:	82794	PREPARED BY	CSY	Oct-23
		H Roundabout		2020	6Des_AM	FILENAME :		CHECKED BY	: LL	Oct-23
2026	6 Des	sign AM Peak Hour Traffic Flows		2020	ODes_AW	J5	KSWH Roundabout_R.xls	REVIEWED BY	: PCN	Oct-23
			(ARM D) <u>6</u> Access Road 1394		3) 17					
			S	lip Road of Kong Sh	ham Western Highw	av				
			A C	lip Road of Kong Sł	ham Western Highw	'ay				
	T PAR	AMETERS:			ham Western Highw	ay				
NPU	T PAR =	AMETERS:			ham Western Highw	/ ay				
NPU			A C	D	ham Western Highw	r ay				
NPU / E	=	Approach half width (m) Entry width (m) Effective length of flare (m)	A C 4.0 7.9 6.7 7.9 4.8 1.0	D 8.2 9.3 1.8	ham Western Highw	/ ay				
NPU / :	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100.	D 8.2 9.3 1.8 D 10.0	ham Western Highw	/ ay				
ARM NPU Z	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0	D 8.2 9.3 1.8 0 10.0 71.0	ham Western Highw	/ ay				
NPU / = - R D	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0	D 8.2 9.3 1.8 0 10.0 71.0 21.0	ham Western Highw	/ ay				
NPU - - - - - - - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6	ham Western Highw	/ ay				
NPU - - - 2 2 2	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0	D 8.2 9.3 1.8 0 10.0 71.0 21.0	ham Western Highw	/ ay				
NPU / = - R D D A Q Qc		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6	ham Western Highw	/ ay				
NPU / = - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6	ham Western Highw	/ ay				
NPU / =	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394	ham Western Highw	/ ay				
NPU - - - 2 2 2 2 2 2 2 2 2 2 2 2 2	= = = = = = PUT P/ =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17 0.90 0.00	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98	ham Western Highw	/ ay				
NPU / = - - - - - - - - - - - - -	= = = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17 0.90 0.00 1.08 1.04	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98 0.98	ham Western Highw	/ ay				
NPU / = - - - - - - - - - - - - -	= = = = = = PUT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 139 1190 17 0.90 0.00 1.08 1.04 4.96 7.90	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98 0.98 8.57 3	ham Western Highw	/ ay				
NPU / = - - - - - - - - - - - - -	= = = = = = PUT P/ = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17 0.90 0.00 1.08 1.04 4.96 7.90 3 3	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98 0.98 8.57 3 2597	ham Western Highw	/ ay				
NPU / = - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17 0.90 0.00 1.08 1.04 4.96 7.90 3 3 1504 239-	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98 0.98 8.57 3 2597	ham Western Highw	/ ay				
NPU = - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17 0.90 0.00 1.08 1.04 4.96 7.90 3 3 1504 239- 1.12 1.12	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98 0.98 8.57 3 2597 1.12 0.64	ham Western Highw	Total In Sum =		1573	PCU	
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	A C 4.0 7.9 6.7 7.9 4.8 1.0 30.0 100. 71.0 71.0 12.0 31.0 168 1399 1190 17 0.90 0.00 1.08 1.04 4.96 7.90 3 3 1504 239- 1.12 1.12 0.47 0.61	D 8.2 9.3 1.8 0 10.0 71.0 21.0 6 1394 0.98 0.98 8.57 3 2597 1.12 0.64	ham Western Highw	Total In Sum =	ical Approach =	1573 0.57	PCU	

