Annex 6

Drainage Impact Assessment

Proposed Residential Development at Lot 182 S.B. in DD128, Ha Tsuen

Drainage Impact Assessment Report

Reference: P058/01 Issue 1 Date: July 22 Confidential

Proposed Residential Development at Lot 182 S.B. in DD128, Ha Tsuen

Drainage Impact Assessment Report

Checked and Approved by:

Patrick Ip Director

Reference: P058 Issue 1

Date: July 22

lssu e	Status	Prepared By	Date	Checked by	Date	Approved By	Date
1	For Comment	Cheryl Chan	Jul 22	Emily Tang	Jul 22	Patrick Ip	Jul 22

23/F Wui Tat Centre, 55 Connaught Road West, Hong Kong Tel: (852) 31141144

Urban Green Consultants Ltd. assumes no responsibility and shall not be liable for any loss, damage or expense caused by reliance on the information or advice in this document to any third parties. Urban Green Consultants Ltd. also assumes no responsibility and shall not be liable for any loss, damage or expense caused by reliance on the information or advice in this document to the client unless the same is proved to have arisen solely from the negligence or wilful default of Urban Green Consultants Ltd in which case our contractual limit of liability shall apply.

Contents

1	Intr	oduction	1
	1.1	Introduction	1
	1.2	Study Objectives	1
	1.3	Report Structure	1
2	Site	e Context	2
	2.1	Introduction	2
	2.2	Site Characteristics and Proposed Uses	2
	2.3	Existing Drainage Conditions	2
3	Dra	ainage Analysis	3
	3.1	Assessment Methodology and Assumption	3
	3.2	Design Parameters	3
	3.3	Assessment Results	4
4	Со	nclusions	6

List of Figures

Figure 2.1	Site Location and Its Environs
------------	--------------------------------

Figure 3.1 Identified Catchment Areas and Existing Drainage System

List of Tables

- Table 3.1 Changes in Grassland and Concrete Areas
- Table 3.2 Estimated Runoff from the Site
- Table 3.3
 Estimated Proposed Site Catchment Runoff to Existing Drainage

List of Appendices

- Appendix A Drawings of Development Plan
- Appendix B Detailed Drainage Analysis

1 Introduction

1.1 Introduction

The Applicant intends to develop a Villa at Lot 182 S.B in D.D.128 in Ha Tsuen, New Territories (hereafter as "the Site").

According to the Approved Ha Tsuen Fringe Outline Zoning Plan (No. S/YL-HTF/12) published by Town Planning Board in October 2018, the site is currently zoned as "Residential (Group D) ".

Owing to concerns on possible drainage impact arising from the proposed development. Urban Green Consultants Ltd. (UGC) has been commissioned to conduct a Drainage Impact Assessment (DIA) to demonstrate the acceptability of drainage impact upon the surrounding environment.

1.2 Study Objectives

The objectives of this DIA are to assess the possible drainage impacts may be caused by the proposed development and to recommend the mitigation measures to alleviate such impacts if necessary.

1.3 Report Structure

The remaining chapters of this report are shown below:

Chapter 2 – Site Context

Chapter 3 – Drainage Analysis

Chapter 4 – Conclusions

2 Site Context

2.1 Introduction

The Project Site is located at Lot 182 S.B in D.D.128, Ha Tsuen. The Site falls within an area zoned "Residential (Group D)". The Site area is approximately 2,555 m^2 .

2.2 Site Characteristics and Proposed Uses

The Site is located in Ha Tsuen. To the east of the site is an open storage yard for recycling materials and a warehouse. To the south are open storage yards for metals and a recyclable collection centre. To the west is an open storage yard for construction materials. To the north are vacant land, shrubland and a recyclables collection centre. The Site area is approximately 2,550 m².

Figure 2.1 shows the Site Location and the environment.

2.3 Existing Drainage Conditions

Site survey was conducted on 3 December 2021 to collect the updated information of the drainage characteristics, catchments, topography, existing drainage facilities, flow path and surface type within the Site and its surrounding.

Based on the site survey and review of drainage plans (reference no.: 6-NW-1B) from Drainage Services Department (DSD) in December 2021, it has revealed that the Site is not currently served by any form of DSD's drainage facility. However, the surface runoff from the Site may be possible to discharge into an existing underground U-channel on the south-east of the Site. According to the calculation of flow capacity, the proposed discharge point and the proposed U-channel are able to catch all the runoff from the Site and identified catchments.

