A Pilot Biomarker Study to Assess the

Subclinical Health Impacts due to Exposures to Air Pollution

(Tender Ref. 13-03513)

Final Report

to

Environmental Protection Department

Environmental Health Research Group,

School of Public Health (SPH),

The University of Hong Kong (HKU)

31 December 2015 Tender Date: 26 November 2013

Principal Investigator	: Dr Chit Ming WONG (SPH, HKU)
Co-Investigators:	Dr Hak Kan LAI (SPH, HKU),
	Dr Thuan Quoc THACH (SPH, HKU),
	Prof Junfeng Jim ZHANG (Duke University in USA)
Advisors:	Dr Nai Sum WONG (School of Biomedical Sciences, HKU),
	Dr Linwei TIAN (SPH, HKU)

TABLE OF CONTENT

Co	ntent	Page
Exe	ecutive Summary	1
1.	Introduction	5
1.1	Background	5
1.2	Objectives	5
2.	Literature Review	6
2.1	Methods	6
2.2	Literature Selection	6
2.3	Meta-analysis	7
2.4	Findings	8
2.5	Discussion	14
3.	Blood Sample Collection and Biomarker Measurement	16
3.1	Recruitment	16
3.2	Clinical Visit	16
3.3	Blood Sample Taking and Processing	18
3.4	Statistical Method	21
3.5	Ethics and Institutional Review Board Approval	21
4.	Results and Discussion	22
4.1	Descriptive Summary of the Participants	22
4.2	Air Pollutant Concentrations	24
4.3	Biomarkers and Physiologic Endpoints	25
4.4	Relationships between Biomarkers and Air Pollutants	35
4.5	Methodological Approaches for Biomarker Study in Hong Kong	41
4.6	Pilot Study Achievements and Limitations	42
5.	Conclusion	45
6.	References	46
Abł	previations	54
App	bendices	56

Executive Summary

The epidemiological evidence of adverse effects on health is widely regarded as an important driver to support clean air policies. Effects of air pollution on the major registered causes of death include chronic degenerative, cardiovascular, cerebrovascular and pulmonary diseases in older people and respiratory diseases such as asthma in children. These health outcomes account for a major burden in the society especially in terms of quality adjusted life years lost and pain suffering from both the patients and the carers, health care costs and productivity loss, as measured by the sum of tangible and intangible costs. These costs could be substantial when long-term effects of air pollution are taken into account because of their effects being at least ten times larger than the estimated short-term effects of air pollution.

However, both the longer- and shorter-term exposure to air pollution could have directly contributed to the development of subclinical conditions but the associated community burden such as restricted activities and loss in well being could be substantial. According to a recent survey conducted by The University of Hong Kong (*http://hkupop.hku.hk/english/report/subhealth/content/ resources/pr.pdf*), 97% of Hong Kong citizens have sub-optimal health problems. The measurement of biomarkers, which can be detected before the onset of diseases, could give an account of the subtle and subclinical pathophysiological changes associated with health impacts in the population due to air pollution. The core objective of this pilot study was to develop methodological approaches in measuring the effects of air pollution on health at molecular level in Hong Kong, which could be utilized to improve public awareness on implementing government's clean air policies for prevention of diseases and subtle signs of health problems.

Systematic Review

We conducted a systematic review with search strategies based on the PubMed database for selection of biomarkers to be used in the project. We focused on the health effects of the four criteria air pollutants documented by the World Health Organization (WHO) and routinely monitored by the Hong Kong Environmental Protection Department (EPD), including particulate matters (PM_{10} and $PM_{2.5}$), nitrogen dioxide (NO_2), sulphur dioxide (SO_2) and ozone (O_3).

We justified the screening criteria for selection of literatures as well as for selection of biomarkers to be used in the project, considering the study design, level of evidence and sample size of the selected studies. When published data for a biomarker was sufficient, we conducted the meta-analysis and assessed whether there were publication biases.

Study Design for Biomarker Measurement

We identified residential buildings in suitable locations which were 0.1 to 1.5 km away from the air monitoring station in the Central/Western and Mongkok regions and sent out 2,810 invitation letters to the addresses there. We received 151 calls (4.3% response rate) from the invited residents. One hundred and twenty eligible Chinese participants aged 50 to 65 years, who were non-smokers and had no known chronic diseases were recruited.

We scheduled the appointments with the participants for four times of clinical visits. Each visit included questionnaire interviewing, blood collection, blood pressure and anthropometry measurement.

Data Analyses

Each person was measured at four times in different months of the study year (i.e. from July 2014 to April 2015) to maximize the temporal variation in PM_{2.5} exposure. Blood samples collected from the participants were used to examine the oxidative stress biomarkers. We assessed the relationships between temporal changes in PM_{2.5} exposure and temporal changes in levels of physiological parameters and biomarkers. We also assessed the relationship between spatial difference in PM_{2.5} concentrations measured in the two EPD monitoring stations and the difference in bio-physiological levels with control for individual characteristics (for example, dietary habit and passive smoking exposure) and environmental conditions.

Key findings and discussion

1. We performed a systematic literature review on the use of biomarkers for air pollution and health studies, focusing on the oxidative stress effects of $PM_{2.5}$. Oxidative stress triggers a number of redox sensitive signaling pathways in the human body and it is one of the mechanisms of air pollution effects on the human health. The pulmonary inflammatory response and cardiovascular actions arising from exposure to air pollutants, were mediated via these oxidant signaling pathways. We selected three oxidative biomarkers in our study: 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and glutathione [GSH] and glutathione disulfide [GSSG] ratio.

2. The pilot biomarker study originally recruited 120 participants, with 62 of them living nearby the Central/Western ambient $PM_{2.5}$ monitor in a residential-only urban area, and with 58 living nearby the Mongkok roadside monitor in a commercial-residential area. For the 120 participants, 109 came to our study centre at the Laboratory Block, Li Ka Shing Faculty of Medicine,

The University of Hong Kong in July 2014, and 99 completed all the four times of visits. The successful follow-up rate was 90.8% which is regarded as satisfactory.

In this pilot study, the measured biomarkers levels were comparable to the values reported 3. in other studies. For the three oxidative stress biomarkers, 8-OHdG, MDA and GSH/GSSG ratio, were negatively but statistically non-significantly (p>0.05) correlated with PM_{2.5}, adjusted for covariates including demographic, lifestyles and dietary factors. For blood lipid profile, the HDL-C level measured in the participants was negatively correlated with PM_{2.5}, which was statistically significant (p < 0.05). For triglyceride, the correlation was positive but not significant (p > 0.05). All the autonomic measurements in the study were positively correlated with PM_{2.5}, in which only the correlation with diastolic blood pressure (DBP) was statistically significant (p<0.05). In the current day exposure window, we found a reduction of 0.35 ng/ml in 8-OHdG, and 0.06 in GSH/GSSG ratio; and an increase of 0.001 mmol/L in MDA were associated with every 10 μ g/m³ The associations for MDA and GSH/GSSG ratio with PM2.5 were comparable increase of PM_{2.5}. to other studies. This pilot study showed that PM_{2.5} could contribute to the development of subclinical diseases by changing the level of certain molecular biomarkers in the human body.

4. The measurements of the biomarkers using bioassay methods in this pilot study were subject to the limitation that they are not specific for oxidative stress. The non-significant association with $PM_{2.5}$ could be due to the non-specific nature of the measurement methods and may also be due to insufficient statistical power for the assessments. In the future study, analytical chemistry based methods (for example, high performance liquid chromatography-mass spectrometry) with a larger sample size (estimated to be at least 250 to achieve a statistical power of 80%) will be applied to further investigate the subtle and subclinical pathophysiological changes associated with health impacts in the population due to air pollution.

Conclusion

This pilot study demonstrated the feasibility of using molecular biomarkers to investigate the subclinical health impacts due to ambient air pollution in Hong Kong. The preliminary data showed that $PM_{2.5}$ could contribute to the development of subclinical diseases by changing the level of certain molecular biomarkers in the human body. The change in oxidative biomarkers can be detected if there were government interventions for alleviation of $PM_{2.5}$. Certain limitations in the pilot study, including the non-specific analytical methods, insufficient statistical power, and the lack of personal exposure assessment, will be addressed in the future biomarker study in Hong Kong.

Way Forward

In the future panel study, we recommend improving the study power by: (1) targeting a more specific and sensitive population such as the elderly, who are less mobile, with repeated biomarker measurements in shorter time scales, within cool and warm seasons, respectively; (2) increasing the sample size; and (3) measuring the personal exposure to air pollution besides the usage of ambient air pollution data.

1. Introduction

1.1 Background

To study the adverse effects of air pollution on health, the Environmental Protection Department (EPD) of the Hong Kong Special Administrative Region Government commissioned Dr. C.M. Wong of the School of Public Health, The University of Hong Kong to conduct a series of studies on the subclinical effects of exposure to fine particulate matter (PM_{2.5}) in residential-commercial and residential areas.

The study comprised four visits for two panels of participants, one residing in Mongkok (residential-commercial) region near EPD's Mongkok roadside air quality monitoring station and the other in Central/Western (residential) region near EPD's Central/Western ambient air quality monitoring station. The four visits were carried out in July 2014, October 2014, January 2015, and April 2015, respectively. Blood samples were taken from all the recruited participants for assessing the relationship between measures of biomarkers and air pollutant concentrations.

An inception report was submitted to the EPD in April, 2014 to provide the background information of the study and an interim report submitted in December, 2014 to present a literature review on health effects of air pollution in terms of changes in biomarker measurement. This final report incorporated the literature review from the Interim Report and summarized all the results from the four visits and the relationship between biomarkers and air pollutants with concentrations measured at the EPD monitoring stations in the two representative regions.

1.2 Objectives

The objectives of the study are as follows:

- to conduct a literature review on the use of biomarkers for air pollution health studies in Hong Kong and overseas and recommend appropriate biomarkers for this pilot study;
- to collect samples from the participants residing in two representative regions in Hong Kong and carry out biomarkers analysis;
- iii) to conduct questionnaire survey to assess the individual characteristics of the participants for biomarkers analysis;
- iv) to assess the relationship between measures of biomarkers and air pollutant concentrations measured at the EPD monitoring stations in the two representative regions; and
- v) to develop methodological approaches in measuring the effects of air pollution on health at molecular level in Hong Kong.

2. Literature Review

2.1 Methods

We conducted a systematic review with search strategies based on a well-known medical literature database. We justified the screening criteria for selection of literatures as well as for selection of biomarkers to be used in the project, considering the study design, level of evidence and sample size of the selected studies, and the total number of references that support potential health effects of the biomarkers. When published data for a biomarker was sufficient, we conducted the meta-analysis and assessed whether there were publication biases.

2.2 Literature Selection

We searched the PubMed database (last entry on 7th August, 2014) using the following terms from the title and abstract of published articles: ("particulate matter" OR "PM₁₀" OR "PM(10)" OR "PM_{2.5}" OR "PM(2.5)" OR "fine particle" OR "fine particles" OR "fine particulate" OR "SO₂" OR "SO(2)" OR "ozone" OR "O₃" OR "O(3)" OR "air pollution") AND health AND ("biomarker" OR "biomarkers")

We focused on the health effects of four criteria air pollutants documented by the World Health Organization (WHO): particulate matter (PM_{10} and $PM_{2.5}$), nitrogen dioxide (NO_2), sulphur dioxide (SO_2) and ozone (O_3) (WHO 2006). These are the air pollutants routinely monitored by the EPD.

There were 381 abstracts retrieved from PubMed on 7th August, 2014, from which 53 articles were selected for this review by a researcher using the following inclusion criteria:

(i) studies should be focused on the effects of the criteria air pollutants (PM, NO_2 , SO_2 or O_3) on the biomarkers relevant to the research question;

(ii) subjects should be human subjects not including cell lines, tissues or animal models; and

(iii) the report must be written in English or Chinese.

In case there were more than one publication reporting the same results only one of them was selected. The selected study was adhered to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines (Moher et al. 2010). Figure 1 below shows the flow chart in screening the articles.

The data extracted were: the first author's surname, year of publication, number of subjects in total and broken down into gender and age groups, biomarkers and pollutants examined (regardless

of statistical significance), and exposure time (e.g. lag days of the exposure). The percentage (%) change or absolute change in the biomarkers associated with unit increase of each pollutant and the standard error (SE) or 95% confidence interval (CI) were presented.

Figure 1: Screening Flow Chart for the Literature Review

2.3 Meta-analysis

For each biomarker, if there were two or more studies identified, a meta-analysis was conducted to estimate the pooled up effect of each pollutant, PM_{10} , $PM_{2.5}$, NO_2 , SO_2 or O_3 , in terms of percentage change of the biomarker per unit increase of the pollutant.

Risk estimates from the selected studies were pooled up by the overall average of these estimates weighted by the inverse of the variance. All risk estimates were expressed as or converted to percentage change or absolute unit change in the concentration of the biomarker associated with every $10 \ \mu g/m^3$ increase in concentration of each pollutant.

For short-term effects of air pollutants, we selected the lag days based on the following criteria: (1) the lag-day presented by the author in the abstract or main text; (2) the smallest lag days which showed significant associations, and (3) lag 0 or 1 day, or the smallest lag day provided, if all the lag days presented were statistically non-significant. When pooling up the estimates, we used a random

effects model if I^2 statistics for heterogeneity was >25% or otherwise a fixed effect model (Woodward 2005). A fixed-effect meta-analysis estimates an effect which is assumed to be homogeneous in a population, while a random-effects meta-analysis estimates the mean of a distribution of effects, which is heterogeneous in a population (Borenstein et al. 2009). Here we use I^2 statistics >25% to detect existence of heterogeneity in our population.

2.4 Findings

A total of 53 articles were included in this review. Table 1 and Appendix Table 1a - Table 1c summarized the associations between PM_{2.5} and biomarkers in all the studies reviewed. Although our main hypothesis in this project was focused on PM_{2.5} and the constituents of PM_{2.5} that may induce oxidative damages, we also presented the effects on systemic inflammation, and hemostasis, and effects associated with other air pollutants, such as O₃ and NO₂ (Appendix Table 2).

Among all the selected articles, 34 of them were considered to have sufficient data for performing the meta-analysis, for which the sample size, concentrations of the pollutants, the effect estimates and the corresponding standard error (SE) or 95% CI were presented. The number of studies for the association between long-term exposure to air pollutants and the biomarkers was limited. We therefore did not review studies for long-term effects.

We identified biological mechanisms through which air pollution may be related to changes in biomarkers as preclinical indicators for adverse effects on human health:

(1) Oxidative stress: 8-hydroxydeoxyguanosine [8-OHdG], 8-isoprostane, malondialdehyde [MDA], glutathione [GSH] and glutathione disulfide [GSSG] ratio, superoxide dismutase [SOD] and exhaled breath condensate [EBC] pH, Fe, nitrate, and nitric oxide [FeNO];

(2) Hemostasis or endothelial function: sP-selectin [sCD62p], soluble CD40 ligand [sCD40L], von Willebrand factor [vWF], Factor VII, and plasminogen activator inhibitor-1 [PAI-1];

(3) Systemic inflammation: fibrinogen, C-reactive protein [CRP], club cell secretory protein [CC16], interleukin-6 [IL-6], interleukin-8 [IL-8], myeloperoxidase, tumor necrosis factor alpha [TNF- α], and intercellular adhesion molecule-1 [ICAM-1]; and

(4) Metabolic function: blood profile such as white blood cells counts [WBC], blood pressure and heart rate.

We performed meta-analysis for 16 different biomarkers, namely 8-OHdG, CC16, CRP, EBC pH, FeNO, fibrinogen, Factor VII, IL-6, IL-8, lymphocytes, myeloperoxidase, neutrophils, PAI-1, sCD40L, TNF-alpha, and vWF (Table 1 & Appendix Table 1a – Table 1c). We found that each 10 μ g/m³ increase of PM_{2.5} was significantly (p-value < 0.05) associated with 0.14% increase of EBC pH (in contrary to the expectation that increase in PM is associated with increase in airway acidity

and hence decrease in the biomarker), 4.42% increase of myeloperoxidase, and 1.08% increase of TNF-alpha.

For other biomarkers, we found that $PM_{2.5}$ had positive but statistically non-significant associations with 8-OHdG, FeNO, CC16, CRP, fibrinogen, IL-8, vWF, and lymphocytes; while negative but statistically non-significant associations were observed in IL-6, factor VII, PAI-1, sCD40L, and neutrophils level (Appendix Table 3). There were insufficient studies to assess variation of age, diseases or health status, and occupation of the participants, which might make a big difference in biomarker response to changes in PM level.

For the rest of the biomarkers, there were limited numbers of studies available. Meta-analyses were not performed in case there was only one single study identified or the measurements of the effects were different between studies (e.g. either present in percentage change or differences in absolute change). Health effects of the biomarkers were well-known for some toxic pollutants such as polycyclic aromatic hydrocarbon (PAH) or black carbon, but their associations with the WHO criteria air pollutants were largely unknown. More future researches are needed to assess the evidence for the association of these biomarkers with the WHO criteria pollutants.

In this project, we were interested in the oxidative stress effects of $PM_{2.5}$. The oxidative stress related biomarkers, including 8-OHdG, 8-isoprostane, Cu/Zn-SOD, MDA, EBC pH, Fe, nitrate and FeNO, which were found to have significant associations, were described in details.