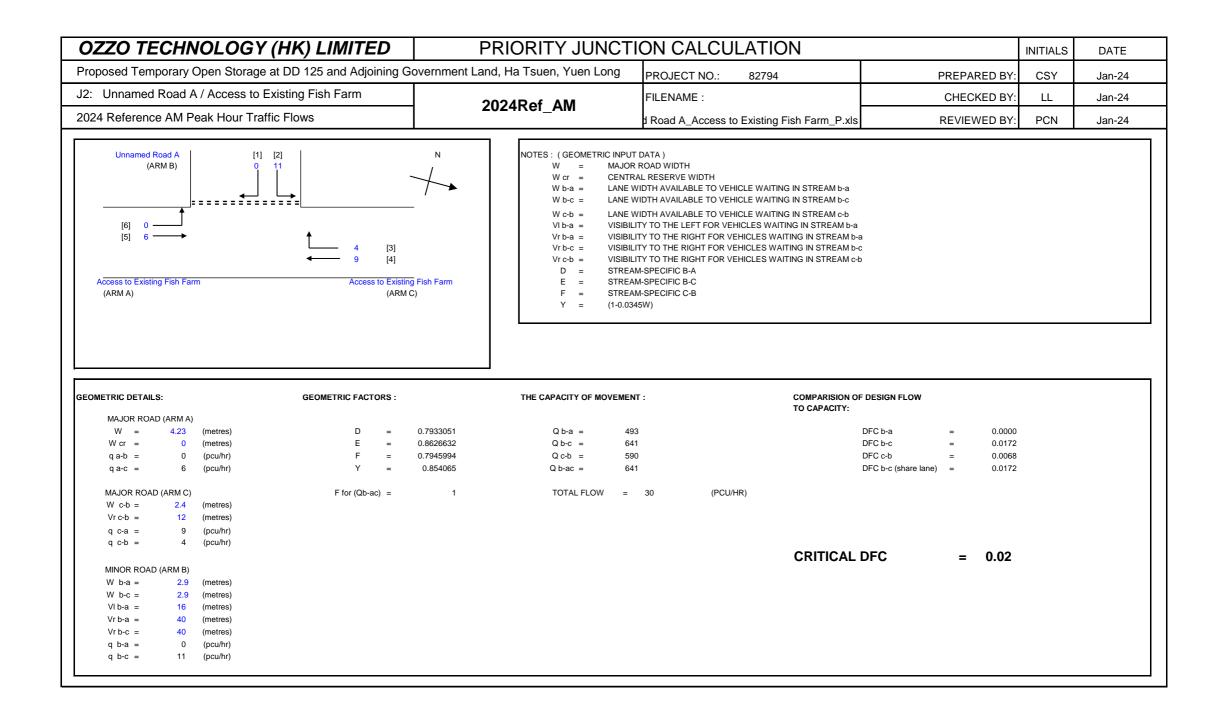
			(HK) LIMITED			IC SIGNAL CALCULATION	N	INITIALS	DATE
Prop	osed	Temporary Open Storage at DD 1		and, H	la Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY	CSY	Oct-23
J5: ł	SWI	H Roundabout			2026Dec DM	FILENAME :	CHECKED BY	': LL	Oct-23
2026	6 Des	ign PM Peak Hour Traffic Flows			2026Des_PM	J5_KSWH Roundabout_R.xls	REVIEWED BY	: PCN	Oct-23
			(ARM D) <u>5</u> Access Road 11		175 175 13 1138	×			
				Slip Ro	(ARM C) ad of Kong Sham Western Highw	ay			
ARM			A C			ay			
	T PAR	AMETERS:	A C		ad of Kong Sham Western Highw	ay			
NPU	=	Approach half width (m)	4.0 7.	<u> </u>	ad of Kong Sham Western Highw	ay			
NPU	= =	Approach half width (m) Entry width (m)	4.0 7. 6.7 7.	2 9 9 9 9	ad of Kong Sham Western Highw	ay			
NPU / :	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 7. 6.7 7. 4.8 1.	9 8 9 9 0 1	ad of Kong Sham Western Highw	ay			
NPU / = R	= = =	Approach half width (m) Entry width (m)	4.0 7. 6.7 7. 4.8 1. 30.0 10	9 8 9 9 0 1 00.0 1	ad of Kong Sham Western Highw	ay			
NPU / = R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 7. 6.7 7. 4.8 1. 30.0 10 71.0 7	9 8 9 9 0 1 00.0 1 1.0 7	ad of Kong Sham Western Highw	ay			
NPU - - - - -	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 7. 6.7 7. 4.8 1. 30.0 11 71.0 7 12.0 3	9 8 9 9 0 1 00.0 1 1.0 7 1.0 2	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0	ay			
NPU - - - 2 2	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 7. 6.7 7. 4.8 1. 30.0 10 71.0 7 12.0 3	9 8 9 9 0 1 1.0 7 1.0 2 138 5	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0	ay			
NPU - - - - - - - - - - - - -	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 7. 6.7 7. 4.8 1. 30.0 10 71.0 7 12.0 3 175 1	9 8 9 9 0 1 1.0 7 1.0 2 138 5	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5	ay			
NPU - - R D D D U T F	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 7. 6.7 7. 4.8 1. 30.0 10 71.0 7. 12.0 3. 175 1. 965 1.	9 8 9 5 0 1 00.0 1 1.0 7 1.0 2 138 5 3 1	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5	ay			
NPU - - - - - - - - - - - - - - - - - - -	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 7. 6.7 7. 4.8 1. 30.0 10 71.0 7 12.0 3 175 1 965 13 0.90 0.	9 8 9 9 9 0 1 1.0 7 1.0 2 138 5 3 1	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5 1193	ay			
NPU - - - - - - - - - - - - -	= = = = = = PUT PA	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 7. 6.7 7. 4.8 1. 30.0 1(71.0 7 12.0 3 175 1 965 13 0.90 0. 1.08 1.	9 8 9 5 0 1 1.0 7 1.0 2 138 5 3 1 00 0 04 0	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5 1193	ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 7. 6.7 7. 4.8 1. 30.0 1(71.0 7 12.0 3 175 1 965 13 0.90 0. 1.08 1.	9 8 9 9 9 0 1 1.0 7 1.0 2 138 5 3 1 00 0 04 0 90 8	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5 1193 0.98	ay			
NPU / = - - - - - - - - - - - - -	= = = = = = PUT PA = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 7. 6.7 7. 4.8 1. 30.0 11 71.0 7 12.0 3 175 1 965 13 0.90 0. 1.08 1. 4.96 7. 3 3	9 8 9 9 9 0 1 1.0 7 1.0 2 1.8 5 3 1 00 0 04 0 90 8	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5 1193 0.98 0.98 3.57	ay			
NPU = - - - - - - - - - - - - - - - - - -	= = = = = = PUT PA = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 7. 6.7 7. 4.8 1. 30.0 11 71.0 7 12.0 3 175 1 965 13 0.90 0. 1.08 1. 4.96 7. 3 3 1504 23	9 8 9 9 9 0 1 1.0 7 1.0 2 138 5 3 1 00 0 04 0 90 8 3394 2	ad of Kong Sham Western Highw 3.2 9.3 1.8 10.0 71.0 21.0 5 1193 0.98 3.57 3	ay			
NPU' / = - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2	4.0 7. 6.7 7. 4.8 1. 30.0 11 71.0 7 12.0 3 175 1 965 13 0.90 0. 1.08 1. 4.96 7. 3 3 1504 23 1.12 1.	9 8 9 9 9 0 1 1.0 7 1.0 2 138 5 3 1 00 0 04 0 90 8 3394 2 12 1	ad of Kong Sham Western Highw 	ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 8 9 9 9 0 1 1.0 7 1.0 2 138 5 3 1 138 5 3 1 00 0 04 0 90 8 3394 2 12 1 61 0	ad of Kong Sham Western Highw 	Total In Sum =	1318	PCU	

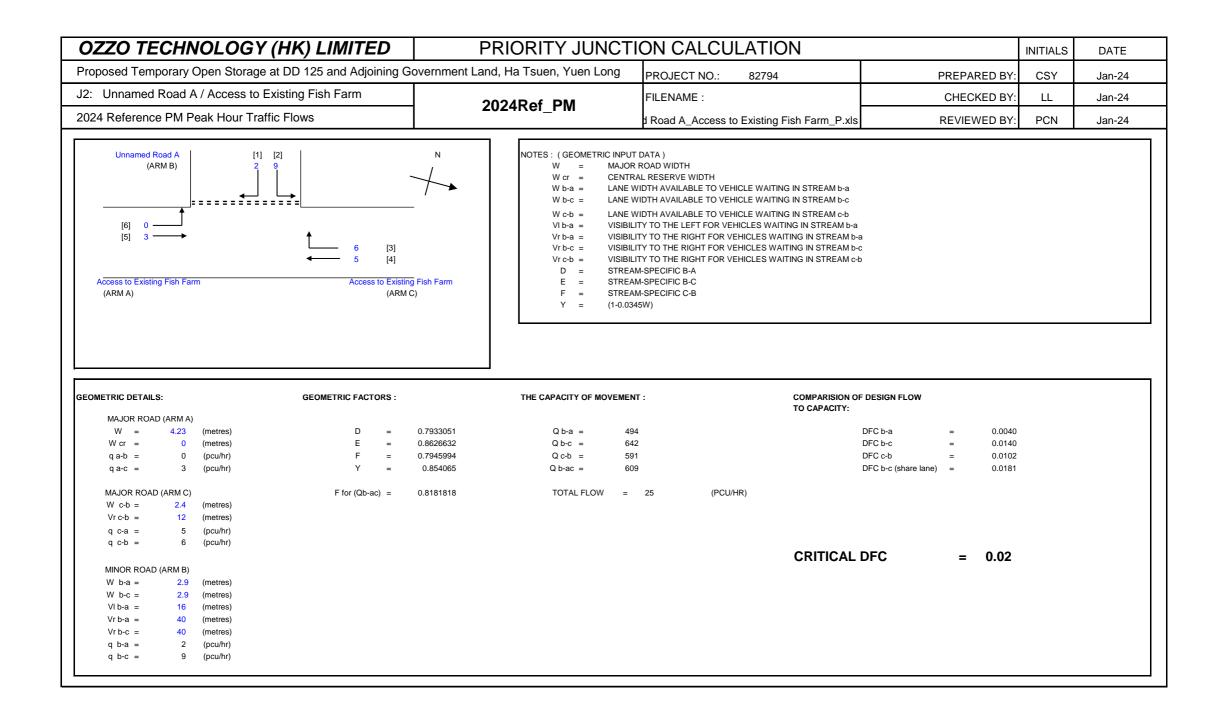

Proposed Temporary Open Storage of Construction Materials, Construction Machineries and Vehicles with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land, Filling of Pond and Excavation of Land