3 Drainage Analysis

3.1 Assessment Methodology and Assumption

This DIA has adopted the Rational Method for runoff estimation:

 $Q_p = 0.278 \ i \sum C_j \ A_j$

where Q_p is peak runoff (m^3 /s); *i* is rainfall intensity (mm/hr); A_j is the j^{th} catchment (km^2); C_i is the runoff coefficient of the j^{th} catchment (dimensionless).

The details of the Rational Method can be referred to the *Stormwater Drainage Manual* (SDM) (DSD, 2018).

Based on a 1:50 year flood protection standard in the SDM and the estimated time of concentration, the appropriate rainfall intensities (i) were calculated based on linear interpolation of the intermediate table values.

The assumptions of this DIA are summarised below:

- Rainstorm return period 1 in 50 years
- Runoff coefficient for concrete-paved area 0.95
- Runoff coefficient for flatted grassland (heavysoil) 0.25
- Runoff coefficient for steep grassland (heavysoil) 0.35
- Manning's roughness coefficient for the proposed U-channels 0.016

The existing paving condition of the Site has runoff coefficients of 0.95 for concrete, 0.25 for flat heavysoil and 0.35 for steep heavysoil, which are adopted in this DIA. It is anticipated that the extent of the existing paving condition will be improved upon approval of this application as more landscape areas have been proposed.

The capacity s of the proposed U-channels has been checked by comparing with magnitudes of different combinations of the catchments. The Manning's roughness coefficient of 0.016 for U-channels (fair condition) was assumed.

3.2 Design Parameters

11 catchments (Catchments A to K) were identified based on the geographical characteristics of the Site and its nearby area as shown in Figure 3.1. As the existing U-channels are located to the south-east of the Site, the runoff from the Site will be directly discharged into the existing U-channel (E1). Figure 3.1 shows the discharge point of the Site. The surface runoff from relevant catchment has been estimated and presented in Appendix B.

3.3 Assessment Results

Given that the Site is the undeveloped area, site modification would be made to increase concrete paving of the on-site catchment areas (i.e. Catchment G,H,I) after proposed development. The identified on-site catchment area is presented in Figure 3.1. The change in paving characteristics of the on-site catchment area is summarised in Table 3.1.

On Site Catchmont	Before Dev	velopment	After Development				
Area	Grassland	Concrete	Grassland	Concrete			
G	100%	0%	30%	70%			
н	100%	0%	30%	70%			
I	100%	0%	20%	80%			

Table 3.1 Changes in Grassland and Concrete Areas

Note: (1) The coefficient of permeable concrete is 0.3 which is reference from Permeable Interlocking Concrete Pavement. (2008). Interlocking Concrete Pavement Institute.

As summarised above, the concrete paving area for on-site catchment area is increased which imply there shall increase the surface runoff generated from the Site after proposed development. The increase of on-site catchment runoff is summarised in Table 3.2.

Table 3.2 Estimated Runoff from the Site

On-Site Catchment	Estimated F	Runoff, m³/s	Increase of Runoff m³/s
Aitu	Before Development	After Development	After Development
G+H+I	0.0511	0.1553	0.1042

As shown in Table 3.2, 0.1042 m³/s increased runoff will be resulted from the proposed development.

30% greenery area will be provided for Catchment G and H, while 20% greenery area will be provided for Catchment I. Estimation of the on-site runoff before and after proposed development are detailed in Table A1 and Table A2 of Appendix B.

Details calculation of the estimated proposed site catchment runoffs is shown in Table A3 of Appendix B.

Channel Segment ⁽¹⁾	Diameter, m	Gradient	Capacity, m³/s	Runoff, m³/s	Catchment Served	Surfficient Capacity? (Y/N)
E1-E2	0.6	0.1	1.58	0.4	A-I	Y
E2-E3	0.6	0.1	1.58	0.5	A-K	Y
E3-E4	0.6	0.1	1.58	0.5	A-K	Y
E4-E5	E4-E5 0.6		1.58	0.5	A-K	Y

Table 3.3 Estimated Proposed Site Catchment Runoffs to Existing Drainage

Note:

(1) All segments (E1-E5) are the U-channels.

The assessment results presented in Table 3.3 demonstrate that the proposed development has induced limited runoff to the proposed U-channels.

As summarised above, the proposed development would not cause adverse drainage impacts nor increase in flooding susceptibility of the surrounding areas.

4 **Conclusions**

A Drainage Impact Assessment (DIA) has been conducted for the Proposed Residential Development at Lot 182 S.B. in DD128, Ha Tsuen.

The peak surface runoff was calculated based on a 50-year return period. The assessment results have demonstrated that there shall be no adverse impact due to the proposed development. In addition, with reference to the Flooding Blackspots available on the DSD website, the Site is not located within the flooding blackspots locations/ regions. As a result, no unacceptable drainage impact is anticipated from the proposed development.