For 8-OHdG, significant associations were found in four studies, one in China and three in the US. The one in China was a panel study for residents in Beijing, which reported the largest percent changes in 8-OHdG of 57.6% (95% CI: 26.1, 97.0) at lag 1 per inter-quartile range (IQR) increase in PM_{2.5} exposure (Gong et al. 2014). For the US studies, one of them was a panel study for workers in trucking industry, for which 21% (95% CI: 2.0, 42.0) increase in 8-OHdG was associated with IQR increase in the exposure (Neophytou et al. 2013). The second US study in Boston focused on elderly, for which the corresponding increase in 8-OHdG was 30.8% (95% CI: 9.3, 52.2) (Ren et al. 2011). The third US study focused on workers in a power plant, for each 1 mg/m³ increase in PM_{2.5} exposure was associated with 1.67 μ g/g increase (95% CI: 0.21, 3.14) in 8-OHdG levels (Kim et al. 2004).

For exhaled breath condensate [EBC] biomarkers, it was assessed in the above-mentioned Beijing study, showing the largest percentage increase in FeNO of 40.7% (95% CI: 26.1, 57.0) at lag 0; in EBC pH of 1.21% (95% CI: 0.39, 2.03) at lag 1; and in EBC nitrite of 21.9% (95% CI: 12.0, 32.6) at lag 0, for an IQR increase in PM_{2.5} exposure (Gong et al. 2014). In another Beijing study focusing on children, an increase in FeNO of 18.7% (95% CI: 15.0, 22.5) was associated with an IQR increase in PM_{2.5} exposure (Lin et al. 2011). The other study on FeNO was conducted for schoolchildren in California, in which 24 μ g/m³ increase of personal PM_{2.5} was associated with 1.1

ppb increase (95% CI: 0.1, 1.9) in FeNO (Delfino et al. 2006). In a study of adolescents in New York City, a change (decrease for negative change) in EBC pH of -0.15 unit (95% CI: -0.28, -0.02) was associated with an IQR increase in PM_{2.5} exposure at lag 1 (Patel et al. 2013). In a study of adults in London, a change (decrease for negative change) in EBC Fe of -116 units (95% CI: -223, -7.78) was associated with 10 μ g/m³ increase in PM_{2.5} exposure (Zhang et al. 2009).

For 8-isoprostane, a study for adolescents in New York showed that a 9.9 μ g/m³ increase in 3day average PM_{2.5} was associated with a 0.38 unit increase (95% CI: 0.11, 0.56) in natural logtransformed measurement of the biomarker (Patel et al. 2013). For MDA, the same Beijing study showed the largest percentage increase of the biomarker measured in urinary of 15.3 (95% CI: 3.4, 28.4) was associated with an IQR increase of PM_{2.5} exposure at lag 0 (Gong et al. 2014). In study of schoolchildren in four cities (two in China and two in Korea), 0.0275 mmol/g creatinine increase of MDA (p<0.0001) was associated with 10 μ g/m³ increase in PM_{2.5} exposure measured from the current day to the two previous day (Bae et al. 2010). For Cu/Zn SOD, a study for elderly in Mexico, the biomarker was inversely related to PM_{2.5} exposure ($\beta = -0.05$, p = 0.001) (Romieu et al. 2008).

For the other pollutants (PM₁₀, NO₂, SO₂ and O₃), we had performed the respective metaanalyses as shown in the Appendix Tables. There were significant associations between these pollutants and several biomarkers. Briefly, each 10 μ g/m³ increase of a pollutant, for PM₁₀ was associated with 0.14 mg/dl increase of fibrinogen, and 0.58% increase in TNF- α ; for NO₂ with 0.25% increase of fibrinogen, and 4.97% increase of myeloperoxidase; for SO₂ with 0.49% increase of fibrinogen; and for O₃ with 0.66% increase of CRP, and 1.42 mg/dl increase of fibrinogen.

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
8-OHdG	2008	125 adults, age 22-27	Beijing, China	Panel	2.22 (3.7) mg/mol ^a	4.977	2.022	Gong et al 2014
	2009-2010	67 men in trucking	North-eastern US	Panel	55.9 (31.5) µg/g	44.88	20.23	Neophytou et al 2013
		industry			creatinine			
	2006-2008	320 elderly men	Boston, US	Longitudinal	20.8 (12.3) ng/ml	30.58	13.09	Ren et al 2010
	1999	20 power plant	^Boston, US	Repeated	13.26 (1.04) µg/g	#0.0167	0.00852	Kim et al 2004
		workers		measures	creatinine			
					Random effect	21.65	12.70	
EBC pH	2008	125 adults age 22-27	Beijing,	Panel study	7.43-7.61ª	0.154	0.0638	Gong et al 2014
			China					
	2003-	60 adults age 18-55	London,	Crossover	7.9-8.1 ^a	-0.17	0.29	Zhang et al 2009
	2005		UK					
	2005	36 adolescents	^New York,	Panel study	8 (5.8-8.2) ^b	#-0.152	0.067	Patel et al 2013
		age 14-19	US					
					Fixed effect	0.138*	0.0622	
FeNO	2008	125 adults age 22-27	Beijing,	Panel study	5.8-12.51ª ppb	5.301	0.971	Gong et al 2014
			China					
	2007-	36 students age 9-12	Beijing,	Panel study	13.7 (7.9) ppb	1.255	0.127	Lin et al 2011
	2008		China					

Table 1 Percentage (%) change in oxidative stress biomarkers concentrations per 10 µg/m³ increase in PM_{2.5}

The University of Hong Kong December 2015

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
	2003-	60 adults age 18-55	London,	Crossover	39.4-50.3 ^a ppb	1.89	2.74	Zhang et al 2009
	2005		UK					
	2003-	45 school children	California,	Panel	25.6 (25.1) ppb	#0.421	0.185	Delfino et al 2006
	2004	age 9-18	US					
					Random effect	2.895	1.662	
8-isoprostane	2005	36 adolescents age 14-19	New York,	Panel	48.6 pg/ml (22.1-	#0.384	0.139	Patel et al 2013
			US		72.9) ^b			
Cu/Zn-SOD	2001-	52 elderly	Mexico	Randomized	0.68-0.76 (0.04-0.05)	#-0.05	0.02	Romieu et al 2008
	2002			controlled trial	IU/mL			
EBC Fe	2003-	60 adults age 18-55	London,	Crossover	68-323 ^a nmol/L	-116	54.6	Zhang et al 2009
	2005		UK					
EBC nitrate	2008	125 adults age 22-27	Beijing,	Panel	2.61 - $4.23^{a} \mu M$	2.852	0.655	Gong et al 2014
			China					
GSH	2001-	52 elderly	Mexico	Randomized	3.66-4.38	#0.06	0.05	Romieu et al 2008
	2002			controlled trial	(1.39-1.7) µM			
MDA	2008	125 adults age 22-27	Beijing,	Panel	311-483 (1.1-12.8) nM	1.988	0.786	Gong et al 2014
			China					
MDA	2007	120 school children	4 cities,	Panel	1.2 ^c mmol/g creatinine	#0.0275	0.0049	Bae et al 2010
		mean age 9.46-11.9	Korea					
			& China					

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
TBARS	2003- 2005	60 adults age 18-55	London, UK	Crossover	2.14-2.5ª µmol/L	-3.37	6.44	Zhang et al 2009

Note: ^Studies were excluded from meta-analysis due to different in units or estimation.

+Text for statistical significant changes were **Bold**.

[#]The changes were in absolute unit change.

*p < 0.05

^a Range of mean, SD is not provided.

^b Only median (range) is provided in the study.

^c Least square mean of 4 cities.

2.5 Discussion

Among the different mechanisms of air pollution effects on the human health, oxidative stress is one of them, for which the effects of traffic-related air pollution have been assessed (Miller 2014). Oxidative stress triggers a number of redox sensitive signaling pathways. There is a large body of evidence showing that the pulmonary inflammatory response and cardiovascular actions arising from exposure to air pollutants, are mediated via oxidant signaling pathways (Anderson et al. 2012; Auerbach and Hernandez, 2012; Mills et al. 2009). In this study we focus on the oxidative stress effects of PM_{2.5} on 8-OHdG, MDA, and GSH/GSSG ratio.

2.5.1 8-OHdG as Biomarker for Exposure to PM_{2.5}

Our review clearly showed that 8-OHdG was associated with $PM_{2.5}$ exposure. Besides the effects of $PM_{2.5}$, a cross-sectional study on non-smoking bus drivers and healthy adults who stayed mostly indoors as controls in Prague, the effects of other air pollutants including PAH, benzopyrene, benzene, toluene, ethylbenzene, m-p-xylene, o-xylene and ozone were also assessed. The results consistently indicated that 8-OHdG levels were associated with both $PM_{2.5}$ and PM_{10} , in that when compared with the controls, bus drivers who were exposed to 10 and 15 µg/m³ higher in the respective pollutants were associated with higher levels of the biomarker (p<0.001) (Rossner et al. 2007; Rossner et al. 2008). Thus 8-OHdG is clearly a biomarker for assessing exposure to traffic-related particulate pollutants.

2.5.2 MDA as Biomarker for Exposure to PM_{2.5}

The cross-sectional study of 120 schoolchildren in four cities (two in China and two in Korea) has shown that increase in urinary MDA was associated with the ambient daily PM concentrations (Bae et al. 2010). The associations may be due to the sub-species of $PM_{2.5}$, including magnesium, iron, strontium, arsenic, cadmium, zinc, aluminium, mercury, barium and copper, which also had significant associations with MDA level. These findings support the use of MDA as a biomarker for exposure to PM in epidemiology study.

2.5.3 GSH/GSSG Ratio as Biomarker for Exposure to PM_{2.5}

The ratio between Glutathione (GSH) and its oxidized form (glutathione disulfide, GSSG) would be a measure for oxidant-antioxidant balance in the body. In an animal study, for mice, decreased GSH/GSSG ratio was associated with exposure to residual oil fly ash, which contained high level of PM (Marchini et al. 2013). In a study of human aortic endothelial cells exposure to ultrafine particles (UFP, diameter <200 nm) was associated with exposure to increase in GSSG/GSH ratio (Du et al. 2013). A study in Indian children living in household using biomass as fuel, similar association was shown (Padhy and Padhi, 2009). We believe that the role of $PM_{2.5}$ is a potential mediator in the oxidation pathway for reduction of GSH by reactive oxygen species and hypothesize it to be a metabolic disruptor.

3. Blood Sample Collection and Biomarker Measurement

3.1 Recruitment

In planning for recruitment of participants for blood sample taking and biomarker measurement, we had performed two site visits, one in Central/Western on 22 January, 2014 and the other in Mongkok on 28 January, 2014. We identified residential buildings in some suitable locations and sent out 2,810 invitation letters (Appendix 1) to the addresses there. The buildings were 0.1 to 1.5 km away from the air monitoring station in each region.

We received 151 calls from the invited residents from February to April, 2014. They were then screened for recruitment into the study by the following criteria:

- 1. Often live in the invited residential buildings
- 2. Chinese
- 3. Age 50 to 65 years
- 4. Non-smoker
- 5. No known chronic diseases

We successfully screened and recruited 120 eligible participants into the study. The overall response rate was 4.3% which is regarded as satisfactory.

3.2 Clinical Visit

We scheduled an appointment for taking blood samples, health measurement and administration of questionnaire interview with the participants at our study centre located in the Teaching Laboratory of the Li Ka Shing Faculty of Medicine, The University of Hong Kong, at 21 Sassoon Road, Pokfulam, Hong Kong for clinical visit. For the 120 eligible participants, 109 of them came to our study centre at Sassoon Road in July 2014 (Table 2).

Two eligible participants had changed their residential address to other region and were therefore excluded from the study. Nine of the eligible participants withdrew from the study, with the following reasons:

- a) objection of family members;
- b) not able to arrange the time for the study;
- c) not willing to participate in the study; and
- d) the research site too far away (living in Mongkok region).

When the participants came to the study center, they were given the information sheet (Appendix 1), which contained the background information of the study. For any enquires about the study, the investigator answered their questions on the site. After that, the participants signed the consent form (Appendix 2) for taking part in the study.

The visit included questionnaire interviewing, blood collection, blood pressure and anthropometry measurement. We obtained the smoking history and used a smokerlyzer (piCO⁺ smokerlyzer, Bedfont Scientific Ltd., UK) for validation of smoking status and assessment of second-hand-smoke exposure of the participants (Table 2). The smoking-related data will be used mainly in sensitivity analyses.

Description	Reading (ppm) ^a	%COHb ^b
Non smoker	0–6	0.79–1.59
Danger zone	7–10	1.75-2.23
Smoker	11–15	2.39-3.03
Frequent smoker	16–25	3.19-4.63
Addicted smoker	26+	4.79+

Table 2. Description of the Smokerlyzer Readings

^{*a*} ppm stands for parts per million, i.e. one part of carbon monoxide (CO) in one million parts of air (breath).

^b%COHb stands for the percentage of CO combined with haemoglobin in the blood.

After validating the smoking status of the participants, we measured the blood pressures for the participants twice, with at least 5 minutes interval between two measurements. When the first two readings differed by more than 5 mmHg, additional readings (one or two) were obtained before taking the average.

Height and weight were measured by a calibrated medical scale and a stadiometer. The participants also completed the questionnaire (Appendix 3), which asked for the individual characteristics including socio-demographic, lifestyles (such as indoor and outdoor air pollution exposure, daily activities and recent diets), and medical history of the participants. We collected blood samples as described in Section 3.3 below.

We scheduled the second, third and fourth appointments with the participants for the follow-up clinical visits. The contents of the three follow-up visits were similar to those of the first visit, with slightly modified questionnaire questions. For the 109 participants in the July 2014 fieldwork, 103 of them came to the study centre again in October 2014, 100 of them came in January 2015, and 99 of them came in April 2015. In total, nine participants withdrew from the study after the first visit,

with the same reasons mentioned above in this section. One female participant was lost to followup due to change of her contact number and residential address. The successful follow-up rate was 90.8% which is regarded as satisfactory (Table 3).

Visits	visits Jul 2014		Oct 2	Oct 2014		Jan 2015		Apr 2015	
Date of visit	Date	No.	Date	No.	Date	No.	Date	No.	
	2 nd	17	6 th	13	7 th	18	15 th	18	
	4 th	17	8 th	16	9 th	16	17^{th}	19	
	7^{th}	22	10^{th}	15	12^{th}	14	22 nd	18	
	8 th	9	13^{th}	10	14^{th}	10	24^{th}	17	
	9 th	33	17^{th}	14	15^{th}	9	25^{th}	9	
	11^{th}	3	21 st	6	16^{th}	10	29 th	11	
	21 st	5	22 nd	9	21 st	10	30 th	7	
	31 st	3	24^{th}	10	24^{th}	6			
			25^{th}	3	28^{th}	7			
			29^{th}	5					
			31 st	2					
Participant (n)									
CW		58		57		56		56	
MK		51		46		44		43	
Total		109		103		100		99	
Follow-up rate (%)									
CW		-		98.3		96.6		96.6	
MK		-		90.2		86.3		84.3	
Total		-		94.5		91.7		90.8	

Table 3. Number of Participants and Follow-up Rate in the Study

3.3 Blood Sample Taking and Processing

3.3.1 Justification for Collecting Blood Samples

Blood and urine are the two most feasible fluid from human body for the measurement of biomarkers. For taking other tissue samples, it would encounter sampling difficulty, analytic enrichment, and sample preparation complexity arising in the bio-monitoring (Shen et al. 2014). In a recent meta-analysis, the mean differences between the exposed and unexposed subjects for oxidized DNA including 8-OHdG was 0.53 (95% CI: 0.29, 0.76) in blood compared with 0.52 (95%

CI: 0.22, 0.82) in urine (Møller and Loft, 2010), indicating both blood and urine samples were comparable.

Given that there is no considerable difference between the levels of oxidative biomarkers in both blood and urine types of the human samples, and only blood samples which contain the blood profile information, we decided to collect blood samples only to avoid the complexity in the process of the multiple samples.

3.3.2 Blood Sample Taking

The research nurse took blood samples (fasting for at least 6 hours, total blood volume: 22 ml) from the participants using a vacutainer apparatus and obtained the blood with the plasma and serum blood collection tubes according to the following procedures:

- 1. Assess the participant for any recent surgery, history of difficult blood draws, fainting, and medications that may delay clotting, such as aspirin or Coumadin.
- 2. The participant sits in a comfortable position when the tourniquet is to be applied.
- 3. The vein is palpated to look for the best site for blood drawing.
- 4. The site is cleaned with alcohol swabs in a circular motion starting from the inside going outwards and alcohol is applied to dry.
- 5. The vein is stabilized with the non-dominant hand, while the dominant hand punctures the skin at a 30-degree angle using the vacutainer apparatus.
- 6. Blood samples are obtained using serum and plasma blood collection tubes.
- 7. If blood flowed freely, the tourniquet may be loosened; the tourniquet is removed just before the last blood sample has been obtained.
- 8. A clean gauze pad is applied over the puncture site and the needle is then withdrawn.
- 9. Pressure is applied to the site for approximately two to three minutes; a band-aid is then applied to the site.
- 10. The labeled blood collection tubes are inverted with additives for proper mixture.