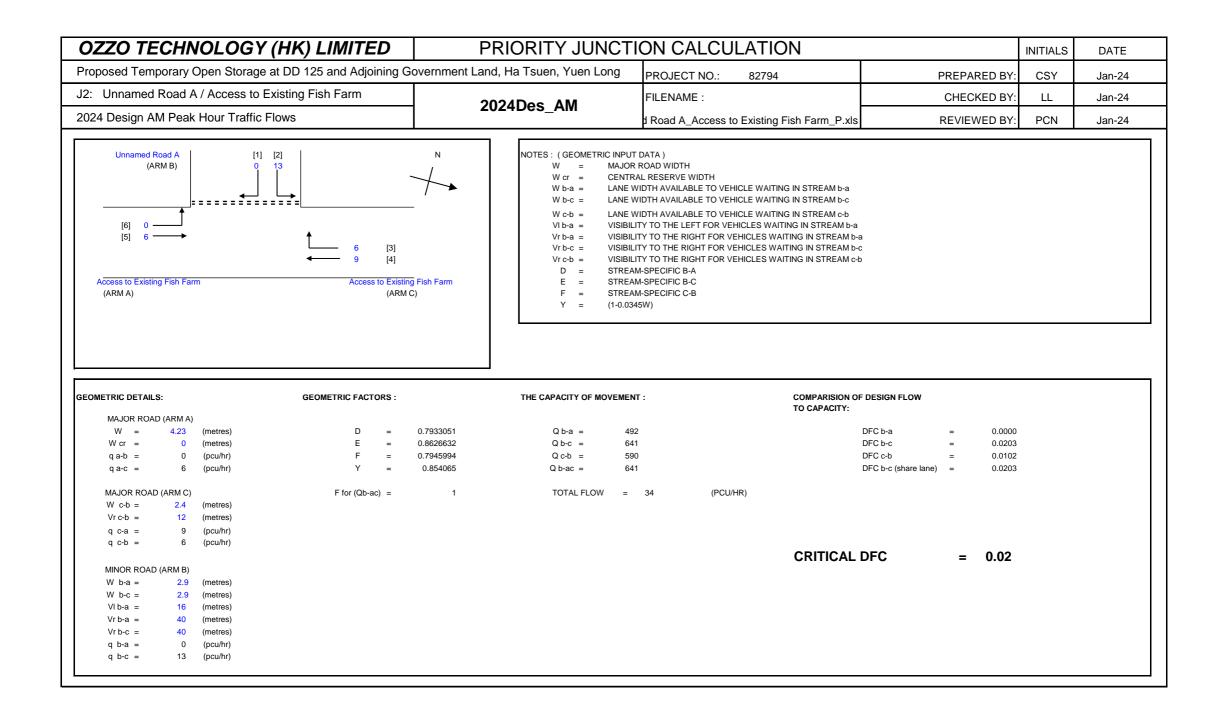


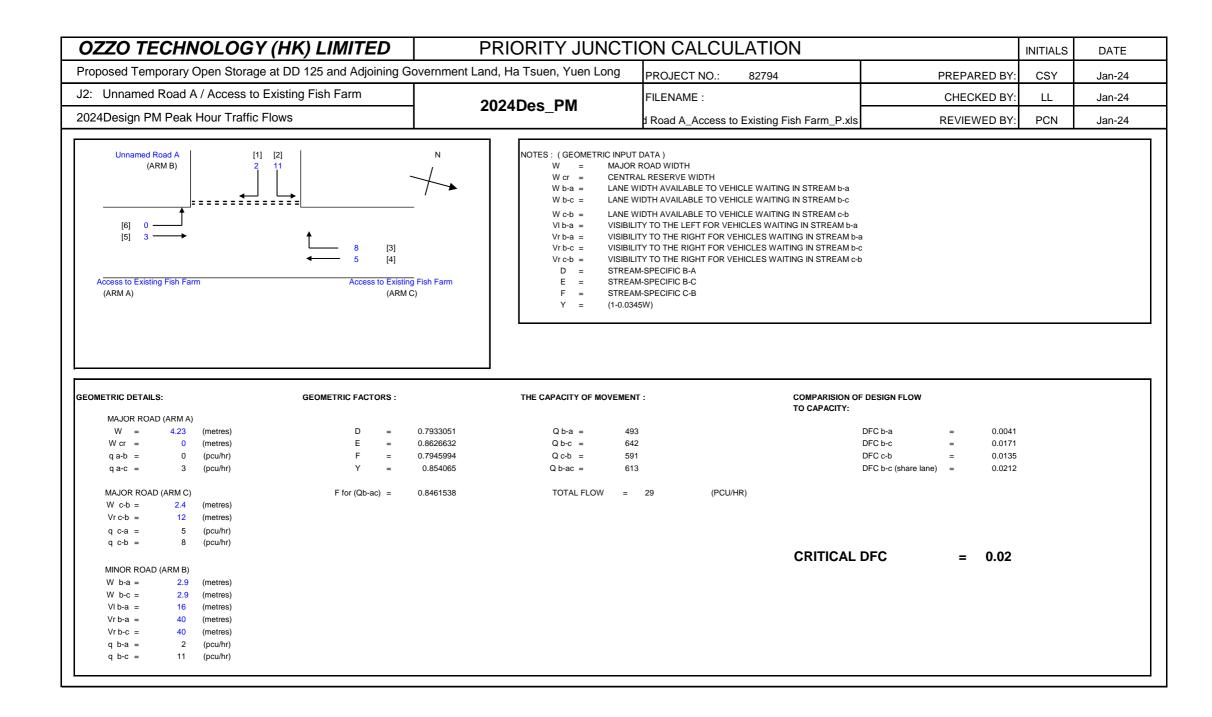

Final TIA Report

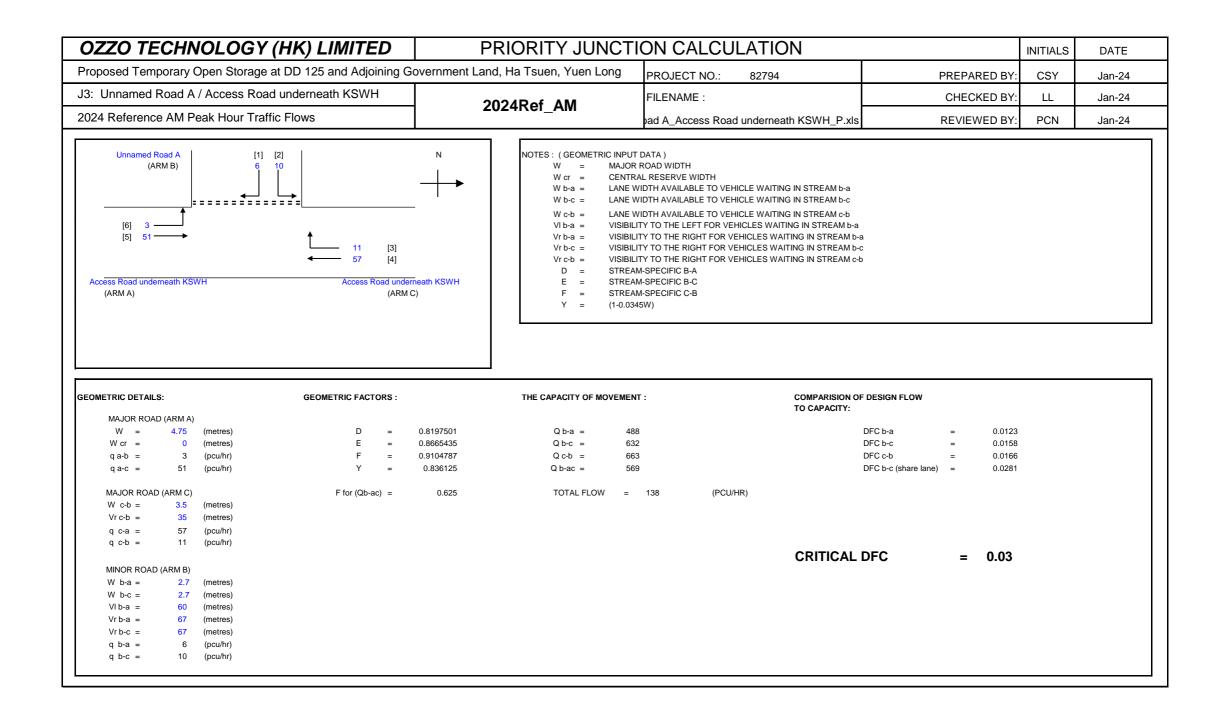

Appendix D

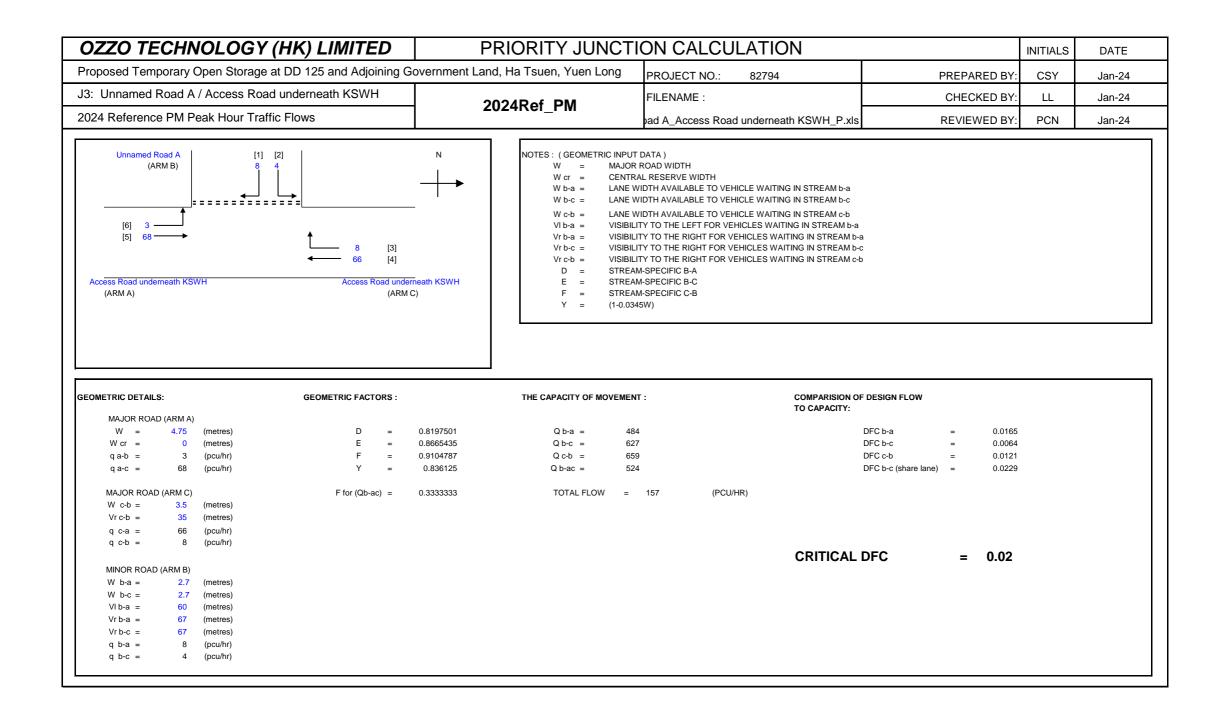

2024 Junction Calculations

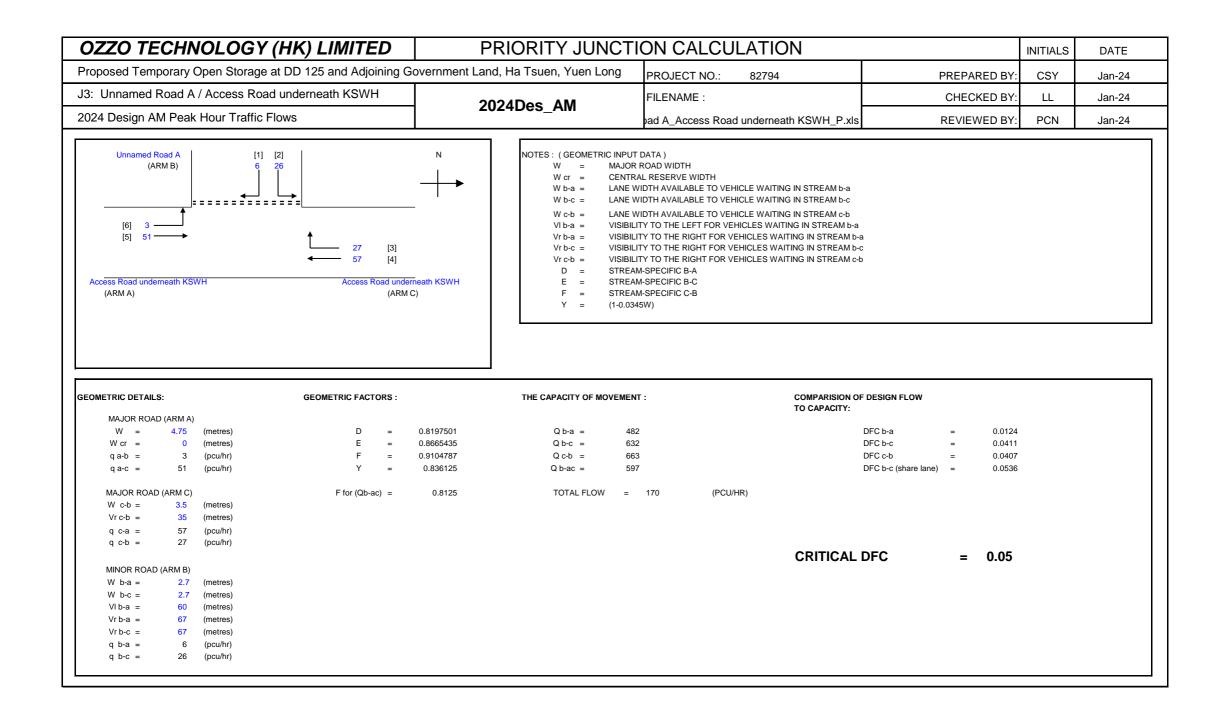


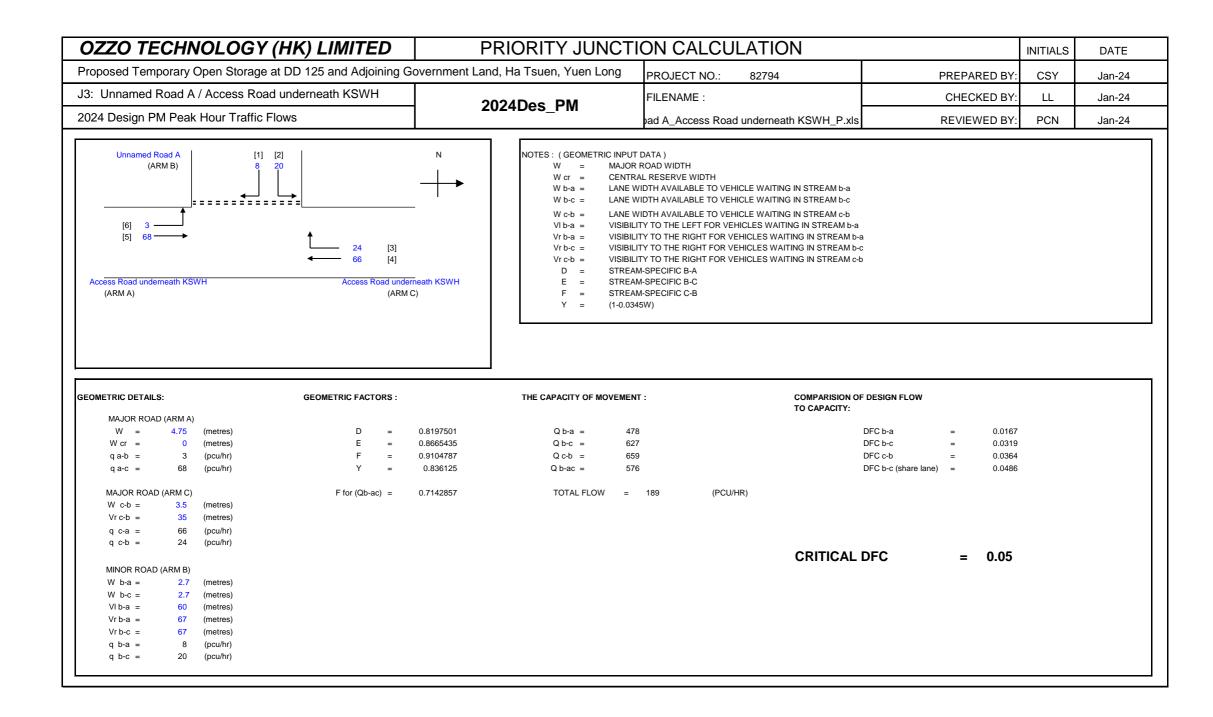


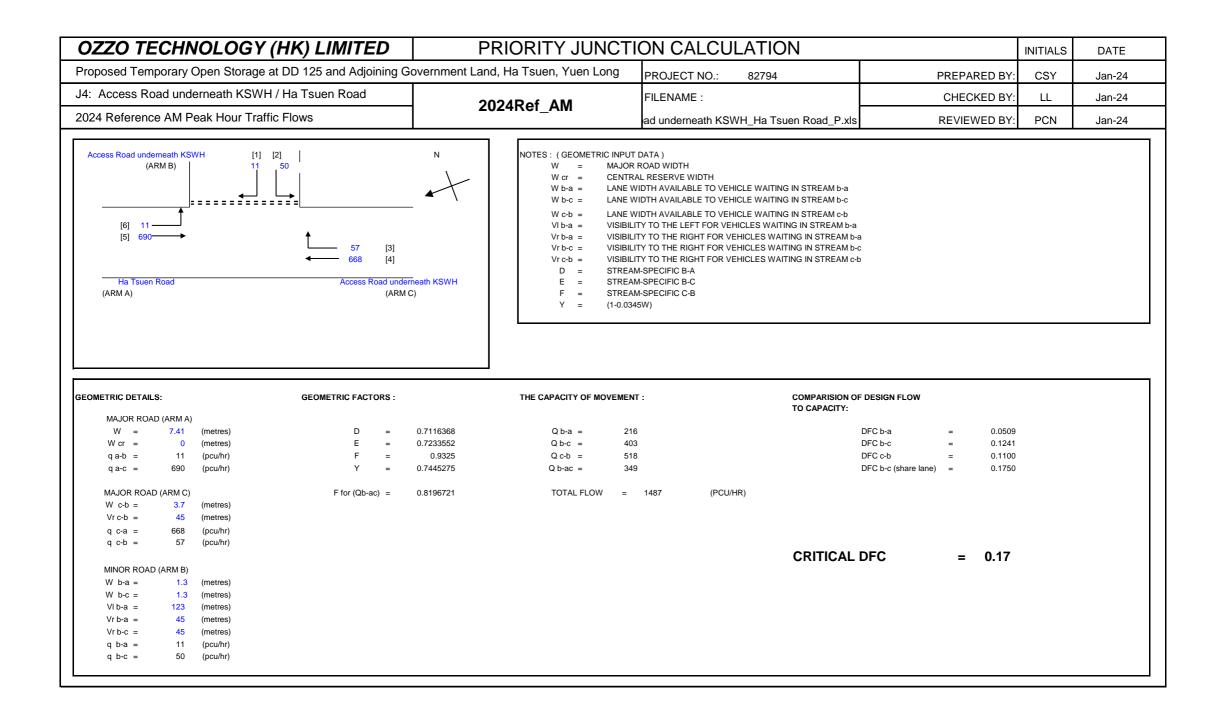


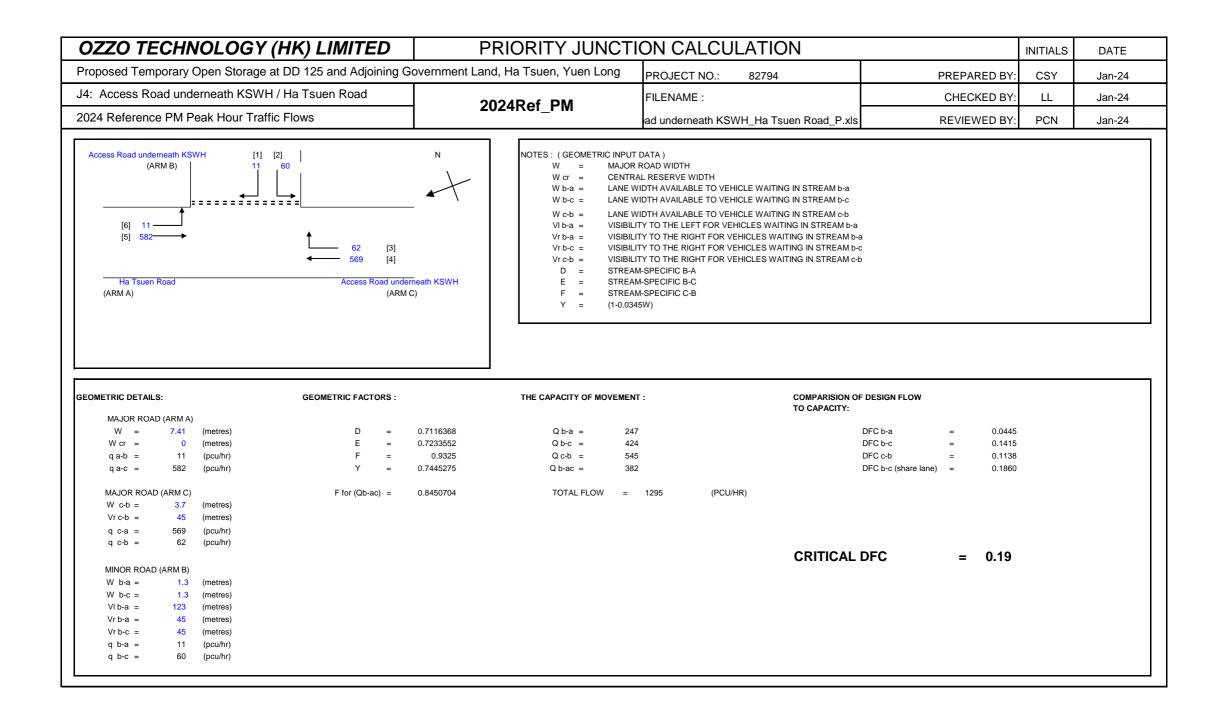


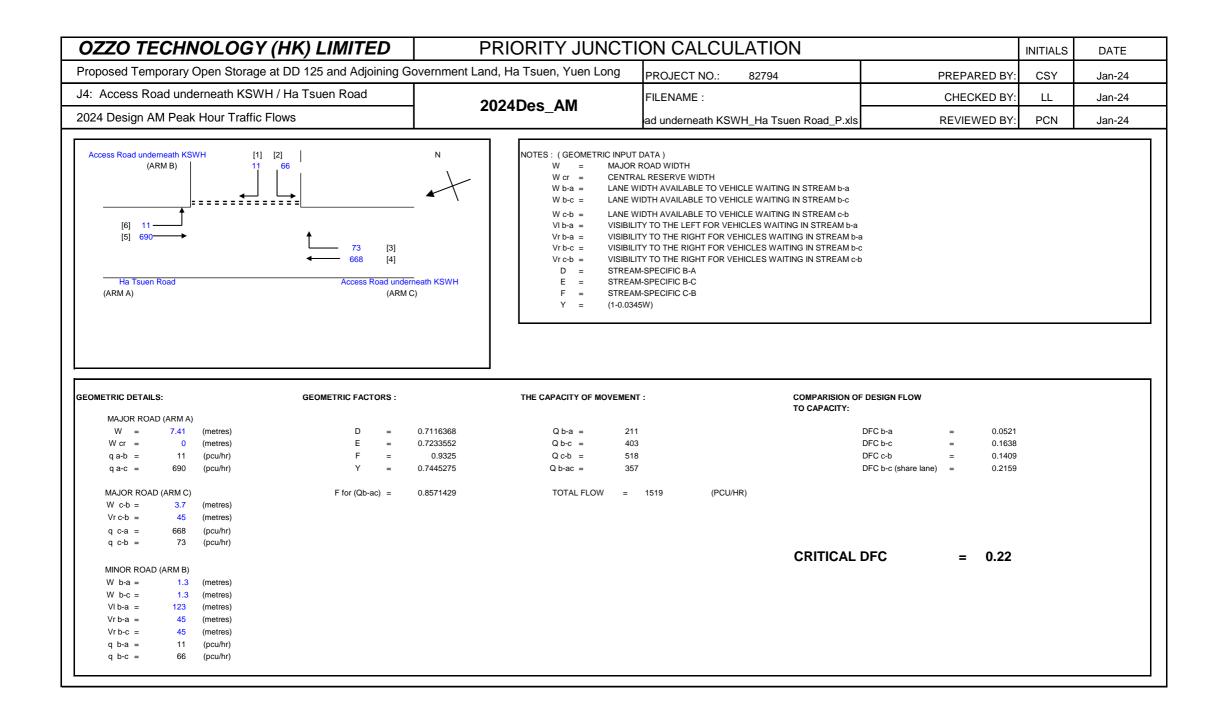


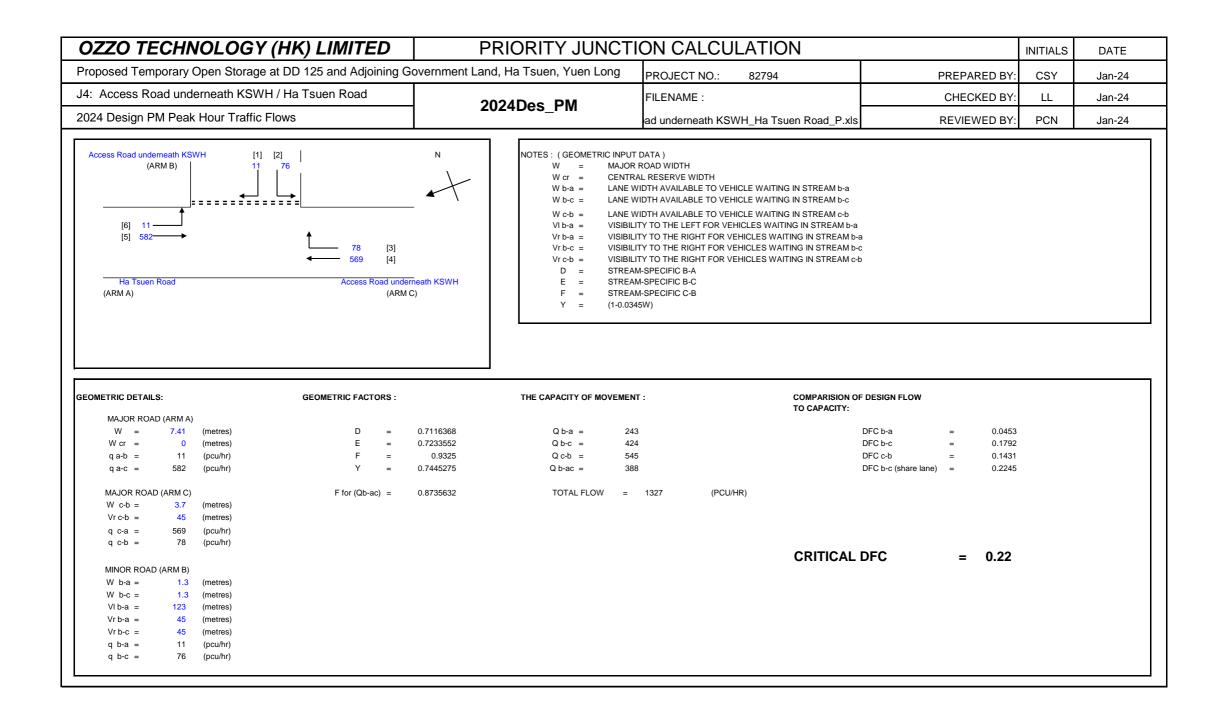












			(HK) LIMITED			IC SIGNAL CALCULATION	1	INITIALS	DATE
Prop	osed	Temporary Open Storage at DD			and, Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY	CSY	Jan-24
J5: ł	SWI	H Roundabout			2024Dof AM	FILENAME :	CHECKED BY	': LL	Jan-24
2024	Ref	erence AM Peak Hour Traffic Flow	/S		2024Ref_AM	J5_KSWH Roundabout_R.xls	REVIEWED BY	: PCN	Jan-24
			Slip Road of Ko (ARM D) <u>6</u> Access Road	(ARM A) 1136	160 160 17 1334 (ARM C)	N			
				Silp	Road of Kong Sham Western Highv	way			
		AMETERS.	A	C	D	way			
	T PAR	AMETERS:	A			way			
	T PAR =	Approach half width (m)	A 4.0	C 7.9	D 8.2	way			
		Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	D 8.2 9.3	way			
NPU' / =	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	D 8.2 9.3 1.8				
NPU V E L R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	D 8.2 9.3 1.8 10.0				