Based on the above, it is concluded that the Proposed Development shall not result in any adverse drainage impacts.

Figures

UGC, ref: P058 Issue 1, dated July 22

Appendix A

UGC, ref: P058 Issue 1, dated July 22

	Rev	Date	Description	Project:	
DESIGN DRAWING	· ·		- ·	PROPOSED HOUSE DEVELOPMENT	X
The Copyright of this Schedule / Drawing Remains with the				AT LOT NO. 182 S.B. IN D.D. 128	ADO LTD. 18C6 TM
Architect. No part of this Schedule / Drawing may be Reproduced in any Form or by any Means without the Written				Drawing Title:	Project referer
Permission from ADO ltd.					-
版權所有不得翻印					CHD reference

Tow	er, 3 Hoi Shing Road, T	suen Wan West, HK	Tel: 2646-6381 Fax: 2634-6648	
:e	Scale 1:300 (A3)	Drawn PY	Checked Approved	
	Date 2022-02-16	Revision No./Date	Read in conj. wit0rawing No.	

X	A +3.150 FLAT ROOF CURB +3.450
W V	FLAT ROOF +5.40 8985 9457 PARAPET WALL H.11M
U	10560 10
S	M N

	Rev	Date	Description	Project:						
DESIGN DIVAMING	-	-	·	PROPOSED HOUSE DEVELOPMENT	$\wedge \mathcal{D}$					
The Copyright of this Schedule / Drawing Remains with the				AT LOT NO. 182 S.B. IN D.D. 128	ADO LTD. 18C6 TML Tow	ver, 3 Hoi Shing Road, Ts	uen Wan West, HK	Tel: 2646-6381 F	ax: 2634-6648	
Architect. No part of this Schedule / Drawing may be Reproduced in any Form or by any Means without the Written Permission from ADO Itd				Drawing Title:	Project reference	erence Scale Drawn Checked Approved 1:300 (A3)			Approved	
版權所有不得翻印				ROOF FLOOR LAYOUT PLAN	CAD reference	Date 2021-2-16	Revision No./Date	Read in conj.	wi⊕rrawing No.	

SECTION A -A

)				
Tower	, 3 Hoi Shing Road, Tsue	n Wan West, HK	Tel: 2646-6381	Fax: 2634-6648
ce	Scale 1:300 (A3)	Drawn	Checked	Approved
	Date 2021-2-16	Revision No./Date	Read in conj	. witDmawing No.

Appendix B

Capacity Flows Estimation for Propose Catchments and Drainage System with 50 Year Return Period

A1.Calculation of On-Site Runoff (Existing Development)

Catchment ID	Surface Type	Catchment Area (A), m ²	Catchment Area (A), km ²	Average slope (H), m/100m	Flow path length (L), m	Inlet time (t₀), min	Time of Concentration (t _c), min	Duration (t _d), min	a (50 year return period)	b (50 year return period)	c (50 year return period)	Runoff intensity (i) mm/hr	Runoff coefficient (C)	C x A	Peak runoff (Q _p), m ³ /s
G	100% Grassland (heavysoil), flat	656	0.00066	13.79	29.00	1.30	1.30	1.30	451.3	2.5	0.34	287	0.25	0.000163948	0.0131
н	100% Grassland (heavysoil), flat	1,189	0.00119	13.89	36.00	1.52	1.52	1.52	451.3	2.5	0.34	281	0.25	0.000297337	0.0233
I	100% Grassland (heavysoil), flat	712	0.00071	18.10	21.00	0.88	0.88	0.88	451.3	2.5	0.34	298	0.25	0.000177957	0.0148
	•											•	•	Total	0.0511

A2.Calculation of On-Site Runoff (After Development)

Catchmen	ID Surface Type	Catchment Area (A), m ²	Catchment Area (A), km ²	Average slope (H), m/100m	Flow path length (L), m	Inlet time (t _o), min	Time of Concentration (t _c), min	Duration (t _d), min	a (50 year return period)	b (50 year return period)	c (50 year return period)	Runoff intensity (i) mm/hr	Runoff coefficient (C)	C×A	Peak runoff (Q _p), m ³ /s
G	70% Concrete + 30% Grassland (heavysoil), flat	656	0.00066	13.79	29.00	1.30	1.30	1.30	451.3	2.5	0.34	287	0.74	0.000485285	0.0387
н	70% Concrete + 30% Grassland (heavysoil), flat	1,189	0.00119	13.89	36.00	1.52	1.52	1.52	451.3	2.5	0.34	281	0.74	0.000880116	0.0688
I	80% Concrete + 20% Grassland (heavysoil), flat	712	0.00071	18.10	21.00	0.88	0.88	0.88	451.3	2.5	0.34	298	0.81	0.000576581	0.0478
														Total	0.1553