3.3.3 Blood Sample Processing

The research assistant processed the blood samples within 1 hour after blood taking according to the following procedure:

- 1. For plasma in Heparin tubes, they are centrifuged at 3,000 rpm for 10 minutes.
- 2. The supernatant is then pipetted and aliquoted $(1.0 \sim 1.5 \text{ ml})$ into $5 \times 1.8 \text{ ml}$ plastic conical vials labeled with the subject ID and date.
- 3. The plasma samples are then stored at -80°C freezer for laboratory analysis.
- 4. For serum in Plain tubes, they are allowed to clot for 30 to 60 minutes at room temperature.
- 5. The tubes are then centrifuged for 1,800 g for 15 minutes.
- 6. The supernatant is then pipetted and aliquoted $(1.0 \sim 1.5 \text{ ml})$ into $5 \times 1.8 \text{ ml}$ plastic conical vials

labeled with the subject ID and date.

7. The serum samples are then stored at -80°C freezer for laboratory analysis.

3.3.4 Assay for Biomarkers

PM-induced reactive oxygen species (ROS) can cause oxidative damage to DNA and lipids of the cell membrane, leading to the formation of stable compounds such as the well-known 8-hydroxy-2'-deoxyguanosine (8-OHdG) (Wu et al. 2004; Valavanidis et al. 2009) and malondialdehyde (MDA) (Tagesson et al. 2005; Inaba et al. 2011), respectively, which were analyzed in this study. The GSH/GSSG ratio, which reflects oxidant-antioxidant balance were also measured. In addition, we study the blood profile, including high density lipoprotein cholesterol (HDL-C) and triglycerides for understanding of the cardio-metabolic health status for covariate adjustments of the PM-induced oxidative stress. All the biomarkers were analyzed using commercially available assays kits (Table 4) according to manufacturer's protocols with appropriate amendment if necessary (Appendix 4).

We used colorimetric and fluorometric assay kits for the determination of MDA, GSSG/GSH ratio, HDL-C and Triglyceride. For 8-OHdG, we used the enzyme immunoassay and enzymelinked immunosorbent assay (ELISA) developed by JaICA Ltd., which has been widely used in many studies (Miyaoka et al., 2015; Morillas-Ruiz et al., 2005; Saito et al., 2000). The advantage of using ELISA to determine the biomarkers is on their being highly sensitive to detect substances in the body (Gan and Patel, 2012), with high throughput, no requirement for pretreatment of the samples (Cooke et al., 2008), and thus minimum the loss in the valuable human samples. The use of commercially available kits reduces the time needed for assay standardization and optimization of the regents, as well as containing less health-hazardous chemicals.

Biomarkers	Company (Cat No.)
8-OHdG	JaICA (KOG-200S/E)
MDA	BioVision (K739-100)
GSSG/GSH ratio	Abcam (ab156681)
HDL-C	BioVision (K613-100)
Triglyceride	BioVision (K622-100)

Table 4: Assay Kits for Measurement of Biomarkers

3.4 Statistical Method

3.4.1 Descriptive Statistics

We performed descriptive statistics for each criteria air pollutant and for each health endpoint (biomarker). We calculated means, standard deviations, median and inter quartile range (IQR) for each visit and each region by evaluating all biomarkers as continuous responses using linear modelling techniques.

3.4.2 Relationships Between Pollutants and Biomarkers

Due to the repeated measures design for the subjects in the study, we applied the linear mixed model with random effect to assess the intraclass correlation coefficient (ICC) of biomarkers within the subjects (two-level), or within districts and subjects (three-level). We assumed equicorrelation between all observations within subjects in the model to account for correlation within subjects (Zhang et al. 2013). We evaluated the relationship between a biomarker and PM_{2.5} across the entire study period. PM_{2.5} concentrations were measured by the EPD air monitoring stations from the current day up to 7 days before the blood samples were taken. We examined the associations by adding the PM_{2.5} concentrations to the mixed linear models (with period indicators) to adjust for the period effect (by a variable indicating whether the measurement was taken in July 2014, October 2014, January 2015, or April 2015). We conducted the analyses using the R software nlme and mixIm packages (R version 3.2.0).

3.5 Ethics and Institutional Review Board Approval

The study involved human subjects and the study protocol was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster (IRB reference number UW 14-277). Written informed consent was obtained from all participants. Upon the completion of each clinical visit, an honorarium was offered to each participant to compensate them for their time and for transportation allowance. The questionnaire responses were with password protection. By securing the data and ensuring that only the investigators and designated study staff members had access to records, participants' identities were completely protected in compliance with human subject guidelines.

4. Results and Discussion

a) Socio-demographic factors

4.1 Descriptive Summary of the Participants

We had successfully invited 109 participants to complete the research in the July clinical visit, in which 58 (53.2%) were living in the Central/Western (CW) region, while the rest of 51 (46.8%) were living in the MongKok (MK) region. The characteristics of the participants were summarized in Table 5 below.

Region	Characteristics	CW	MK	Total	P-value for
5		n (%)	n (%)	n	Chi-square
Gender	Male	20 (34.5)	15 (29.4)	35	0.572
	Female	38 (65.5)	36 (70.6)	74	
Age	$(\text{mean} \pm \text{SD})$	58.4±4.9	58.9±4.6	58.6±4.7	0.609^
Floor level	$(\text{mean} \pm \text{SD})$	13.3 ± 8.4	5.4 ± 3.2	9.6±7.6	< 0.001^
Year of living	$(\text{mean} \pm \text{SD})$	15.9±8.5	15.9±10.2	15.9±9.3	0.988^
Marital	Single	2 (3.5)	3 (5.9)	5	0.108
	Married	48 (82.8)	41 (80.4)	89	
	Divorced/widowed	8 (13.8)	7 (13.7)	15	
Education	Primary	2 (3.5)	6 (11.8)	8	0.299
	Form 1-5	17 (29.3)	16 (31.4)	33	
	Form 6-7	7 (12.1)	3 (5.9)	10	
	Diploma	7 (12.1)	3 (5.9)	10	
	Tertiary or above	25 (43.1)	23 (45.1)	48	
Monthly Expenditure	\$2000-2999	8 (13 8)	2(39)	10	0 272
Montiny Experiation e	\$2000-2333	11 (19.0)	8 (157)	19	0.272
	\$4500-6699	11 (19.0)	12(23.5)	23	
	\$6700-9999	17 (29.3)	13 (25.5)	30	
	≥\$10000	11 (19.0)	16 (31.4)	27	
Housing	Self-owned flat	54 (93.1)	44 (86.3)	98	0.238
8	Rented	4 (6.9)	7 (13.7)	11	
Occupation	Full-Time	21 (36.2)	16 (31.4)	37	0.823
-	Part-Time	6 (10.3)	4 (7.8)	10	
	Housewife/retired	31 (53.5)	31 (60.8)	62	
Body Mass Index (BMI)	Underweight (<18.5)	5 (8.6)	2 (3.9)	7	0.510
	Normal (18.5-22.9)	26 (44.8)	20 (39.2)	46	
	Overweight (23-24.9)	13 (22.4)	17 (33.3)	30	
	Obesity (≥25)	14 (24.1)	12 (23.5)	26	

Table 5. Baseline Descriptive Summary of the Participants (n=109)

^ p-value for T-test.

Region	Characteristics	CW n (%)	MK n (%)	Total n	P-value for Chi-square
	N7 1	55 (04.0)	10 (0 < 1)	104	0.001
Smoking history	Never smoker	55 (94.8)	49 (96.1)	104	0.891
	Ex-smoker	3 (5.2)	2 (3.9)	5	
Passive smoking	No	46 (79.3)	37 (72.5)	83	0.409
6	Yes	12(20.7)	14 (27.5)	26	
Exposure	(mean + SD)	27+30	1 2+0 8	19+22	0 395^
(Hour/week)	(110411 - 52)	2.7_0.0	1.2_0.0	1.7_2.2	0.070
Alcohol Drinking	Never OR 1-2/year	37 (63.8)	28 (54.9)	65	0.247
Frequency	<1/month	7 (12.1)	5 (9.8)	12	
1 5	<1/week	9 (15.5)	6 (11.8)	15	
	$\geq 1/\text{week}$	5 (8.6)	12 (23.5)	17	
Exercise	Every day	3 (5.2)	4 (7.8)	7	0.567
Frequency	4-6/week	6 (10.3)	7 (13.7)	13	
1 1 1	1-3/week	15 (25.9)	17 (33.3)	32	
	<1/week	34 (58.6)	23 (45.1)	57	

b) Lifestyle factors

^ p-value for T-test.

4.2 Air Pollutant Concentrations

The concentrations of $PM_{2.5}$ in the study period were retrieved from the EPD air monitoring stations. The levels of CW station and MK station were comparable to each other. The time-series pattern of the air pollutants over the study period was shown in Figure 2.

Figure 2. Time-series Pattern of PM2.5 in the Study Period

--- The vertical dashed lines represent the sampling date. Source: Past Air Quality Monitoring Data from the EPD Air Quality Monitoring Stations: <u>http://epic.epd.gov.hk/EPICDI/air/station/?lang=en</u> (Assessed 10 September 2015)

4.3 Biomarkers and Physiologic Endpoints

4.3.1 Reliability of Laboratory Measured Biomarkers

The concentration of oxidative stress biomarkers (8-OHdG, MDA, and GSH/GSSG ratio) and blood lipids (HDL-C and triglyceride) were estimated with the laboratory assay kits.

We used the coefficient of variation (CV) to assess the precision and reliability of quantitative assay (Reed, Lynn and Meade, 2002). The CV is calculated by the ratio of the *standard deviation* to the *mean* (Everitt, 1998) in the triplicate analysis of each individual sample. The value of CV less than 20% is set as the criteria to interpret the inter-sample precision and reliability of the biomarkers level as acceptable (DeSilva et al., 2003). Proportions of our samples with CV greater than 20% range from 0 to 4.6% (Table 7). The results showed that the current measurement of the biomarkers with medians CV less than 10% for all the measurements were reliable and highly precise.

In addition, the measured levels of the biomarkers were comparable to the values reported in other studies. The mean HDL-C and triglyceride levels for the two regions of participants were also within the normal level for generally healthy adults (Table 8).

Table 7. Coefficient of Variation (median, range); Percentage of Coefficient of VariationGreater than 20%

	July 201	4	October 20)14	January 20)15	April 2015	
Biomarker	Median	0/ *	Median	0/	Median	04	Median	0/
	(range)	70 .	(range)	70	(range)	70	(range)	70
8-OHdG	4.7 (0 - 28)	1.8	5.9 (0 - 17)	0	3.4 (0 - 21)	3.0	6.1 (0 - 14)	0
MDA	2.6 (0 - 27)	1.8	3.3 (0 - 21)	1.0	2.1 (0 - 29)	3.0	3.5 (0 - 28)	3.0
GSH/GSSG	3.0 (0 - 25)	4.6	2.6 (0 - 22)	1.0	0.8 (0 - 21)	1.0	0.7 (0 - 8)	0
HDL-C	2.9 (0 - 34)	1.9	2.6 (0 - 29)	1.0	3.2 (0 - 27)	1.0	5.3 (0 - 18)	0
Triglyceride	3.4 (0 - 50)	0.9	5.3 (0 - 24)	1.9	4.7 (0 - 26)	1.0	5.0 (0 - 26)	1.0

*%: the percentage of CV greater than 20%

Biomarker	Range of Mean Level	Reported mean range value* /
	(four visits, two regions)	Normal level
8-OHdG	7.3 – 10.5 ng/ml	0.2 – 12.3 ng/ml
MDA	1.32 – 1.95 nmol/ml	0.8 – 5.5 nmol/ml
GSH/GSSG	3.23 - 5.07	1.5 - 160
HDL-C	0.98 – 1.37 mmol/L	Normal level: Above 0.9 mmol/L
Triglyceride	0.42 - 0.65 mmol/L	Normal level: Below 1.5 mmol/L

Table 8.	Comparability of the	Measured Biomarker	Level to Reported Level
I abre of	comparability of the	nicubal ca Diomainei	Lever to heppilted Lever

*Please refer to Appendix Table 6 for the review on the reported levels of the oxidative biomarkers.

4.3.2 Descriptive Results for the Biomarkers

The levels of the oxidative stress and blood lipids biomarkers, and the heart rate and blood pressure level measured by the blood pressure monitor were summarized in Table 9. There was no statistically significant difference of the levels of biomarkers between the two regions in the four visits, respectively. Figure 3A-3F showed the concentrations of the oxidative biomarkers for the four visits. The patterns among the four visits were complex for both CW and MK.

Table 9. Summary Statistics of Biomarkers

A) Central/Western								
Biomarker / Visit	Mean (SD)	Median (1 st to 3 rd quartile)						
Oxidative Stress								
8-OHdG (ng/ml)								
Jul 2014	10.5 (7.88)	7.64 (5.98, 11.92)						
Oct 2014	9.30 (7.49)	7.06 (4.61, 10.42)						
Jan 2015	9.90 (9.13)	6.88 (5.15, 10.25)						
Apr 2015	7.31 (6.92)	5.81 (3.92, 7.70)						
MDA (nmol/ml)								
Jul 2014	1.40 (0.95)	1.02 (0.68, 1.85)						
Oct 2014	1.47 (1.06)	1.35 (0.50, 2.17)						
Jan 2015	1.72 (0.87)	1.83 (0.87, 2.33)						
Apr 2015	1.94 (0.69)	1.48 (1.10, 1.69)						
GSH/GSSG								
Jul 2014	3.38 (2.48)	2.55 (2.09, 3.86)						
Oct 2014	3.23 (1.45)	2.9 (2.34, 3.87)						
Jan 2015	3.28 (1.23)	2.99 (2.56, 3.76)						
Apr 2015	3.33 (0.90)	3.09 (2.76, 3.63)						
Lipid profile								
HDL-C (mmol/L)								
Jul 2014	1.28 (0.69)	1.03 (0.72, 1.78)						
Oct 2014	0.99 (0.39)	0.93 (0.70, 1.23)						
Jan 2015	0.98 (0.36)	1.03 (0.67, 1.29)						
Apr 2015	1.15 (0.51)	1.05 (0.72, 1.39)						
Triglyceride (mmol/L)								
Jul 2014	0.46 (0.29)	0.43 (0.29, 0.58)						
Oct 2014	0.61 (0.33)	0.52 (0.36, 0.86)						
Jan 2015	0.44 (0.30)	0.36 (0.23, 0.62)						
Apr 2015	0.45 (0.24)	0.41 (0.24, 0.63)						
Autonomic measurement								
Heart rate (bpm)								
Jul 2014	66.9 (8.48)	67.0 (61.5, 73.6)						
Oct 2014	67.8 (8.77)	66.5 (61.5, 75.8)						
Jan 2015	71.6 (9.12)	72.0 (65.4, 77.0)						
Apr 2015	69.3 (8.45)	69.5 (63.0, 74.0)						
DBP (mmHg)								
Jul 2014	78.2 (9.44)	77.0 (72.1, 86.1)						
Oct 2014	80.6 (10.5)	80.0 (73.5, 87.8)						
Jan 2015	82.3 (9.53)	80.3 (75.1, 88.9)						
Apr 2015	78.4 (8.97)	76.5 (70.0, 82.5)						
SBP (mmHg)								
Jul 2014	124.3 (15.3)	125 (113.3, 133.4)						
Oct 2014	129.0 (17.0)	129 (117.8, 136.0)						
Jan 2015	129.5 (16.3)	126 (117.6, 140.8)						
Apr 2015	126.4 (15.2)	120 (117.5, 138.0)						

A) Control/West

B) Mongkok								
Biomarker / Visit	Mean (SD)	Median (1 st to 3 rd quartile)						
Oxidative Stress								
8-OHdG (ng/ml)								
Jul 2014	9.45 (6.88)	7.31 (4.90, 12.88)						
Oct 2014	8.78 (6.67)	6.72 (4.39, 12.09)						
Jan 2015	9.13 (6.90)	6.83 (4.42, 10.52)						
Apr 2015	7.53 (5.25)	5.64 (3.71, 9.49)						
MDA (nmol/ml)								
Jul 2014	1.32 (0.77)	1.13 (0.71, 1.61)						
Oct 2014	1.68 (1.27)	1.53 (0.57, 2.97)						
Jan 2015	1.60 (0.89)	1.33 (0.78, 2.31)						
Apr 2015	1.95 (0.72)	1.46 (0.90, 1.77)						
GSH/GSSG	`							
Jul 2014	4.87 (6.35)	2.66 (1.94, 5.20)						
Oct 2014	4.03 (3.36)	2.68 (2.36, 4.93)						
Jan 2015	3.41 (1.85)	2.69 (2.43, 3.75)						
Apr 2015	3.40 (0.94)	3.21 (2.86, 3.63)						
Lipid profile								
HDL-C (mmol/L)								
Jul 2014	1.37 (0.76)	1.06 (0.81, 1.80)						
Oct 2014	1.02 (0.46)	0.92 (0.69, 1.43)						
Jan 2015	1.12 (0.36)	1.16 (0.80, 1.42)						
Apr 2015	1.05 (0.46)	0.98 (0.72, 1.32)						
Triglyceride (mmol/L)	`							
Jul 2014	0.49 (0.39)	0.39 (0.24, 0.53)						
Oct 2014	0.65 (0.34)	0.57 (0.34, 0.83)						
Jan 2015	0.42 (0.27)	0.36 (0.22, 0.67)						
Apr 2015	0.49 (0.32)	0.43 (0.25, 0.66)						
-								
Autonomic measurement								
Heart rate (bpm)								
Jul 2014	68.0 (6.15)	68.0 (64.0, 72.0)						
Oct 2014	70.0 (8.94)	68.8 (63.8, 76.1)						
Jan 2015	71.4 (9.56)	72.5 (64.0, 78.0)						
Apr 2015	69.1 (8.29)	67.5 (60.5, 74.8)						
DBP (mmHg)								
Jul 2014	77.8 (10.1)	77.5 (69.5, 84.5)						
Oct 2014	78.1 (8.47)	79.0 (72.3, 82.6)						
Jan 2015	81.8 (14.1)	81.0 (72.5, 87.5)						
Apr 2015	77.6 (9.38)	75.5 (71.3, 86.8)						
SBP (mmHg)	. ,							
Jul 2014	127.4 (18.3)	125.0 (113.5, 139.5)						
Oct 2014	127.6 (14.4)	127.8 (117.3, 139.6)						
Jan 2015	127.7 (18.8)	131.5 (114.0, 140.5)						
Apr 2015	128.5 (17.5)	128.5 (113.8, 144.8)						

Figure 3A. Level of 8-OHdG of Each Subject in the Four Visits in Central/Western

Figure 3B. Level of 8-OHdG of Each Subject in the Four Visits in Mongkok

Figure 3C. Level of MDA of Each Subject in the Four Visits in Central/Western

Figure 3D. Level of MDA of Each Subject in the Four Visits in Mongkok

Figure 3E. Level of GSH/GSSG Ratio of Each Subject in the Four Visits in Central/Western

4.3.3 Associations of Biomarkers with Socio-demographic and Lifestyles of Participants

We compared the level of the biomarkers by the participants' demographic covariates including age, gender and BMI; lifestyles covariates including alcohol drinking frequency, exercise frequency, and passive smoking exposure; and dietary covariates including frequency of fresh fruits and vegetables intake, and drinking of tea (Table 10).