NPU / = - R D	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	D 8.2 9.3 1.8 10.0 71.0				
NPU E L R D A	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0				
NPU = - - - - 2 - 2	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 160	C 7.9 7.9 1.0 100.0 71.0 31.0 1334	D 8.2 9.3 1.8 10.0 71.0 21.0 6				
NPU E R D A Q	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0				
NPU = - - - - - - - - - - - - - - - - - -		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 160	C 7.9 7.9 1.0 100.0 71.0 31.0 1334	D 8.2 9.3 1.8 10.0 71.0 21.0 6				
NPU = - R D A Q Q DUTF		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 160	C 7.9 7.9 1.0 100.0 71.0 31.0 1334	D 8.2 9.3 1.8 10.0 71.0 21.0 6				
NPU - - - - - - - - - - - - -	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 160 1136	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331				
NPU V E - R D D Q C D UTF S K	= = = = = = PUT P/ =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 160 1136	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17 0.00	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331				
NPU V E L R R D D Q Q Q C D U T F S K X 2 M	= = = = = = PUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 160 1136 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17 0.00 1.04 7.90 3	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331 0.98 0.98 8.57 3				
INPU V E L R D A Q Q Q Q C OUTF S K X2 M	= = = = = PUT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 160 1136 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17 0.00 1.04 7.90 3 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331 0.98 0.98 8.57 3 2597				
V E L R D A Q Q C S K X2 M F T d	= = = = = ?UT P/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 160 1136 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331 0.98 0.98 8.57 3 2597 1.12				
NPU V = - - - - - - - - - - - - -	= = = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 160 1136 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331 0.98 0.98 8.57 3 2597 1.12 0.64				
NPU V E L R D A Q Q C D UTF S S K X2 M F	= = = = = = 20T P/ = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 160 1136 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1334 17 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 6 1331 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1500	PCU	

			HK) LIMITED			IC SIGNAL CALCULATION		INITIALS	DATE
Prop	osec	d Temporary Open Storage at DD 12	25 and Adjoining Govern	ment La	nd, Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY:	CSY	Jan-24
J5: ł	SWI	H Roundabout			2024Ref_PM	FILENAME :	CHECKED BY:	LL	Jan-24