Changes in peak runoff

0.1042

A3.Calculation of All Catchment Runoff (After Development)

Catchment ID	Surface Type	Catchment Area (A), m ²	Catchment Area (A), km ²	Average slope (H), m/100m	Flow path length (L), m	Inlet time (t _o), min	Time of Concentration (t _c), min	Duration (t _d), min	a (50 year return period)	b (50 year return period)	c (50 year return period)	Runoff intensity (i) mm/hr	Runoff coefficient (C)	CxA	Peak runoff (Q _p), m ³ /s
A	100% Grassland (heavysoil), flat	1,799	0.00180	20.73	41.00	1.53	1.53	1.53	451.3	2.5	0.34	281	0.25	0.000449755	0.0351
В	100% Grassland (heavysoil), flat	1,354	0.00135	13.49	86.00	3.59	3.59	3.59	451.3	2.5	0.34	244	0.25	0.000338476	0.0230
с	100% Grassland (heavysoil), flat	2,072	0.00207	18.35	85.00	3.20	3.20	3.20	451.3	2.5	0.34	250	0.25	0.00051792	0.0360
D	100% Grassland (heavysoil), flat	2,451	0.00245	17.67	60.00	2.24	2.24	2.24	451.3	2.5	0.34	266	0.25	0.000612733	0.0453
E	100% Grassland (heavysoil), flat	2,806	0.00281	19.07	97.00	3.52	3.52	3.52	451.3	2.5	0.34	245	0.25	0.0007015	0.0478
F	10% Concrete + 90% Grassland (heavysoil), flat	3,278	0.00328	17.88	104.00	3.76	3.76	3.76	451.3	2.5	0.34	242	0.32	0.00104896	0.0705
G	70% Concrete + 30% Grassland (heavysoil), flat	656	0.00066	13.79	29.00	1.30	1.30	1.30	451.3	2.5	0.34	287	0.74	0.000485285	0.0387
н	70% Concrete + 30% Grassland (heavysoil), flat	1,189	0.00119	13.89	36.00	1.52	1.52	1.52	451.3	2.5	0.34	281	0.74	0.000880116	0.0688
I	80% Concrete + 20% Grassland (heavysoil), flat	712	0.00071	18.10	21.00	0.88	0.88	0.88	451.3	2.5	0.34	298	0.81	0.000576581	0.0478
J	80% Concrete + 20% Grassland (heavysoil), flat	464	0.00046	30.00	10.00	0.40	0.40	0.40	451.3	2.5	0.34	314	0.81	0.00037584	0.0328
к	60% Concrete + 40% Grassland (heavysoil), flat	1,139	0.00114	22.22	18.00	0.69	0.69	0.69	451.3	2.5	0.34	304	0.67	0.00076313	0.0645
												•		Total	0.5104

Note:

Runoff is calculated in accordance with DSD's *Stormwater Drainage Manual - Planning, Design and Management* (SDM), fifth edition, January 2018... Equation used:

|i| = -

а

0.14465 <i>L</i>	<i>t</i> − <i>t</i> ⊥ <i>t</i>
$l_0 = \frac{1}{H^{0.2}A^{0.1}}$	$l_c - l_0 + l_f$

B. Contribution Estimation and Adequacy Check for Existing Drainage System (For Enhanced Design)

Point (Channel No.)	Channel	Diameter, m	Slope	Manning's Roughness Coefficient	Cross Section Area,m2	Wetted Perimeter,m	Hydraulic radius,m	Mean Velocity,m/s	Capacity flow,m3/s	Catchment Served	Runoff,m3/s	% of capacity flow	Sufficient Capacity(Y/N)
E1-E2	U-channel	0.6	0.1000	0.016	0.2827	1.8850	0.15	5.5797	1.5776	A-I	0.4130	26%	Y
E2-E3	U-channel	0.6	0.1000	0.016	0.2827	1.8850	0.15	5.5797	1.5776	A-K	0.5104	32%	Y
E3-E4	U-channel	0.6	0.1000	0.016	0.2827	1.8850	0.15	5.5797	1.5776	A-K	0.5104	32%	Y
E4-E5	U-channel	0.6	0.1000	0.016	0.2827	1.8850	0.15	5.5797	1.5776	A-K	0.5104	32%	Y