The correlations between these covariates and the level of biomarkers were summarized in Appendix Table 4. For demographic covariates, we found that gender was associated with 8-OHdG, HDL-C and blood pressure. BMI was associated with HDL-C, and age was associated with systolic blood pressure (SBP). For lifestyles covariates, heart rate was correlated with passive smoking. Interestingly, some significant associations were found between GSH/GSSG ratio and the intake of alcohol.

For dietary covariates, fresh fruits, vegetables, and tea are natural antioxidants (Gülçin, 2012). We found that tea and fresh vegetables were associated with oxidative stress biomarkers (8-OHdG and GSH/GSSG), in the direction as expected. However, we could not find any significant correlations between MDA and these anti-oxidant food and drinks. Heart rate had a strong association with green tea, which may reflect its protective action on cardiovascular diseases (Bhardwaj and Khanna, 2013).

We had also examined the correlations between biomarkers and other information obtained from the questionnaires, such as education, marital status, housing, etc. The results were not statistically significant (data not shown).

Table 10. Level of Biomarkers (Mean±SD), by Demographic and Lifestyles of Participants, July 2014

A) Demographic

		n	8-OHdG	MDA	GSH/	HDL-C	Trigly-	Heart	DBP	SBP
					GSSG		ceride	rate		
Dei	mographic									
Ag	e									
	Age 50-59	63	9.41±7.15	1.30 ± 0.75	4.03±4.22	1.37 ± 0.76	0.46 ± 0.37	66.5±7.45	$77.0{\pm}10.0$	122.4±17.9
	Age ≥ 60	46	10.9±7.77	1.45 ± 1.01	4.37 ± 5.74	1.25 ± 0.68	0.49 ± 0.28	68.8±7.36	79.4±9.19	130.4±13.9
Ge	nder									
	Male	35	8.01±5.31	1.25 ± 0.89	4.12±3.9	1.17 ± 0.69	0.54 ± 0.36	67.4±8.14	83.1±8.95	130.3±14.5
	Female	74	11.0 ± 8.09	1.42 ± 0.86	4.2±5.33	1.39 ± 0.73	0.44 ± 0.32	67.5±7.19	75.6±9.17	123.6±17.4
BM	11									
	Underweight (<18.5)	7	12.5 ± 5.01	1.57 ± 1.15	4.06 ± 2.42	1.42 ± 0.70	0.35±0.16	71.6±10.8	76.9 ± 6.20	121.0 ± 8.78
	Normal (18.5-22.9)	46	10.6 ± 7.64	1.24 ± 0.77	3.95 ± 4.04	1.53 ± 0.75	0.49 ± 0.35	66.2±7.92	76.1±10.5	120.2±15.4
	Overweight (23-24.9)	30	8.72 ± 6.75	1.42 ± 1.03	5.46 ± 7.58	1.27 ± 0.73	0.52 ± 0.42	68.3±5.07	79.9±9.32	132.3±18.0
_	Obesity (≥25)	26	9.88 ± 8.33	1.47 ± 0.78	3.12 ± 1.70	0.97 ± 0.56	0.42 ± 0.22	67.5±7.85	79.5±9.28	129.3±16.2

B) Lifestyles

	n	8-OHdG	MDA	GSH/	HDL-C	Trigly-	Heart	DBP	SBP
				GSSG		ceride	rate		
Lifestyles									
Exercise frequency									
4-7/week	20	9.76 ± 7.29	1.29 ± 0.74	4.11 ± 3.82	1.64 ± 0.88	0.56 ± 0.51	66.6 ± 5.78	79.7±9.13	126.5±16.1
1-3/week	32	11.7 ± 8.03	1.29 ± 0.88	3.95 ± 3.32	1.31 ± 0.75	0.43 ± 0.27	66.3±7.51	78.2 ± 11.1	124.3±19.7
<1/week	57	$9.20{\pm}7.08$	1.43 ± 0.91	4.32 ± 5.93	1.22 ± 0.63	0.46 ± 0.30	68.4 ± 7.94	77.2±9.13	126.3 ± 15.4
Passive smoking									
Yes	26	9.23 ± 7.78	1.38 ± 0.71	3.91 ± 3.62	1.32 ± 0.79	0.44 ± 0.19	69.9 ± 6.55	81.2 ± 7.90	128.2 ± 15.0
No	83	10.3 ± 7.33	1.36 ± 0.92	4.26 ± 5.25	1.32 ± 0.71	0.48 ± 0.37	66.6 ± 7.60	$77.0{\pm}10.1$	$125.0{\pm}17.3$
Alcohol drinking									
Never OR 1-2/year	65	9.68 ± 6.83	1.40 ± 0.89	4.05 ± 5.32	1.18 ± 0.65	0.41 ± 0.30	67.3 ± 7.80	77.7±9.33	$127.0{\pm}14.1$
<1/week	27	12.1±9.22	1.30 ± 0.85	4.06 ± 3.69	1.47 ± 0.78	0.59 ± 0.40	66.1±6.66	75.1±9.68	118.7 ± 20.6
$\geq 1/week$	17	8.08 ± 5.89	1.32 ± 0.87	4.84 ± 5.09	1.61 ± 0.83	0.52 ± 0.33	70.1±7.09	83.7±9.35	132.3±16.5
Dietary									
Fruits									
\geq 4-7/week	89	10.0 ± 7.49	1.33 ± 0.85	4.24 ± 5.07	1.35 ± 0.76	0.44 ± 0.28	66.9 ± 7.50	77.2±9.51	125.2±16.7
<3/week	20	9.96 ± 7.25	1.51 ± 0.95	3.86 ± 4.12	1.17 ± 0.55	0.59 ± 0.52	69.6±7.10	81.3±10.2	128.2 ± 17.1
Vegetables									
\geq 4-7/week	103	10.3 ± 7.50	1.38 ± 0.88	4.22 ± 4.98	1.35 ± 0.73	0.46 ± 0.30	67.2 ± 7.39	77.7±9.63	125.3±16.7
<3/week	6	4.99 ± 3.22	1.16 ± 0.59	3.47 ± 3.28	0.89 ± 0.46	0.71±0.73	71.6±8.30	82.5±10.9	133.4±16.7
Tea									
\geq 4-7/week	48	9.97±7.05	1.38 ± 0.93	5.17 ± 6.65	1.24 ± 0.70	0.47±0.33	68.8 ± 7.31	78.0 ± 9.45	$125.0{\pm}14.4$
<3/week	61	10.1±7.75	1.35 ± 0.83	3.39 ± 2.65	1.38 ± 0.75	0.47 ± 0.34	66.3±7.47	78.0 ± 9.99	126.4 ± 18.5
4.4 Relationships between Biomarkers and Air Pollutants

4.4.1 Partial correlation of Biomarkers with PM_{2.5}

The partial correlation between measures of biomarkers and air pollutants, were controlled for individual demographic characteristics, lifestyles, and dietary. The results of the partial correlations for PM_{2.5} in the baseline were summarized in Table 11.

For all the three oxidative stress biomarkers, there were no significant correlations with $PM_{2.5}$. For blood lipid profile, the HDL-C level measured in the participants was negatively correlated with $PM_{2.5}$ (p<0.05). For triglyceride, the correlations were positive and significant. Most of the autonomic measurements in the study were positively correlated with $PM_{2.5}$.

Biomarkers	Crude	Demographic ^a	Demographic & Lifestyles ^b	Demographic & Dietary ^c	Demographic, Lifestyles, & Dietary
CW					
8-OHdG	-0.0182	-0.0156	0.0421	0.0176	0.0922
MDA	-0.1598	-0.2197	-0.2050	-0.2649	-0.2587
GSH/GSSG	0.0560	0.0391	0.0745	0.0210	0.0553
HDL-C	-0.3441**	-0.2763*	-0.2512	-0.3279*	-0.2905
Triglyceride	0.1025	0.1620	0.2618	0.1609	0.2790
Heart rate	0.0970	0.0857	0.0481	0.0667	0.0130
DBP	0.1588	0.1952	0.1604	0.2445	0.2161
SBP	0.1642	0.1936	0.1571	0.1970	0.1756
МК					
8-OHdG	-0.2175	-0.1787	-0.1248	-0.1800	-0.0892
MDA	0.0773	0.0702	0.1330	0.0466	0.1290
GSH/GSSG	-0.2282	-0.2745	-0.3429*	-0.1579	-0.2390
HDL-C	-0.1681	-0.2205	-0.1742	-0.2246	-0.2076
Triglyceride	0.3258*	0.2941*	0.2194	0.2852	0.1961
Heart rate	-0.0458	-0.0702	-0.2221	-0.0373	-0.1504
DBP	0.0876	0.0389	-0.0840	0.0094	-0.1290
SBP	0.1784	0.1269	0.0482	0.1382	0.0252
All (CW and					
MK)					
8-OHdG	-0.1297	-0.1031	-0.0422	-0.1204	-0.0608
MDA	-0.0624	-0.0870	-0.0648	-0.0977	-0.0793
GSH/GSSG	-0.0817	-0.1197	-0.1155	-0.0921	-0.0999
HDL-C	-0.2169*	-0.2083*	-0.2159*	-0.2003*	-0.2209*
Triglyceride	0.2372*	0.2394*	0.2615**	0.2398*	0.2530*
Heart rate	0.0544	0.0529	0.0025	0.0448	-0.0052
DBP	0.1090	0.1157	0.0508	0.1059	0.0383
SBP	0.1924*	0.1682	0.0978	0.1574	0.0858

Table 11.	Crude and	Partial	Correlation	of	Biomarker	and	PM2.5	in	Central/Western	and
Mongkok	in Baseline									

^a Partial correlation adjusted for demographic factors (age, gender and BMI)

^b Partial correlation adjusted for demographic factors^a and lifestyles (alcohol drinking frequency, exercise frequency, and passive smoking exposure)

^c Partial correlation adjusted for demographic factors^a and dietary (frequency of fresh fruits and vegetables intake, and drinking of tea)

*p-value < 0.05, **p-value < 0.01

4.4.2. Intraclass correlation coefficient of biomarkers

The intraclass correlation coefficient (ICC) was defined as the variance of the specified random effect component divided by the sum of the total variance of the random effect components and the error variance. It explained the proportion of the variance of the specified random effect component relative to the total variance in the model. All of the biomarkers showed very small ICC in the districts (<0.0001) except for the GSH/GSSG ratio (Table 12), which implied there should not have much variation in the district level. Therefore, we applied the two level model for all the outcomes except that the three level model was applied on GSH/GSSG ratio for the further analyses.

	Two level	Three level	
Biomarker	Subject	District	Subject
8-OHdG	0.2106	< 0.0001	0.2717
MDA	0.0241	< 0.0001	0.0289
GSH/GSSG	0.3089	0.0244	0.2930
HDL-C	0.0744	< 0.0001	0.1020
Triglyceride	0.0657	< 0.0001	0.1003
Heart rate	0.5683	< 0.0001	0.6145
DBP	0.6086	< 0.0001	0.6505
SBP	0.6676	< 0.0001	0.7062

Table 12. Intraclass Correlation Coefficient (ICC) by Models

4.4.3.1 Relationships between Changes in Biomarkers and PM_{2.5}

The relationships between biomarkers level and $PM_{2.5}$ concentration were expressed as changes in the biomarkers level per 10 µg/m³ increase of $PM_{2.5}$ concentration. Three exposure windows were examined, including current day exposure (lag 0), previous two-day average exposure (lag 0-1 days), and previous one-week average exposure (lag 0-7 days).

In the current day exposure window, we found a reduction of 0.35 ng/ml 8-OHdG, 0.06 GSH/GSSG ratio, 0.02 mmol/L of HDL-C, 0.002 mmol/L of triglyceride for every $10 \mu g/m^3$ increase of PM_{2.5}. An increase of 0.001 mmol/L of MDA, 0.13 bpm of heart rate, 0.3 mmHg of DBP and 0.1 mmHg of SBP was associated with every $10 \mu g/m^3$ increase of PM_{2.5} (Table 13A). Similar associations were found in the lag 0-1 days exposure, except with triglyceride for which the association was positive instead of negative (Table 13B). However, for the lag 0-7 days exposure, pattern of associations was different (Table 13C). All the associations were statistically not significant.

A) Current day								
Biomarker	Change per 10 µg/m ³	95% CI	p-value					
8-OHdG	-0.3477	(-0.0825, 0.0129)	0.1544					
MDA	0.0010	(-0.0062, 0.0064)	0.9755					
GSH/GSSG	-0.0565	(-0.0238, 0.0125)	0.5413					
HDL-C	-0.0157	(-0.0053, 0.0021)	0.4036					
Triglyceride	-0.0018	(-0.0022, 0.0019)	0.8595					
Heart rate	0.1251	(-0.0288, 0.0538)	0.5531					
DBP	0.3047	(-0.0185, 0.0795)	0.2242					
SBP	0.1225	(-0.0617, 0.0862)	0.7457					

Table 13. Estimated unit changes (95% CI) in biomarkers per 10 µg/m³ increase of PM_{2.5}

B) Lag0-1 days

Biomarker	Change per 10 µg/m ³	95% CI	p-value
8-OHdG	-0.3934	(-0.0965, 0.0178)	0.1784
MDA	0.0048	(-0.0072, 0.0081)	0.9030
GSH/GSSG	-0.0889	(-0.0303, 0.0125)	0.4163
HDL-C	-0.0226	(-0.0067, 0.0022)	0.3191
Triglyceride	0.0064	(-0.0018, 0.0031)	0.6157
Heart rate	0.0752	(-0.0417, 0.0567)	0.7649
DBP	0.4982	(-0.0078, 0.1074)	0.0913
SBP	0.2562	(-0.0629, 0.1142)	0.5712

C) Lag0-7 days

Biomarker	Change per 10 µg/m ³	95% CI	p-value
8-OHdG	-0.7797	(-0.1726, 0.0167)	0.1075
MDA	0.0496	(-0.0070, 0.0170)	0.4188
GSH/GSSG	-0.0510	(-0.0420, 0.0317)	0.7862
HDL-C	0.0499	(-0.0020, 0.0120)	0.1629
Triglyceride	-0.0229	(-0.0063, 0.0017)	0.2616
Heart rate	-0.7227	(-0.1561, 0.0115)	0.0921
DBP	0.6290	(-0.0330, 0.1588)	0.1995
SBP	0.6839	(-0.0814, 0.2182)	0.3716

Sensitivity Analysis

The distributions of some of the biomarkers were highly skewed (specifically, for 8-OHdG and GSH/GSSG ratio). Hence, we performed sensitivity analyses by dichotomized the biomarker levels based on data distribution into high and low categories. For 8-OHdG, MDA, GSH/GSSG, and heart rate, top quantile (median, tertile, quartile and quintile) values of the entire data set was used for the cut off. We tested visits and current day exposure for assessing PM_{2.5} effects for these dichotomized biomarkers using logistic regression and found that the effects sign of PM_{2.5} changed positively for 8-OHdG for top median, GSH/GSSG ratio for all top quantiles. Yet, most of the changes with increase in PM_{2.5} were statistically non-significant (Table 14).