2024	Ref	erence PM Peak Hour Traffic Flows	3		2024Rei_Fivi	J5_KSWH Roundabout_R.xls	REVIEWED BY:	PCN	Jan-24
			Slip Road of Kon (ARM D) 5 Access Road	(ARM A) 919 					
				0.5	(ARM C)	e			
			A	Slip	Road of Kong Sham Western Highwa	ay			
	T PAR	RAMETERS:	A		Road of Kong Sham Western Highw	ay			
	T PAR =	RAMETERS: Approach half width (m)	A 4.0		Road of Kong Sham Western Highw	ay			
NPU /				C	Road of Kong Sham Western Highw	ay			
NPU /	=	Approach half width (m)	4.0	C 7.9	Road of Kong Sham Western Highw	ay			
NPU ,	= =	Approach half width (m) Entry width (m)	4.0 6.7	C 7.9 7.9	Road of Kong Sham Western Highw D 8.2 9.3	ay			
NPU / :	= = =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8	ay			
NPU / E R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0	ay			
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0	ay			
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0	ay			
NPU	= = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 166	C 7.9 7.9 1.0 100.0 71.0 31.0 1081	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5	ay			
NPU / - - - - - - - - - - - - - - - - - -	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 166 919	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13	Road of Kong Sham Western Highwa D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136	ay			
NPU / E R D Q Q Q D UTF S	= = = = = = 2 VUT P, =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 166 919	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136	ay			
NPU · · · · · · · · · · · · ·	= = = = = = 2 VUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98	ay			
NPU / :	= = = = = = PUT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 8.57	ay			
NPU / - - - - - - - - - - - - -	= = = = = PUT P, = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90 3	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 8.57 3	ay			
NPU / = - - - - - - - - - - - - - -	= = = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90 3 2394	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 8.57 3 2597	ay			
NPU / - - - - - - - - - - - - - - - - - -	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 8.57 3 2597 1.12	ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90 3 2394 1.12 0.61	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 0.98 8.57 3 2597 1.12 0.64		1050		
/ = - - 2 2 2 2 2	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1252	PCU	
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 166 919 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1081 13 0.00 1.04 7.90 3 2394 1.12 0.61	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 5 1136 0.98 0.98 0.98 8.57 3 2597 1.12 0.64		1252	PCU	

		O TECHNOLOGY			-			INITIALS	DATE
Prop	osed	I Temporary Open Storage at DD 1	125 and Adjoining Goverr		nd, Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY:	CSY	Jan-24
J5: ł	SWI	H Roundabout			20240-22	FILENAME :	CHECKED BY:	LL	Jan-24
2024	Des	sign AM Peak Hour Traffic Flows			2024Des_AM	J5_KSWH Roundabout_R.xls	REVIEWED BY:	PCN	Jan-24
			(ARM D) 6 Access Road	(ARM A)					
				Slip	(ARM C) Road of Kong Sham Western Highwa	ay			
			A	Slip		ay			
	ΓPAR	AMETERS:	A		Road of Kong Sham Western Highw	ay			
	ΓPAR =	AMETERS:	A 4.0		Road of Kong Sham Western Highw	ay			
				С	Road of Kong Sham Western Highw	ay			
	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0	C 7.9	Road of Kong Sham Western Highw	ay			
	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7	C 7.9 7.9	Road of Kong Sham Western Highw D 8.2 9.3 1.8	ay			
NPU ,	= =	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0	ay			
NPU / E R	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0	ay			
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0	ay			
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0	ay			
NPU		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 164	C 7.9 7.9 1.0 100.0 71.0 31.0 1362	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 6	ay			
NPU , , , , , , , , , , , , ,	= = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 164 1160	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17	Road of Kong Sham Western Highwa D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359	ay			
NPU , , , , , , , , , , , , ,	= = = = = = 2 VUT P/ =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98	ay			
NPU · · · · · · · · · · · · ·	= = = = = = 2 VUT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98	ay			
NPU / :	= = = = = 2007 P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57	ay			
NPU / - - - - - - - - - - - - -	= = = = = PUT P/ = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90 3	Road of Kong Sham Western Highw D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57 3	ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90 3 2394	Road of Kong Sham Western Highware D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57 3 2597	ay			
NPU / E · R D D U T d	= = = = = PUT P/ = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western Highware D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57 3 2597 1.12	ay			
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90 3 2394 1.12 0.61	Road of Kong Sham Western Highw 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57 3 2597 1.12 0.64		1522	PCII	
/ = - - 2 2 2 2 2	= = = = = PUT P/ = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90 3 2394 1.12	Road of Kong Sham Western Highware D 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1532	PCU	
NPU / = - - - - - - - - - - - - -	= = = = = = = = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 164 1160 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1362 17 0.00 1.04 7.90 3 2394 1.12 0.61	Road of Kong Sham Western Highw 8.2 9.3 1.8 10.0 71.0 21.0 6 1359 0.98 0.98 8.57 3 2597 1.12 0.64		1532 0.55	PCU	

			(HK) LIMITED			IC SIGNAL CALCULATION		INITIALS	DATE
Prop	osed	d Temporary Open Storage at DD			nd, Ha Tsuen, Yuen Long	PROJECT NO.: 82794	PREPARED BY:	CSY	Jan-24
J5: k	SWI	H Roundabout			2024Dec DM	FILENAME :	CHECKED BY:	LL	Jan-24
2024	Des	sign PM Peak Hour Traffic Flows			- 2024Des_PM	J5_KSWH Roundabout_R.xls	REVIEWED BY:	PCN	Jan-24
		5							
			(ARM D) 5 Access Road	(ARMA) 943 1164	170 170 13 1109 (ARM C)	×			
				Slip	Road of Kong Sham Western Highw	ay			
RM			A	Slip	Road of Kong Sham Western Highw	ay			
	ΓPAR	RAMETERS:	A			ay			
	Γ PAR =	RAMETERS: Approach half width (m)	A 4.0			ay			
		Approach half width (m) Entry width (m)		С	D	ay			
	=	Approach half width (m) Entry width (m) Effective length of flare (m)	4.0 6.7 4.8	C 7.9 7.9 1.0	D 8.2 9.3 1.8	ay			
	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9	D 8.2 9.3 1.8 10.0	ay			
NPU ,	= =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	D 8.2 9.3 1.8 10.0 71.0	ay			
NPU / : : : : : :	= = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m)	4.0 6.7 4.8 30.0	C 7.9 7.9 1.0 100.0	D 8.2 9.3 1.8 10.0	ay			
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m)	4.0 6.7 4.8 30.0 71.0	C 7.9 7.9 1.0 100.0 71.0	D 8.2 9.3 1.8 10.0 71.0	ay			
	= = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree)	4.0 6.7 4.8 30.0 71.0 12.0	C 7.9 7.9 1.0 100.0 71.0 31.0	D 8.2 9.3 1.8 10.0 71.0 21.0	ay			
NPU (2 2 2 2 2 2 2 2 2 2 2 2 2		Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 170	C 7.9 7.9 1.0 100.0 71.0 31.0 1109	D 8.2 9.3 1.8 10.0 71.0 21.0 5	ay			
NPU , , , , , , , , , , , , ,	= = = = = = 2	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h)	4.0 6.7 4.8 30.0 71.0 12.0 170 943	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164	ay			
NPU' ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	= = = = = = ?UT P/	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L	4.0 6.7 4.8 30.0 71.0 12.0 170 943	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98	ay			
NPU · · · · · · · · · · · · ·	= = = = = = 2UT P/ = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05)	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98	ay			
NPU' / = - - - - - - - - - - - - - - - - - -	= = = = = 2UT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S))	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57	ay			
NPU' / = - - - - - - - - - - - - - - - - - -	= = = = = UUT P/ = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = 1.6(E-V)/L 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10)	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96 3	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90 3	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57 3	ay			
NPU' / = - - - - - - - - - - - - - - -	= = = = = : : : : : : : : : : : : : : :	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96 3 1504	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90 3 2394	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57 3 2597	ay			
NPU / - - - - - - - - - - - - - - - - - -	= = = = : : UT P, = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57 3 2597 1.12	ay			
NPU' / = - - - - - - - - - - - - -	= = = = : UT P/ = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57 3 2597 1.12 0.64		1284	PCU	
/ = - - - - - - - - - - - - - - - - - -	= = = = : : : : : : : : : : : : : : : :	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303*X2 1+(0.5/(1+M))	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96 3 1504 1.12	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90 3 2394 1.12	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57 3 2597 1.12	Total In Sum =	1284	PCU	
NPU' / = - - - - - - - - - - - - -	= = = = : UT P/ = = = = = = =	Approach half width (m) Entry width (m) Effective length of flare (m) Entry radius (m) Inscribed circle diameter (m) Entry angle (degree) Entry flow (pcu/h) Circulating flow across entry (pcu/h) ARAMETERS: Sharpness of flare = $1.6(E-V)/L$ 1-0.00347(A-30)-0.978(1/R-0.05) V + ((E-V)/(1+2S)) EXP((D-60)/10) 303^*X2 1+(0.5/(1+M)) $0.21^*Td(1+0.2^*X2)$	4.0 6.7 4.8 30.0 71.0 12.0 170 943 0.90 1.08 4.96 3 1504 1.12 0.47	C 7.9 7.9 1.0 100.0 71.0 31.0 1109 13 0.00 1.04 7.90 3 2394 1.12 0.61	D 8.2 9.3 1.8 10.0 71.0 21.0 5 1164 0.98 0.98 8.57 3 2597 1.12 0.64		1284 0.45	PCU	