Table 14. Estimated Excess Risks (95% CI) in High Biomarkers per 10 µg/m³ Increase of PM_{2.5}

Biomarker	Top median Top tertile		Top quartile	Top quintile	
8-OHdG	2.2(-12.6, 19.6)	-2.4(-17.9, 16.0)	-7.4(-23.9, 12.7)	-11.9(-30.0, 10.9)	
MDA	-1.9(-14.8, 13.0)	3.7(-10.8, 20.6)	2.8(-12.9, 21.3)	3.0(-14.9, 24.7)	
GSH/GSSG	13.3(-7.7, 39.0)	24.7(2.2, 52.1)*	25.2(1.3, 54.7)*	17.1(-6.0, 45.9)	
HDL-C	7.3(-8.6, 25.9)	-1.7(-15.3, 14.0)	-16.5(-30.6, 0.6)	-24.7(-41.1, -3.7)*	
Triglyceride	-4.8(-17.6, 10.0)	-9.7(-23.5, 6.6)	-12.6(-28.1, 6.3)	-7.1(-24.7, 14.7)	
Heart rate	-10.9(-27.6, 9.8)	-7.4(-25.3, 14.9)	0.5(-19.5, 25.5)	8.9(-12.0, 34.7)	
DBP		13.2(-9.7, 41.9)			
SBP	1.00(-16.9, 22.6)	-1.10(-21.4, 24.5)	12.2(-12.0, 43.0)	18.3(-11.9, 58.9)	

*p<0.05

--- : Models in DBP did not converge in top median, quartile and quintile.

4.4.4 Comparisons with Studies in Other Countries

Across the entire study period, we hypothesized that biomarker levels would be positively correlated with concentrations of $PM_{2.5}$ according to the literatures (Table 15).

Table 15.	Change in Biomarkers for increase in $PM_{2.5}/Traffic-Related$ Pollutants in the
Current St	udy and in the Literatures

Biomarkers	Current study	Literatures	References
8-OHdG	Decrease?	Increase	Refer to "Literature Review" section
MDA	Increase	Increase	Refer to "Literature Review" section
GSH/GSSG	Decrease	Decrease	Refer to "Literature Review" section
HDL-C	Decrease	Decrease	Tomao et al. 2002
Triglyceride	Increase	Increase	Tomao et al. 2002
DBP	Increase	Increase	Rich et al. 2012
SBP	Increase	Increase	Rich et al. 2012
Heart rate	Increase	Increase	Rich et al. 2012

Regarding oxidative markers, we found a decrease in 8-OHdG in the participants, pointing towards decreased oxidative stress in association with an increase of PM_{2.5}. Although reverse effects of PM_{2.5} on 8-OHdG was found in the dichotomized logistic regression analysis for top median, the effects remained negative for the other cut off in the dichotomized model. The negative associations were unexpected. However, a Czech study showed that oxidative biomarkers did not differ between locations or between seasons (Rossner et al. 2013). The oxidative markers level may be affected by lifestyle factors. A study among 361 healthy male subjects indicated that oxidative biomarker level was inversely correlated with fruits consumption, physical activity, and total energy consumed per day (Tamae et al. 2009). Adjustment for dietary and exercise frequency, did not account for the lack of between-group differences in the levels of 8-OHdG observed in our study. However, we did not obtain any information on total energy consumption of the participants for assessing the correlation with these biomarker levels. On the other hand, we observed a different pattern of O₃ pollutants in the study period, in which the peak was found in October instead of January (the peak of PM). O₃ was also found to be associated with oxidative biomarkers, including 8-OHdG (Appendix Table 3). The level of 8-OHdG was affected not only by PM but other pollutants as well.

For the rest of the biomarkers, most of their associations with $PM_{2.5}$ were in the direction as expected, but were mostly not statistically significant and the $PM_{2.5}$ -associated changes in these biomarkers did not always agree with each other in terms of the direction, magnitude, and timing of

health outcome response. This inconsistency may be partially due to the uncontrolled day-to-day variations in ambient concentrations of air pollutants in PM composition and pollutant mixture.

4.5 Methodological Approaches for Biomarker Study in Hong Kong

We have developed methodological approaches in measuring the effects of air pollution on health at molecular level in Hong Kong. A research protocol is summarized below:

(A) Subject Recruitment

- 1. Select the potential study area (e.g. by site visits) which is near the air quality monitoring stations
- 2. Send out invitation letters to the potential study address
- 3. Define the characteristic of the study population (e.g. age group, smoking conditions, health conditions, etc.)
- 4. Screen and recruit the eligible participants.
- (B) Preparation for the Clinical Visit
- 1. Schedule appointment for clinical visit. Remind the participants to fast overnight.
- 2. Introduce the study objectives and answer any enquires from the participants as detailed as possible.
- 3. Ask the participants to sign the consent form for taking part in the study.
- 4. Obtain the smoking history and use a smokerlyzer for validation of smoking status.

(C) Clinical Visit

- 1. The visit includes questionnaire interviewing, blood collection, blood pressure and anthropometry measurement.
- 2. Blood pressures measurement is performed twice, with at least 5 minutes interval in between. When the first two readings differed by more than 5 mmHg, additional readings should be obtained before taking the average.
- 3. By means of questionnaire ask for individual characteristics including socio-demographic, lifestyles (such as indoor and outdoor air pollution exposure, daily activities and recent diets), and medical history of the participants.
- 4. Collect blood samples in the well-labelled tubes by a research nurse.
- 5. Schedule the next appointments for follow-up clinical visits.

(D) Storage of samples after the Clinical Visit

- 1. The blood samples should be processed within one hour after blood taking.
- 2. For plasma samples, they should be centrifuged. For serum samples, they should be allowed to clot for at least 30 minutes at room temperature, and then be centrifuged.
- 3. All the samples should be well labelled and stored at -80°C freezer for laboratory analysis.

(E) Laboratory Analysis

- 1. The use of high-performance liquid chromatography–mass spectrometry [HPLC-MS] is more specific and thus is recommended to quantity the level of the biomarkers.
- 2. Before the biomarkers analysis, assay standardization and optimization of the regents is required.
- 3. Perform biomarkers analysis with at least triplicate samples.

(E) Statistical Analysis

- 1. Check for reliability of the measured biomarkers using the coefficient of variation.
- 2. Data cleaning by means of descriptive summary of the participants; checking of air pollutant levels for different exposure windows; examining quantified biomarkers levels.
- 3. Analysis for the relationship between air pollutants, subjects' characteristic and biomarkers, including partial correlations, intraclass correlation coefficient, association quantified in excess risks (per $10 \mu g/m^3$ increase of pollutants), and sensitivity analysis.

4.6 Pilot Study Achievements and Limitations

This pilot study successfully accomplished the objectives of: (1) literature review on the use of biomarkers for air pollution health studies in Hong Kong and overseas; (2) biomarker sample collection and laboratory analysis for two representative regions in Hong Kong; (3) questionnaire survey of the individual characteristics of the participants that may relate to air pollution exposure and biomarker levels; (4) a preliminary analysis of the relationship between measures of biomarkers and air pollutant concentrations measured at the EPD monitoring stations; and (5) developing methodological approaches in measuring the effects of air pollution on health at molecular level in Hong Kong.

A few limitations were observed in the pilot study and will be addressed in the future biomarker study in Hong Kong.

No Repeated Measurements for the Same Individuals within Season

In the study, we measured the biomarkers once in each of the four seasons. A recent study showed that seasonal expression profiles were found in the immune system (Dopico et al. 2015). The level of biomarkers inside the human body may also be subjected to this kind of seasonal variations. We recommend several repeated measurements should be taken within a short study period (for example, in terms of weeks or days), to eliminate any variations due to seasonality or other time dependent covariates.

Insufficient Statistical Power of the Study

In our study, we did not find statistically significant associations between biomarkers and $PM_{2.5}$ levels in Hong Kong over the study period. This may be due to the insufficient statistical power for the assessments. Based on the data from the Beijing Olympic study (Zhang et al. 2013), we calculated that a sample size of 108 in which 80% of the participants (N = 86) had completed all four repeated measurements, would have sufficient statistical power to detect the main effects of the biomarkers. Therefore, we expected our final sample size of 109 participants in which 91% of participants committed all the four visits should have enough power to detect meaningful effects sizes of these biomarkers.

However the variations of PM_{2.5}, expressed as the inter-quartile range (IQR), in Beijing was much higher than that of Hong Kong. Taking daily exposure of PM_{2.5} in year 2014 as an example, the IQR was 82.3 μ g/m³ for Beijing (<u>http://www.stateair.net/web/historical/1/1.html</u>) (data from the U.S. Embassy Beijing Air Quality Monitor), which was more than 3 times that of Hong Kong in the same period (26.0 μ g/m³ and 22.4 μ g/m³ for CW and MK, respectively).

We estimated a sample size (Liu and Liang, 1997) of 250 based on the data we obtained in this pilot study (225 after accounting for 10% loss to follow up) would achieve an adequate statistical power of 80%.

Mobility of the Participants

About 43% of the participants had a full-time or part-time job. Most of their working locations (77%) were not in the same regions as their residential area. By comparing the mean difference of the PM_{2.5} concentration, the day time PM_{2.5} was significantly higher than that in night time in both regions (means 28.0 - 34.1 μ g/m³ versus 30.3 - 36.5 μ g/m³) (p-value < 0.001, paired sample T-test). The use of PM data from the monitoring stations near their residential area may not reflect their actual ambient PM exposure during the daytime. However, the PM_{2.5} exposure in their working area is hard to estimate as the air monitoring stations may not be located near their working area.

In future studies, it may be feasible to request the participants stay most of their time near the residential region at least for 24 hours before the clinical visits. This could be done by: (1) recruit only the housewife, retired participants or the elderly; (2) recruit only the participants whose residential and working area are near; and (3) arrange the clinical visits early in the morning on Monday mornings for participants who work in week days and rest in weekends.

Low specificity of ELISA methods

The use of ELISA method for the determination of 8-OHdG level, although sensitive in most cases, may be less specific for detecting a particular biomarker (Shimoi et al., 2002). This is because the method does not directly measure a compound, rather it measures immuno-responses of antibodies relating to the compound and to all other compounds which have similar immuno-functions. The ELISA methods could be influenced largely by other constituents in samples. In addition, it was also found to have higher detection limits above the normal ranges for healthy people compared to the use of analytical chemistry based methods (for example, the high-performance liquid chromatography–mass spectrometry [HPLC-MS]) (Koide et al., 2010). For a future full scale study, we recommend the use of HPLC-MS instead of ELISA to quantity the level of the biomarkers.

5. Conclusion

This pilot study demonstrated the feasibility of using molecular biomarkers to investigate the subclinical health impacts due to ambient air pollution in Hong Kong. The preliminary data showed that $PM_{2.5}$ could contribute to the development of subclinical diseases by changing the level of certain molecular biomarkers in the human body. The change in oxidative biomarkers can be detected if there were government interventions for alleviation of $PM_{2.5}$.

The pilot study successfully accomplished the objectives of: (1) literature review on the use of biomarkers for air pollution health studies in Hong Kong and overseas; (2) biomarker sample collection and laboratory analysis for two representative regions in Hong Kong; (3) questionnaire survey of the individual characteristics of the participants that may relate to air pollution exposure and biomarker levels; (4) a preliminary analysis of the relationship between measures of biomarkers and air pollutant concentrations measured at the EPD monitoring stations; and (5) developing methodological approaches in measuring the effects of air pollution on health at molecular level in Hong Kong. A few limitations were observed in the pilot study and will be addressed in the future biomarker study in Hong Kong.

In the future panel study, we recommend improving the study power by: (1) targeting a more specific and sensitive population such as the elderly, who are less mobile, with repeated biomarker measurements in shorter time scales, within cool and warm seasons, respectively; (2) increasing the sample size; and (3) measuring the personal exposure to air pollution besides the usage of ambient air pollution data.

6. References

- Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol. 2012;8(2):166-175.
- Auerbach A, Hernandez ML. The effect of environmental oxidative stress on airway inflammation. Curr Opin Allergy Clin Immunol. 2012;12(2):133-139.
- Bae S, Pan XC, Kim SY, Park K, Kim YH, Kim H, et al. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in schoolchildren. Environ Health Perspect. 2010;118(4):579-583.
- Bhardwaj P, Khanna D. Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med. 2013;11(4):345-53.
- Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis. John Wiley & Sons, Ltd. 2009. ISBN: 978-0-470-05724-7.
- Cooke MS, Olinski R, Loft S; European Standards Committee on Urinary (DNA) Lesion Analysis. Measurement and meaning of oxidatively modified DNA lesions in urine. Cancer Epidemiol Biomarkers Prev. 2008 Jan;17(1):3-14.
- Delfino RJ, Staimer N, Gillen D, Tjoa T, Sioutas C, Fung K, et al. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect. 2006;114(11):1736-1743.
- Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen DL, et al. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect. 2008;116(7):898-906.
- Department of Health. Cholesterol. Center for Health Protection. 2013. Published by the Department of Health, Hong Kong Special Administrative Region Government. Available at: http://www.cheu.gov.hk/files/her/Cholesterol_lft.pdf [assessed 13 October 2015]
- DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20(11):1885-900.

- Diez Roux AV, Auchineloss AH, Astor B, Barr RG, Cushman M, Dvonch T, et al. Recent exposure to particulate matter and C-reactive protein concentration in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2006;164(5):437-448.
- Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML, Smyth DJ, et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat Commun. 2015;6:7000.
- Du Y, Navab M, Shen M, Hill J, Pakbin P, Sioutas C, et al. Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS. Biochem Biophys Res Commun. 2013;436(3):462-466.
- Everitt BS. The Cambridge Dictionary of Statistics. Fourth Edition. Cambridge University Press, Cambridge, UK. 2011.
- Gan SD, Patel KR. Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol. 2013 Sep;133(9):e12.
- Gong J, Zhu T, Kipen H, Wang G, Hu M, Ohman-Strickland P, et al. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J Expo Sci Environ Epidemiol. 2013;23(3):322-327.
- Gong J, Zhu T, Kipen H, Wang G, Hu M, Guo Q, et al. Comparisons of ultrafine and fine particles in their associations with biomarkers reflecting physiological pathways. Environ Sci Technol. 2014;48(9):5264-5273.
- Gülçin İ. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86(3):345-91.
- Huang W, Wang G, Lu SE, Kipen H, Wang Y, Hu M, et al. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing Olympics. Am J Respir Crit Care Med. 2012;186(11):1150-1159.
- Huang HB, Lai CH, Chen GW, Lin YY, Jaakkola JJ, Liou SH, et al. Traffic-related air pollution and DNA damage: a longitudinal study in Taiwanese traffic conductors. PLoS One. 2012;7(5):e37412.
- Inaba Y, Koide S, Yokoyama K, Karube I. Development of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) measurement method combined with SPE. J Chromatogr Sci. 2011;49:303-309.

- Karakucuk S, Baskol G, Oner AO, Baskol M, Mirza E, Ustdal M. Serum paraoxonase activity is decreased in the active stage of Behçet's disease. Br J Ophthalmol. 2004;88(10):1256-8.
- Kim JY, Mukherjee S, Ngo LC, Christiani DC. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect. 2004;112(6):666-671.
- Kim JH, Choi YH, Bae S, Park HY, Hong YC. eNOS gene polymorphisms modify the association of PM10 with oxidative stress. Toxicol Lett. 2012;214(3):263-267.
- Ko GT, Chan JC, Tsang LW, Yeung VT, Chow CC, Cockram CS. Outcomes of screening for diabetes in high-risk Hong Kong Chinese subjects. Diabetes Care. 2000;23(9):1290-4.
- Koide S, Kinoshita Y, Ito N, Kimura J, Yokoyama K, Karube I. Determination of human serum 8hydroxy-2'-deoxyguanosine (8-OHdG) by HPLC-ECD combined with solid phase extraction (SPE). J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878(23):2163-7.
- Koruk M, Taysi S, Savas MC, Yilmaz O, Akcay F, Karakok M. Oxidative stress and enzymatic antioxidant status in patients with nonalcoholic steatohepatitis. Ann Clin Lab Sci. 2004;34(1):57-62.
- Lee PC, Talbott EO, Roberts JM, Catov JM, Sharma RK, Ritz B. Particulate air pollution exposure and C-reactive protein during early pregnancy. Epidemiology. 2011;22(4):524-531.
- Liao D, Heiss G, Chinchilli VM, Duan Y, Folsom AR, Lin HM, et al. Association of criteria pollutants with plasma hemostatic/inflammatory markers: a population-based study. J Expo Anal Environ Epidemiol. 2005;15(4):319-328.
- Lin W, Huang W, Zhu T, Hu M, Brunekreef B, Zhang Y, et al. Acute respiratory inflammation in children and black carbon in ambient air before and during the 2008 Beijing Olympics. Environ Health Perspect. 2011;119(10):1507-1512.
- Liu G, Liang KY. Sample size calculations for studies with correlated observations. Biometrics. 1997;53(3):937-47.
- Liu L, Ruddy TD, Dalipaj M, Szyszkowicz M, You H, Poon R, et al. Influence of personal exposure to particulate air pollution on cardiovascular physiology and biomarkers of inflammation and oxidative stress in subjects with diabetes. J Occup Environ Med. 2007;49(3):258-265.

- Madsen C, Durand KL, Nafstad P, Schwarze PE, Rønningen KS, Håheim LL. Associations between environmental exposures and serum concentrations of Clara cell protein among elderly men in Oslo, Norway. Environ Res. 2008;108(3):354-360.
- Marchini T, Magnani ND, Paz ML, Vanasco V, Tasat D, González Maglio DH, et al. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash. Toxicol Appl Pharmacol. 2014;274(2):274-282.
- Mastalerz-Migas A, Steciwko A, Pokorski M, Pirogowicz I, Drobnik J, Bunio A, et al. What influences the level of oxidative stress as measured by 8-hydroxy-2'-deoxyguanosine in patients on hemodialysis? J Physiol Pharmacol. 2006;57 Suppl 4:199-205.
- Miller MR. The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochem Soc Trans. 2014;42(4):1006-1011.
- Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, et al. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009 ;6(1):36-44.
- Miyaoka T, Ieda M, Hashioka S, Wake R, Furuya M, Liaury K, et al. Analysis of oxidative stress expressed by urinary level of biopyrrins and 8-hydroxydeoxyguanosine in patients with chronic schizophrenia. Psychiatry Clin Neurosci. 2015;69(11):693-8.
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-341.
- Morillas-Ruiz J, Zafrilla P, Almar M, Cuevas MJ, López FJ, Abellán P, et al. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebocontrolled double-blind study in cyclists. Eur J Appl Physiol. 2005 Dec;95(5-6):543-9.
- Møller P, Loft S. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect. 2010;118(8):1126-36.
- Nazariah SS, Juliana J, Abdah MA. Interleukin-6 via sputum induction as biomarker of inflammation for indoor particulate matter among primary school children in Klang Valley, Malaysia. Glob J Health Sci. 2013;5(4):93-105.
- Neophytou AM, Hart JE, Cavallari JM, Smith TJ, Dockery DW, Coull BA, et al. Traffic-related exposures and biomarkers of systemic inflammation, endothelial activation and oxidative stress: a panel study in the US trucking industry. Environ Health. 2013;12:105.

- Niu J, Liberda EN, Qu S, Guo X, Li X, Zhang J, et al. The role of metal components in the cardiovascular effects of PM2.5. PLoS One. 2013;8(12):e83782.
- Padhy PK, Padhi BK. Effects of biomass combustion smoke on hematological and antioxidant profile among children (8-13 years) in India. Inhal Toxicol. 2009;21(8):705-711.
- Patel MM, Chillrud SN, Deepti KC, Ross JM, Kinney PL. Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents. Environ Res. 2013;121:71-78.
- Pei HY, Yin XW, Wu XL, Lu SY, Li Z, Zhou AY, et al. Plasma 8-Ohdg levels correlate with endothelial dysfunction and atherosclerosis in peritoneal dialysis patients. J Biom Tech Res. 2014;1(1):6.
- Pope CA 3rd, Hansen ML, Long RW, Nielsen KR, Eatough NL, Wilson WE, et al. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect. 2004;112(3):339-345.
- Provost EB, Chaumont A, Kicinski M, Cox B, Fierens F, Bernard A, et al. Serum levels of club cell secretory protein (Clara) and short- and long-term exposure to particulate air pollution in adolescents. Environ Int. 2014;68:66-70.
- Reed GF, Lynn F, Meade BD. Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol. 2002 Nov;9(6):1235-9.
- Ren C, Fang S, Wright RO, Suh H, Schwartz J. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage induced by ambient pollution in the Normative Aging Study. Occup Environ Med. 2011;68(8):562-569.
- Rich DQ, Kipen HM, Huang W, Wang G, Wang Y, Zhu P, et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA. 2012;307(19):2068-2078.
- Romieu I, Garcia-Esteban R, Sunyer J, Rios C, Alcaraz-Zubeldia M, Velasco SR, et al. The effect of supplementation with omega-3 polyunsaturated fatty acids on markers of oxidative stress in elderly exposed to PM2.5. Environ Health Perspect. 2008;116(9):1237-1242.
- Rossner P Jr, Rossnerova A, Spatova M, Beskid O, Uhlirova K, Libalova H, et al. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: chromosomal aberrations and oxidative stress. Mutagenesis. 2013;28(1):97-106.

- Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Santella RM, et al. Oxidative and nitrosative stress markers in bus drivers. Mutat Res. 2007;617:23-32.
- Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA. Mutat Res. 2008:642:14-20.
- Rossner P Jr, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins. Mutat Res. 2008:642:21-27.
- Rückerl R, Hampel R, Breitner S, Cyrys J, Kraus U, Carter J, et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int. 2014;70:32-49.
- Saito S, Yamauchi H, Hasui Y, Kurashige J, Ochi H, Yoshida K. Quantitative determination of urinary 8-hydroxydeoxyguanosine (8-OHdG) by using ELISA. Res Commun Mol Pathol Pharmacol. 2000;107(1-2):39-44.
- Schwartz 2001. Air pollution and blood markers of cardiovascular risk. Environ Health Perspect. 2001;109 Suppl 3:405-409.
- Seaton A, Soutar A, Crawford V, Elton R, McNerlan S, Cherrie J, et al. Particulate air pollution and the blood. Thorax. 1999;54(11):1027-1032.
- Serru V, Baudin B, Ziegler F, David JP, Cals MJ, Vaubourdolle M, et al. Quantification of reduced and oxidized glutathione in whole blood samples by capillary electrophoresis. Clin Chem. 2001;47(7):1321-4.
- Shen H, Xu W, Peng S, Scherb H, She J, Voigt K, et al. Pooling samples for "top-down" molecular exposomics research: the methodology. Environ Health. 2014;13(1):8.
- Shimoi K, Kasai H, Yokota N, Toyokuni S, Kinae N. Comparison between high-performance liquid chromatography and enzyme-linked immunosorbent assay for the determination of 8-hydroxy-2'-deoxyguanosine in human urine. Cancer Epidemiol Biomarkers Prev. 2002 Aug;11(8):767-70.
- Steinvil A, Kordova-Biezuner L, Shapira I, Berliner S, Rogowski O. Short-term exposure to air pollution and inflammation-sensitive biomarkers. Environ Res. 2008;106(1):51-61.

- Strak M, Hoek G, Godri KJ, Gosens I, Mudway IS, van Oerle R, et al. Composition of PM affects acute vascular inflammatory and coagulative markers the RAPTES project. PLoS One. 2013;8(3):e58944.
- Svecova V, Rossner P Jr, Dostal M, Topinka J, Solansky I, Sram RJ. Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. Mutat Res. 2009;662(1-2):37-43.
- Tagesson C, Källberg M, Wingren G. Urinary malondialdehyde and 8-hydroxydeoxyguanosine as potential markers of oxidative stress in industrial art glass workers. Int Arch Occup Environ Health 1996;69:5-13.
- Tamae K, Kawai K, Yamasaki S, Kawanami K, Ikeda M, Takahashi K, et al. Effect of age, smoking and other lifestyle factors on urinary 7-methylguanine and 8-hydroxydeoxyguanosine. Cancer Sci. 2009;100(4):715-21.
- Tomao E, Tiziana PB, Rosati V, Marcellini L, Tomei F. The effects of air pollution on the lipid balance of traffic police personnel. Ann Saudi Med. 2002;22(5-6):287-90.
- Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2'-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009;27:120-139.
- Wang J, Luo X, Xu B, Wei J, Zhang Z, Zhu H. Elevated oxidative damage in kitchen workers in Chinese restaurants. J Occup Health. 2011;53(5):327-333.
- WHO. Air Quality Guidelines Global Update 2005: particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Copenhagen, World Health Organization Regional Office for Europe. 2006.
- Woodward M: Meta-analysis (Chapter 12). Epidemiology : study design and data analysis. 2nd ed. Boca Raton, Fla.: Chapman & Hall/CRC; 2005.
- Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 2004;339:1-9.
- Wu S, Deng F, Wei H, Huang J, Wang H, Shima M, et al. Chemical constituents of ambient particulate air pollution and biomarkers of inflammation, coagulation and homocysteine in healthy adults: a prospective panel study. Part Fibre Toxicol. 2012;9:49.

- Zhang J, Zhu T, Kipen H, Wang G, Huang W, Rich D, et al. Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics. Res Rep Health Eff Inst. 2013;(174):5-174.
- Zhang JJ, McCreanor JE, Cullinan P, Chung KF, Ohman-Strickland P, Han IK, et al. Health effects of real-world exposure to diesel exhaust in persons with asthma. Res Rep Health Eff Inst. 2009;(138):5-109; discussion 111-123.
- Zuurbier M, Hoek G, Oldenwening M, Meliefste K, Krop E, van den Hazel P, et al. In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults. Environ Health Perspect. 2011;119(10):1384-1389.

Abbreviations

8-OHdG	8-hydroxy-2-deoxyguanosine
BMI	body mass index
bpm	beats per minute
CC16	club cell secretory protein (Clara)
CI	confidence interval
CRP	C-reactive protein
Cu/Zn-SOD	copper/zinc superoxide dismutase
CV	coefficient of variation
CW	Central/Western
DBP	diastolic blood pressure
EBC	exhaled breath condensate
EPD	Environmental Protection Department
ELIZA	enzyme immunoassay and enzyme-linked immunosorbent assay
FeNO	exhaled nitric oxide
GSH	glutathione
GSH/GSSG	ratio of glutathione and glutathione disulfide
GSSG	glutathione disulfide
HDL-C	high density lipoprotein cholesterol
ICAM-1	intercellular cell adhesion molecule-1
ICC	intra-class correlation within-participant
IL-10	Interleukin-10
IL-6	Interleukin-6
IL-8	Interleukin-8
IQR	interquartile range
MDA	malondialdehyde
MK	Mongkok
mmHg	millimeters of mercury
NO ₂	nitrogen dioxide
O ₃	ozone
РАН	polycyclic aromatic hydrocarbon
PAI-1	plasminogen activator inhibitor-1
PM_{10}	particular matter with aerodynamic diameter $< 10 \ \mu m$
PM _{2.5}	particular matter with aerodynamic diameter $< 2.5 \ \mu m$
PRISMA	preferred reporting items for systematic reviews and meta-analyses
RBC	red blood cells
SBP	systolic blood pressure
sCD40L	soluble CD40 ligand

sCD62P	sP-selectin
SD	standard derivations
SE	standard error
SO_2	sulphur dioxide
SOD	superoxide dismutase
TBARS	thiobarbituric acid reactive substances
TNF-α	tumor necrosis factor alpha
UFP	ultrafine particles
vWF	von Willebrand factor
WBC	white blood cells
WHO	World Health Organization

Appendices

Appendix Table 1a: Percentage (%) change in systemic inflammation biomarkers concentrations per 10 µg/m³ increase in PM_{2.5}

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
CC16	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	37.4 (0.83) µg/l	-0.291	0.223	Zuurbier et al 2011
	2000	1,004 elderly men	Oslo, Norway	Cross-sectional	9.5 (1.7) μg/l	20	5.1	Madsen et al 2008
			Random effect			9.214	10.13	
CRP	2007-2008	87 adult mean age	Augsburg,	Prospective panel	3.7 (6.5) mg/l	9.820	4.091	Rückerl et al 2014
		55.9	Germany					
	2009	31 students age 19-	Netherlands	Semi-experimental	1 (0.1-14.5) ^b mg/l	1.508	0.769	Strak et al 2013
		26						
	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	1.2 (0.1) mg/l	-0.259	0.182	Zuurbier et al 2011
	1997-2001	1,696 pregnant	Allegheny, US	Longitudinal	Not provided	2.981	0.393	Lee et al 2011
		women						
	2009-2010	67 men in trucking	North-eastern US	Panel	1.66 (1.8) mg/l	-13.73	20.90	Neophytou et al 2013
		industry						
	2000-2002	5,634 adult age 45-	6 US community	Longitudinal	1.84° mg/l	3	2.55	Diez Roux et al 2006
		84						
	1999-2001	88 elderly	^Utah, US	Panel	0.5 (0.6) mg/dl	#0.081	0.018	Pope et al 2004
	2000-2001	57 male age 51-76	Erfurt, Germany	Prospective panel	3.7 (6.5) mg/l	0.915 ^a	0.187	Ruckerl et al 2006

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
					Random effect	2.039	1.124	
Fibrinogen	2007-2008	87 adult mean age	Augsburg,	Prospective panel	3.3 (0.5) g/l	-0.270	0.414	Rückerl et al 2014
		55.9	Germany					
	2008	125 adults	Beijing, China	Panel study	250-261ª mg/dl	0.178	0.0824	Gong et al 2014
		age 22-27						
	2008-2012	40 male college	Beijing, China	Prospective panel	1.98-2.13	0.470	0.427	Wu et al 2012
		students			(0.7-0.79) g/l			
	2009	31 students age 19-	Netherlands	Semi-experimental	3.02 (1.43-5.19) ^b	0.234	0.146	Strak et al 2013
		26			g/1			
	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	3 (0.035) g/l	-0.0162	0.0743	Zuurbier et al 2011
	1989-1994	~20,000 mean age	^US	Longitudinal	318 (89) mg/dl	#5.14	1.72	Schwartz 2001
		49						
					Random effect	0.105	0.0713	
IL-6	2007-2008	87 adult mean age	Augsburg,	Prospective panel	1 (0.9) pg/ml	-4.054	2.068	Rückerl et al 2014
		55.9	Germany					
	2009-2010	67 men in trucking	North-eastern US	Panel	1.38 (1.2) pg/ml	7.190	13.23	Neophytou et al 2013
		industry						
	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	0.41 (0.023) ng/l	-0.210	1.131	Zuurbier et al 2011
					Random effect	-1.492	1.604	

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
IL-8	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	3 (0.33) ng/l	-0.0134	0.0130	Zuurbier et al 2011
	2003-2005	60 adults age 18-55	London, UK	Crossover	89-91.5ª	28.3	22.91	Zhang et al 2009
					ng/ml			
					Random effect	4.876	10.70	
Myeloperoxidase	2007-2008	87 adult mean age	Augsburg,	Prospective panel	14.5 (12.3) ng/ml	4.414	1.931	Rückerl et al 2014
		55.9	Germany					
	2003-2005	60 adults age 18-55	London, UK	Crossover	5.69-6.53° ng/ml	235	336	Zhang et al 2009
					Fixed effect	4.422*	1.931	
TNF-α	2008-2012	40 male college	Beijing, China	Prospective panel	3.13-3.22	1.125	0.332	Wu et al 2012
		students			(1.32-1.43) pg/ml			
	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	2 (0.11) ng/l	-0.0971	1.602	Zuurbier et al 2011
					Fixed effect	1.075*	0.325	
ECP	2003-2005	60 adults age 18-55	London, UK	Crossover	13.7-38.9ª ng/ml	43.6	64.8	Zhang et al 2009
ICAM-1	2009-2010	67 men in trucking	North-eastern US	Panel	202 (40) ng/ml	7.625	5.113	Neophytou et al 2013
		industry						
ICAM-1	2000-2001	57 male age 51-76	Erfurt, Germany	Prospective panel	272 (75.7) ng/ml	0.427 ^d	0.0933	Ruckerl et al 2006

Biomarker	Year	Subjects	Region	Study design	Mean (SD)	%	SE for %	Reference
						Change ⁺	change	
IL-10	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	0.37 (0.017) ng/l	-0.874	0.462	Zuurbier et al 2011

Note: ^Studies were excluded from meta-analysis due to different in units or estimation.

+Text for statistical significant changes were **Bold**.

#The changes were in absolute unit change.

^a Range of mean, SD is not provided.

^bRange, SD is not provided.

^c SD is not provided

^d The estimation was in odd ratio.

Appendix Table 1b: Percentage (%) change in hemostasis or endothelial function biomarkers concentrations per 10 µg/m³ increase in PM_{2.5}

Biomarker	Year	Subjects	Region	Study	Mean	%	SE for %	Reference
				design	(SD)	Change ⁺	change	
Factor VII	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	90.5 (0.94) %	0.0647	0.0743	Zuurbier et al
								2011
	2000-2001	57 male age 51-76	Erfurt,	Prospective panel	124 (61) %	-2.134	0.902	Ruckerl et al
			Germany					2006
					Random effect	-0.851	1.084	
PAI-1	2007-2008	87 adult mean age 55.9	Augsburg,	Prospective panel	3.6 (3.1) ng/ml	-5.586	2.114	Rückerl et al
			Germany					2014
	2008-2012	40 male college students	Beijing,	Prospective panel	27.3-29.5 (7.2-8.4)	0.131	0.280	Wu et al 2012
			China					
					Random effect	-2.343	2.832	
sCD40L	2007-2008	87 adult mean age 55.9	Augsburg,	Prospective panel	1001 (773) pg/ml	-4.685	2.022	Rückerl et al
			Germany					2014
	2008	125 adults age 22-27	Beijing,	Panel	1.76-1.92 ^a ng/ml	0.382	0.170	Gong et al 2014
			China					
					Random effect	-1.751	2.501	

Biomarker	Year	Subjects	Region	Study	Mean	%	SE for %	Reference
				design	(SD)	Change ⁺	change	
VWF	2008	125 adults age 22-27	Beijing, China	Panel	79.5-106.4ª %	0.646	0.252	Gong et al 2014
	2008-2012	40 male college students	Beijing, China	Prospective panel	304-334 (66.8- 86.2) ng/ml	-0.660	0.230	Wu et al 2012
	2009	31 students age 19-26	Netherlands	Semi-experimental	89.4 (37.7-200) ^b %	0.503	0.203	Strak et al 2013
	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	107 (1.9) %	0	0.0826	Zuurbier et al 2011
	2000-2001	57 male age 51-76	Erfurt, Germany	Prospective panel	135 (59) %	2.195	1.462	Ruckerl et al 2006
					Random effect	0.165	0.239	
sCD62p	2008	125 adults age 22-27	Beijing, China	Panel	4.16-6.29 ^a ng/ml	1.076	0.257	Gong et al 2014
sCD62p	2008-2012	40 male college students	Beijing, China	Prospective panel	45.2-52.7 (19.6- 22.9) ng/ml	0.527	0.440	Wu et al 2012
activated partial thromboplastin	2007-2008	34 adults age 23-55	Netherlands	Longitudinal	28.2 (0.12) sec	-0.0485	0.0330	Zuurbier et al 2011
time tissue-type	2008-2012	40 male college students	Beijing,	Prospective panel	9.5-10.2 (3.7-4.6)	0.400	0.522	Wu et al 2012
plasminogen activator			China		ng/ml			

Note: +Text for statistical significant changes were **Bold**.

The changes were in percentage changes (%).

^a Range of mean, SD is not provided.

^bRange, SD is not provided.

Biomarker **Subjects** Region Study design % SE for % Year Mean Reference **(SD)** Change⁺ change Zuurbier et al 2011 2007-2008 34 adults age 23-55 Netherlands Longitudinal 2.4 (0.042) 10⁹/1 0.210 0.182 lymphocytes 0.62-1.03^a% 30.19 Zhang et al 2009 60 adults age 18-55 -9.42 2003-2005 London, UK Crossover Fixed effect 0.210 0.182 neutrophils 34 adults age 23-55 Netherlands Longitudinal 3.3 (0.058) 10⁹/1 -0.388 0.272 Zuurbier et al 2011 2007-2008 2003-2005 60 adults age 18-55 36.3-39.9ª % -7 14 Zhang et al 2009 London, UK Crossover Fixed effect -0.391 0.272 Zhang et al 2009 eosinophils 60 adults age 18-55 London, UK 2003-2005 Crossover 1.53-1.92ª % -6.59 30.06 2003-2005 60 adults age 18-55 London, UK 15.93 Zhang et al 2009 epithelial cells Crossover 2.83-3.14ª % -1.17 erythrocytes 2007-2008 34 adults age 23-55 Netherlands Longitudinal 4.9 (0.021) 10¹²/1 -0.0485 0.0330 Zuurbier et al 2011 leukocytes 2007-2008 34 adults age 23-55 Netherlands Longitudinal 6.5 (0.082) 10⁹/l 0.157 Zuurbier et al 2011 -0.113 60 adults age 18-55 Crossover 7.403 macrophages London, UK 12.6 Zhang et al 2009 2003-2005 54.8-57.8ª % 2009 Strak et al 2013 platelet counts 31 students age 19-26 Netherlands Semi-experimental 268 (130-416)^b 10⁹/1 0.0607 0.106 platelet counts 2007-2008 34 adults age 23-55 Netherlands Longitudinal Not provided 0.0578 Zuurbier et al 2011 -0.0162WBC 2008 Beijing, China Panel 5210-5400^a µl 0.375 Gong et al 2014 125 adults age 22-27 -0.151 WBC (number) 1989-1994 ~20,000 mean age 49 ^US Longitudinal 7.2 (2.3) 0.062 0.026 Schwartz 2001 SBP 2008 125 adults age 22-27 Beijing, China Panel 101-111^a mm hg 0.134 0.0445 Gong et al 2014 DBP 2008 125 adults age 22-27 Beijing, China Panel 60.1-60.2^a mm hg -0.0586 Gong et al 2014 0.0664

Appendix Table 1c: Percentage (%) change in metabolic function and blood profile concentrations per 10 µg/m³ increase in PM_{2.5}

The University of Hong Kong December 2015

Biomarker	Year	Subjects	Region	Study design	Mean	%	SE for %	Reference
					(SD)	Change ⁺	change	
heart rate	2008	125 adults age 22-27	Beijing, China	Panel	65.4-66.5 ^a /min	0.194	0.083	Gong et al 2014

Note: +Text for statistical significant changes were **Bold**.

The changes were in percentage changes (%) otherwise specified.

^a Range of mean, SD is not provided.

^bRange, SD is not provided.

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
Bae et al 2010	Panel study of 120	MDA	0.9-1.74 ^a mmol/g creatinine	PM ₁₀	#0.0156	0.0030
	schoolchildren in Ala Shan					
	& Beijing, China; Jeju &					
	Seoul, Korea in 2007					
Delfino et al 2006	Panel study of 45 school-	FeNO	25.6 (25.1) ppb	NO ₂	#0.510	0.192
	children age 9-18 in					
	California, US in 2004					
Delfino et al 2008	Panel study of 29 elderly in	Cu/Zn-SOD	5260 (1671) U/g Hb	NO ₂	#-95.99	43.19
	Los Angeles, US in	CRP	3134 (3796) ng/ml		#199.6	132.5
	2005-2006	IL-6	2.95 (2.32) pg/ml		#0.234	0.0755
		TNF-α soluble receptor-II	3933 (1555) pg/ml		#51.60	31.54
		sCD62p	37.6 (15.1) ng/ml		#0.909	0.581
Gong et al 2014	Panel study of 125 adults	MDA	311-483 (1.1-13) nM	SO ₂	6.362	3.246
	age 22-27 in Beijing, China			NO_2	3.698	1.306
	in 2008	DBP	60.1-60.2 ^a mm hg	SO_2	-0.3538	0.4280
		heart rate	65.4-66.5ª/min	SO_2	0.721	0.368

Appendix Table 2: Effects of a	ir pollutants (per each	n 10 μg/m ³ increase) or	biomarkers in reviewed papers
	- pondumus (pon onor		

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
Huang et al 2012	Panel study of 125 adults	8-OHdG	2.22-3.7 ^a mg/mol	NO ₂	14.76	4.102
	age 22-27 in Beijing, China			O ₃	-5.845	1.674
	in 2008					
Kim et al 2012	Panel study of 560 elderly	MDA	2 (1) µmol/l	\mathbf{PM}_{10}	7.332	3.594
	in Seoul, Korea in 2008-					
	2010					
Lee et al 2011	Longitudinal study of 1696	CRP	Not provided	\mathbf{PM}_{10}	1.485	0.211
	pregnant women in					
	Allegheny, US in 1997-					
	2001					
Liao et al 2005	Cohort study of 10208	Fibrinogen	302 (65) mg/dl	\mathbf{PM}_{10}	#0.127	0.590
	adults mean age 54 in US in			NO_2	#-0.964	0.519
	1987-1989			SO_2	#-0.382	0.897
		VWF	118 (48.4) %	\mathbf{PM}_{10}	-0.422	0.453
				NO_2	-0.140	0.372
				SO_2	0.620	0.639

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
		Factor VIII-C	131 (39.9) %	NO ₂	-0.1463	0.3059
				O ₃	-0.0870	0.1621
		Albumin	3.86 (0.28) g/dl	PM ₁₀	#0.0227	0.0133
				NO_2	#-0.0027	0.0020
				O ₃	#-0.0006	0.0012
		WBC	6 (1.9) x 10 ³ /mm ³	PM ₁₀	#0.0164	0.0148
				NO_2	#-0.0113	0.0140
				O ₃	#-0.0117	0.0069
Liu et al 2007	Longitudinal study of 25	TBARS	1.7 ^a nmol/ml	PM ₁₀	#16.12	4
	adults age 18-65 in	CRP	1.7 μg/ml		#0.11	0.07
	Windsor, Canada in 2005	IL-6	1.7 pg/ml		#0	0.05
		TNF-α	1.8 pg/ml		#0.03	0.05
		SBP	124 mm Hg		#0.17	0.19
		DBP	77 mm Hg		#0.19	0.16
Madsen et al 2008	Cross-sectional study of	CC16	9.5 (1.7) μg/l	PM ₁₀	1	1.53
	1,004 elderly men in Oslo,					
	Norway in 2000					

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
NorbaÈck et al 2000	central Sweden	Eosinophil Cationic Protein	1.6 ° µg/l	NO ₂	#2.7	0.61
Patel et al 2013	Panel study of 36	EBC pH	7.9-8.1 (5.8-8.2) ^b	NO ₂	#-0.014	0.100
	adolescents age 14-19 New			O ₃	#-0.0364	0.0255
	York, US in 2005	8-isoprostane	42.3-54.8 (22.1-72.9)	NO ₂	#0.448	0.143
			pg/ml	O ₃	#-0.109	0.0417
Pekkanen 2000	Cross-sectional study of	Fibrinogen	2.42 ^a g/l	PM ₁₀	0.0725	0.251
	10,308 office workers in			NO ₂	0.201	0.0778
	London, UK in 1991-1993			SO_2	0.358	0.263
				O ₃	0.0448	0.213
Provost et al 2014	Cross-sectional study of 825	CC16	9.2 (3.7) μg/l	PM ₁₀	#1.04	0.214
	adolescents in Belgium in					
	2006					
Ren et al 2010	Longitudinal study of 320	8-OHdG	20.8 (12.3) ng/ml	NO ₂	43.78	18.49
	elderly men in Boston, US			O ₃	15.92	7.510
	in 2006-2008					

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
Rich et al 2012	Panel study of 125 adults	Fibrinogen	250-261 mg/dl ^a	NO ₂	0.495	0.239
	age 22-27 in Beijing, China			SO_2	0.782	0.385
	in 2008			O ₃	-0.568	0.0871
		sCD40L	1.76-1.92 ng/ml	NO_2	0.0952	0.384
				SO_2	2.105	0.890
				O ₃	0.1558	0.397
		VWF	79.5-106.4 %	NO ₂	1.654	0.577
				SO_2	3.966	0.895
				O ₃	-1.117	0.255
		sCD62p	4.16-6.29 ng/ml	NO ₂	1.365	0.477
				SO_2	6.179	1.244
				O ₃	-2.467	0.438
		WBC	5210-5400 µl	SO_2	-1.840	0.753
				NO ₂	-0.741	0.319
				O ₃	-0.277	0.332
		DBP	60.1-60.2 mm hg	NO ₂	-0.0208	0.2439
				O ₃	-0.2864	0.2432
		heart rate	65.4-66.5/min	NO ₂	0.151	0.135
				O ₃	-0.0802	0.180

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
Ruckerl et al 2006	Prospective panel study of	CRP	3.7 (6.5) mg/l	PM ₁₀	OR: 1.316	0.302
	57 male age 51-76 in Erfurt,			NO ₂	OR: 1.163	0.237
	Germany in 2000-2001	ICAM-1	272 (75.7) ng/ml	PM_{10}	OR: 2.039	0.369
				NO_2	OR: 0.349	0.0593
		Factor VII	124 (61) %	PM_{10}	-4.342	1.276
				NO_2	-1.163	1.038
		VWF	135 (59) %	PM_{10}	3.947	1.813
				NO_2	3.314	1.483
Rückerl et al 2014	Prospective panel study of	CRP	3.7 (6.5) mg/l	PM ₁₀	9.424	3.157
	87 adult mean age 55.9 in			NO_2	9.016	3.806
	Augsburg, Germany in	Fibrinogen	3.3 (0.5) g/l	PM_{10}	-0.144	0.294
	2007-2008			NO_2	1.066	0.418
		IL-6	1 (0.9) pg/ml	PM_{10}	-3.525	1.652
				NO_2	-4.590	1.924
		Myeloperoxidase	14.5 (12.3) ng/ml	PM_{10}	3.165	1.432
				NO_2	4.918	1.840
		PAI-1	3.6 (3.1) ng/ml	PM_{10}	-4.892	1.651
				NO_2	-4.344	1.924
		sCD40L	1001 (773) pg/ml	NO_2	-1.148	1.966
Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
---------------------	------------------------------	-------------	----------------------	------------------	----------------------	----------
						% change
				PM ₁₀	-3.669	1.615
Schwartz 2001	Longitudinal study of	Fibrinogen	318 (89) mg/dl	NO ₂	#2.170	0.782
	~20,000 US adults mean			SO_2	#0.504	0.603
	age 49 in 1989-1994			O ₃	#0.811	0.776
		WBC	7.2 (2.7) count	NO_2	#-0.0117	0.0144
				SO_2	#0.0252	0.0103
				O ₃	#-0.0189	0.0138
Seaton et al 1999	Panel study of 112 elderly	CRP	Mean level not	PM ₁₀	0.147	0.0648
	in Belfast & Edinburgh, UK	Fibrinogen	provided		-0.009	0.005
	in 1996-1998	IL-6			0.01	0.024
		Haemoglobin	g/dl		#-0.073	0.019
		WBC			-0.002	0.0046
		RBC	x10 ¹² /1		#-0.018	0.0056
Steinvil et al 2007	Longitudinal study of 3659	CRP	1.5 (2.8) mg/l	PM ₁₀	-0.290	0.165
	adults mean age 46 in Israel			NO_2	-0.0704	1.126
	in 2003-2006			SO_2	-2.022	5.547
	(changes of all the			O ₃	1.184	1.349

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
	biomarkers was estimated	Fibrinogen	280 (60) mg/dl	PM ₁₀	#0.139	0.0676
	from the pooled effects of			NO ₂	#-2.886	0.611
	male and female)			SO_2	#-11.50	3.393
				O ₃	#1.736	0.555
		WBC	6.8 (1.7) x 10 ³ cell/µl	PM ₁₀	#0.316	8.333
				NO ₂	#-40.65	19.53
				SO_2	#-191.9	101.5
				O ₃	#12.17	31.06
Strak et al 2013	Semi-experimental study of	CRP	1 (0.1-14.5) ^a mg/l	PM ₁₀	0.548	0.283
	31 students age 19-26 in			NO ₂	10.26	6.346
	Netherlands in 2009	Fibrinogen	3.02 (1.43-5.19) g/l	PM ₁₀	0.0741	0.0529
				NO ₂	0.275	1.152
		VWF	89.4 (37.7-200) %	PM ₁₀	0.163	0.0756
				NO ₂	1.129	1.544
		platelet counts	268 (130-416) 10 ⁹ /1	PM10	0.0296	0.0416
				NO ₂	-1.603	0.828
Wang et al 2011	Case-control study of 110	8-OHdG	11.5-15.8 ° µg/g	PM ₁₀	#0.00071	0.0033
	male workers in	1-hydroxypyrene	0.075-0.13 µmol/mol		#0.0035	0.0017

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
	Guangzhou, China	SOD	91.7-97.7 μM		#-0.0058	0.0089
		MDA	3.26-4.11 μM		#0.0045	0.0017
Wu et al 2012	Panel study of 40 university	Fibrinogen	1.98-2.13 (0.7-0.79)	PM10	0.192	0.286
	students in Beijing, China in		g/l	NO ₂	0.121	0.856
	2010-2011	TNF-α	3.13-3.22 (1.32-1.43)	PM ₁₀	0.581	0.222
			pg/ml	NO ₂	1.345	0.651
		PAI-1	27.3-29.5 (7.2-8.4)	PM ₁₀	0.0794	0.198
				NO ₂	0.695	0.758
		VWF	304-334 (66.8-86.2)	PM ₁₀	-0.302	0.175
			ng/ml	NO ₂	-0.503	0.540
		sCD62p	45.2-52.7 (19.6-22.9)	PM ₁₀	0.352	0.314
			ng/ml	NO ₂	0.684	0.930
		tissue-type plasminogen activator	9.5-10.2 (3.7-4.6)	PM ₁₀	0.0912	0.436
			ng/ml	NO ₂	0.708	1.918
Zhang et al 2009	Crossover study of 60	EBC pH	7.9-8.1ª	NO ₂	-0.15	0.051
	London, UK adults age	FeNO	39.4-50.3 ppb		-0.07	0.56
	18-55 in 2003-2005	EBC Fe	68-323 nmol/L		-1.92	15.14
		TBARS	2.14-2.5 μmol/L		-0.84	0.82

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
		Myeloperoxidase	5.69-6.53 ng/ml		69.9	64.6
		Eosinophil Cationic Protein	13.7-38.9 ng/ml		-1.72	12.23
		IL-8	89-91.5 ng/ml		10.9	4.22
		lymphocytes	0.62-1.03 %		-7.58	8.378
		neutrophils	36.3-39.9 %		1.14	3.64
		eosinophils	13.7-38.9 ng/ml		-3.62	7.74
		epithelial cells	2.83-3.14 %		-1.46	4.04
		macrophages	54.8-57.8 %		0.78	2.25
Zuurbier et al 2011	Longitudinal study of 34	CC16		PM ₁₀	-0.673	0.540
	adults age 23-55 in	CRP			-0.337	0.442
	Netherlands in 2007-2008	Fibrinogen			-0.0481	0.172
		IL-6			-1.490	2.918
		TNF-alpha			-0.914	3.704
		IL-8			-0.192	0.614
		IL-10			-0.192	1.055
		Factor VII			0	0.172
		VWF			0.0481	0.221
		activated partial thromboplastin time			-0.1442	0.0491
		lymphocytes			-0.433	0.417

Author	Study	Biomarker	Mean (SD)	Pollutant	Changes ⁺	SE for
						% change
		Neutrophils			-0.337	0.662
		erythrocytes			-0.0962	0.0736
		leukocytes			-0.337	0.368
		platelet counts			-0.289	0.147

Note: +Text for statistical significant changes were **Bold**.

#The change was in unit change.

^a Range of mean, SD is not provided.

^b Only median (range) is provided in the study.

^c Only median is provided in the study.

Biomarker	Pollutants	Region	Changes ⁺	SE for % change	References
8-OHdG	NO_2	Beijing, China	14.76	4.102	Huang et al 2012
		Boston, US	43.78	18.49	Ren et al 2010
		Random effect	23.67	13.38	
	O ₃	Beijing, China	-5.845	1.674	Huang et al 2012
		Boston, US	15.92	7.510	Ren et al 2010
		Random effect	3.807	10.81	
CC16	PM_{10}	Netherlands	-0.673	0.540	Zuurbier et al 2011
		Oslo, Norway	1	1.53	Madsen et al 2008
		Fixed effect	-0.488	0.509	
CRP	PM_{10}	Augsburg, Germany	9.424	3.157	Rückerl et al 2014
		Belfast & Edinburgh, UK	0.147	0.0648	Seaton et al 1999
		Netherlands	0.548	0.283	Strak et al 2013
		Netherlands	-0.337	0.442	Zuurbier et al 2011
		Allegheny, US	1.485	0.211	Lee et al 2011
		Israel ⁺⁺	-0.290	0.165	Steinvil et al 2007
		Random effect	0.415	0.307	
	NO_2	Augsburg, Germany	9.016	3.806	Rückerl et al 2014
		Netherlands	10.26	6.346	Strak et al 2013

Appendix Table 3: Meta-analysis for percentage changes (%) of biomarkers per 10 µg/m³ increase in pollutants

Biomarker	Pollutants	Region	Changes ⁺	SE for % change	References
		Israel ⁺⁺	-0.0704	1.126	Steinvil et al 2007
		Random effect	5.098	3.902	
	O ₃	Allegheny, US	0.652	0.133	Lee et al 2011
		Israel ⁺⁺	1.184	1.349	Steinvil et al 2007
		Random effect	0.657*	0.132	
Fibrinogen (%)	PM_{10}	Augsburg, Germany	-0.144	0.294	Rückerl et al 2014
		Beijing, China	0.192	0.286	Wu et al 2012
		Belfast & Edinburgh, UK	-0.009	0.005	Seaton et al 1999
		London, UK	0.0725	0.251	Pekkanen 2000
		Netherlands	0.0741	0.0529	Strak et al 2013
		Netherlands	-0.0481	0.172	Zuurbier et al 2011
		Fixed effect	-0.0082	0.0051	
	NO_2	Augsburg, Germany	1.066	0.418	Rückerl et al 2014
		Beijing, China	0.121	0.856	Wu et al 2012
		Beijing, China	0.495	0.239	Rich et al 2012
		London, UK	0.201	0.0778	Pekkanen 2000
		Netherlands	0.275	1.152	Strak et al 2013
		Fixed effect	0.254*	0.0724	
	SO_2	Beijing, China	0.782	0.385	Rich et al 2012
		London, UK	0.358	0.263	Pekkanen 2000
		Fixed effect	0.493*	0.217	

Biomarker	Pollutants	Region	Changes ⁺	SE for % change	References
	O ₃	Beijing, China	-0.568	0.0871	Rich et al 2012
		London, UK	0.0448	0.213	Pekkanen 2000
		Random effect	-0.293	0.305	
Fibrinogen (mg/dl)	PM_{10}	Israel ⁺⁺	0.139	0.0676	Steinvil et al 2007
		US	0.127	0.590	Liao et al 2005
		Fixed effect	0.139*	0.0671	
	NO_2	Israel ⁺⁺	-2.886	0.611	Steinvil et al 2007
		US	2.170	0.782	Schwartz 2001
		US	-0.964	0.519	Liao et al 2005
		Random effect	-0.6039	1.307	
	SO_2	Israel ⁺⁺	-11.50	3.393	Steinvil et al 2007
		US	0.504	0.603	Schwartz 2001
		US	-0.382	0.897	Liao et al 2005
		Random effect	-1.696	1.619	
	O ₃	Israel ⁺⁺	1.736	0.555	Steinvil et al 2007
		US	0.811	0.776	Schwartz 2001
		Fixed effect	1.423*	0.451	
IL-6	PM_{10}	Augsburg, Germany	-3.525	1.652	Rückerl et al 2014
		Belfast & Edinburgh, UK	0.01	0.024	Seaton et al 1999

Biomarker	Pollutants	Region	Changes ⁺	SE for % change	References
		Netherlands	-1.490	2.918	Zuurbier et al 2011
		Random effect	-1.240	1.287	
Myeloperoxidase	NO_2	Augsburg, Germany	4.918	1.840	Rückerl et al 2014
		London, UK	69.9	64.6	Zhang et al 2009
		Fixed effect	4.971 *	1.839	
TNF-α	PM_{10}	Beijing, China	0.581	0.222	Wu et al 2012
		Netherlands	-0.914	3.704	Zuurbier et al 2011
		Fixed effect	0.576*	0.222	
Factor VII	PM_{10}	Netherlands	0	0.172	Zuurbier et al 2011
		Erfurt, Germany	-4.342	1.276	Ruckerl et al 2006
		Random effect	-1.987	2.163	
PAI-1	PM_{10}	Augsburg, Germany	-4.892	1.651	Rückerl et al 2014
		Beijing, China	0.0794	0.198	Wu et al 2012
		Random effect	-2.136	2.471	
	NO_2	Augsburg, Germany	-4.344	1.924	Rückerl et al 2014
		Beijing, China	0.695	0.758	Wu et al 2012
		Random effect	-1.515	2.500	

Biomarker	Pollutants	Region	Changes ⁺	SE for % change	References
sCD40L	NO_2	Augsburg, Germany	-1.148	1.966	Rückerl et al 2014
	NO_2	Beijing, China	0.0952	0.384	Rich et al 2012
		Fixed effect	0.0496	0.377	
VWF	PM_{10}	Beijing, China	-0.302	0.175	Wu et al 2012
		Erfurt, Germany	3.947	1.813	Ruckerl et al 2006
		Netherlands	0.163	0.0756	Strak et al 2013
		Netherlands	0.0481	0.221	Zuurbier et al 2011
		US	-0.422	0.453	Liao et al 2005
		Random effect	-0.0236	0.177	
	NO_2	Netherlands	1.129	1.544	Strak et al 2013
		Beijing, China	-0.503	0.540	Wu et al 2012
		Beijing, China	1.654	0.577	Rich et al 2012
		Erfurt, Germany	3.314	1.483	Ruckerl et al 2006
		US	-0.140	0.372	Liao et al 2005
		Random effect	0.698	0.577	
	SO_2	Beijing, China	3.966	0.895	Rich et al 2012
		US	0.620	0.639	Liao et al 2005
		Random effect	2.234	1.672	

Note: Text for statistical significant changes were **Bold**.

+ The changes were in percentage changes (%) otherwise specified.

++For the Israel study, changes of all the biomarkers was estimated from the pooled effects of male and female.

*p<0.05 for fixed or random effects

Appendix 1

致 貴住戶:

香港環境保護署 委託 香港大學 進行一項研究,我們誠邀閣下參加,以助制訂改善空氣質素政策。以下是有關研究的資料:

- 題目:【空氣污染與生物標記】
- **背景:** 空氣污染氧化物可破壞人體細胞內的基因、脂肪和蛋白質組織,並產 生一些獨特的分子。這些分子可以作為生物標記,以了解空氣污染所 致的健康影響。
- **目的:** 我們的目標是評估居民暴露在城市中商業及住宅區的微細懸浮粒子 (PM_{2.5})所引致的健康影響。
- **對象:** 50 至 65 歲,無長期病患,必須居住在受邀請的單位之內,並為非吸煙人仕(呼氣測試將會在到訪時提供)
- 地點: 香港沙宣道 21 號 香港大學醫學院 實驗室大樓
- 日期: 2014 年 7 月和 10 月; 2015 年 1 月和 4 月(共 4 次來訪)
- 時間: 早上8時至11時30分
- **過程**: 參加者在研究時期內 4 次到訪上述研究地點,進行抽血(~25ml)及手 指血糖測試。抽血過程由有20年在香港紅十字會工作經驗的護士負責。 參加者亦需要填寫問卷及量度身高、體重、血壓和肺功能。
- **資助:** 每次到訪,參加者將會得到港幣 400 元的交通資助。當完成全部 4次 到訪後,將會有額外港幣 400 元的獎勵,合共 2000 元。
- **報名及查詢:** 2014 年 4 月 30 日前聯絡 曾小姐(Hilda) 電話: **2831 5057**(辦公時間為上午 10 時至下午 6 時) 電郵地址: **tsangh@hku.hk**

我們會回覆合適這研究的120位人仕。你的踴躍參與將會協助香港政府有效地改善空氣質素, 令香港的居住環境更美好!

祝你 馬年身心健康, 福杯滿溢!

香港大學 公共衛生學院 環境健康研究組 研究助理教授 黎克勤博士 謹啟

二零一四年三月二十八日

Sassoon Road Campus: 香港沙宣道 21 號蒙民偉樓5樓 5/F, William M.W. Mong Block 21 Sassoon Road, Hong Kong 電話Tel: (852) 2819 9280 傳真Fax: (852) 2855 9528 Cyberport Campus: 香港數碼港3 座F 區624-627室 Units 624-627, Core F Cyberport 3, Hong Kong 電話Tel: (852) 3906 2002 傳真Fax: (852) 3520 1945

hkusph@hku.hk http://sph.hku.hk

版本1.00(25 JUNE 2014)

Appendix 2

研究資料書

研究標題:空氣污染與生物標記

您現正被邀請參加一項研究, 在您決定參加與否前, 您必須清楚明白為 何會有此研究, 以及其所涉及的內容。請仔細和小心閱讀以下的資料, 如有需 要, 請與您的家人親友和家庭醫生討論。如有任何疑問, 請詢問我們。請仔細 考慮您是否願意參加是項研究。

這項研究的目的是什麼?

研究背景: 分子水平上的氧化壓力評估, 是解釋空氣污染所引致的肺部 和其他健康影響的生物機制的核心假設之一。這個可以利用生物標記來分析, 即是空氣污染物氧化破壞人體的脫氧核糖核酸(DNA), 脂肪組織和蛋白質後所 產生的分子。

研究目的: 我們的目標是評估在研究時期內, 暴露在香港城市中商業及 住宅區的微細懸浮粒子 (PM_{2.5})所引致的亞臨床影響。

研究時期: 12個月(2014年7月至2015年6月)

為何我會受到邀請?

我們挑選的受試者為華裔人仕, 50~65歲, 無已知的慢性疾病, 住在空氣 質素監測站附近。這項研究中共有120名受試者。

我是否要參加?

這是由您來決定是否參加的。如果您決定參加,您將需要簽署一份同意書。 在您決定參加後,您仍然可以隨時自由地退出研究,而毋須任何原因。

如果我參加, 會發生什麼事?

您將參與一項為期12個月的研究,即從 2014年7月 至 2015年6月。您需 要在12個月當中到訪我們的研究所4次(2014年7月和10月; 2015年1月和4月), 每次持續2小時。每次到訪,我們將會提供港幣400元的交通資助,當完成4次到 訪後,將會有額外港幣400元的獎勵。

我們將收集您的血液樣本(30毫升)進行分析,抽血過程會由曾經在香港紅 十字會有20年工作經驗的護士負責。您亦需要填寫問卷,量度身高、體重、血壓 和肺功能。

我需要做什麼準備嗎?

您需要空腹進行血液測試,即在測試前6~8小時內,除了喝水外不能進食 任何東西。您不應該是吸煙者(曾在過去12個月吸煙),亦不能在12個月的研究期 間吸煙。您將被要求進行呼氣測試,以確認您的非吸煙狀況。

如果出現錯誤呢?

如果您在參與研究過程中受到傷害,將不會有特殊的補償安排。如果您受 到損害是由於別人的疏忽,你可向香港大學的有關部門投訴。

請問我參與這項研究會被保密嗎?

在研究過程中所收集的個人資料將被嚴格保密, 任何輸出大學的資料將 會移去您的姓名和地址等個人信息, 您將不會從中被識別。

研究的結果會怎樣?

研究的結果將會發佈於科學期刊上, 您可以索取已發佈的論文, 而您將 不會在任何報告/刊物中被識別。

資料保密

有需要的話,每個研究參與者都有權利獲得公開報告的研究結果。

根據香港法律(特別是「個人資料(私隱)條例」,第486章),您有權對您個人 資料進行保密,如在本項研究中或與本項研究有關的個人資料的收集、保管、保 留、管理、控制、使用(分析或比較)、在香港內外轉讓、不披露、消除和/或任 何方式處理。如有任何問題,您可以諮詢隱私資料私隱專員或致電到其辦公室 (電話號碼: 2827 2827),以適當監管或監督您個人資料保護,以便您能完全認 識和瞭解確保遵守法律保護隱私資料的意義。

同意參與該項研究,您明確作出以下授權:

* 為了監督該項研究,授權主要研究者及其研究團隊和倫理委員根據本項研 究和本知情同意書規定的方式獲得、使用並保留您的個人資料,並且

* 為了檢查和核實研究資料的完整性、評估研究協定與相關要求的一致性, 授權相關的政府機構(如香港環境保護署)可獲得您個人資料。

誰在籌備和資助這項研究?

香港特別行政區環境保護署是此項的資助者。環保署將支付香港大學公共 衛生學院以包括您在這項研究中。

誰人已審閱本研究?

香港大學及醫管局港島西醫院聯網研究倫理委員會。

感謝您參加這項研究!

84

SCHOOL OF PUBLIC HEALTH THE UNIVERSITY OF HONG KONG 香港大學公共衛生學院

研究同意書

參加者編號:

研究名稱:空氣污染與生物標記

請剔選

- 本人確定已細閱及明白上述研究的資料書(版本1.00),亦確定本 人提出的所有與是次研究有關的問題已得到解答。
- 本人明白是次的參與研究是自願性的,本人可於任何時候退出研究 而毋需任何理由。
- 3. 本人明白本人的個人資料或會被香港大學相關的人仕或有關團體查 閱,本人在此允許有關人仕查閱本人的個人資料。
- 4. 本人同意參加以上的研究。

參加者姓名

日期

簽署

Cyberport Campus: 香港數碼港3 座F 區624-627室 Units 624-627, Core F Cyberport 3, Hong Kong 電話Tel: (852) 3906 2002 傳真Fax: (852) 3520 1945

hkusph@hku.hk http://sph.hku.hk **Appendix 3**

2014年6月17日

Version 1.0

空氣污染與生物標記

問卷調查

香港大學

公共衛生學院

Final Report (Tender Ref. 13-03513) A Pilot Biomarker Study to Assess the Subclinical Health Impacts due to Exposures to Air Pollution

	(由研究員	員填 寫)研究編號: 開業ロ盟・	
		问を口知・	
第一部分:背境資訊			
1.1 性別 □ 男	□女		
 1.2 婚姻狀況 □ 未婚 □ 分居 	□ 已婚□ 離婚	□ 同居 □ 喪偶	
1.3 家中同住的成員(可多選			
□獨身	〕異性配偶 □ 父母	母 □ 其他長	非
□ 兄弟姊妹 □]同輩親戚 🗌 朋友	友 □子女	
□ 孫兒女 □] 其他晚輩 🛛 其作	也,請說明:	_
1.4 包括您本人,現時居住	的單位共有幾人?		人
1.5 出生日期	_	年月	日
1.6a 您居住在現時的地址多	多少年?		年
1.6b 你居住在哪一區? 🗌	〕中西區 🗌 旺角區	□ 其他,請說明:	
1.7 您的教育程度是?			
□ 沒正式教育/幼稚園	□ 小學	□ 中一至中五	
□ 預科	□ 專業文憑	□ 大學或以上	
1.8 過去12個月,您 個人 的	每月平均開支是多少?	'(只需包括衣,食,行)
□ <2000元 □ 200	00~3000元	3000~4500元	
□ 4500~6700元□ 670	00~10000元	≥10000元,請說明:	元
1.9 您現時居住的樓宇是什	麼類型?		
□ 私人房屋(自置)	□ 租住整個單位	□ 租住一個房	
□ 租住床位	□ 其他,請說明:		

1.10 您現在	至的工作狀況是?			
□ 全職	λ.	□ 兼職	🗌 家庭	重主婦 →<u>第二部分</u>
□ 已退	≹休 →<u>第二部分</u>	□ 其他,請說明	月:	
1.11 這份二	Ľ作 是在 哪一區 ?			
港島:	□ 灣仔區	□ 東區	□ 中西區	□ 南區
九龍:	□ 觀塘區	□ 黃大仙區	□ 九龍城區	□ 深水埗區
	□ 油尖區	□ 旺角區		
新界:	□ 葵青區	□ 荃灣區	□ 屯門區	□ 元朗區
	□ 沙田區	□ 大埔區	□ 北區	🗌 西貢區 🗌 離島
1.12 過去 1	2個月 ,您主要的	I工作環境是?		
□ 室内]→ <u>到1. 12a</u>	□ 戶外 → 至	1] <u>1. 12b</u>	
1.12a 在室	内工作時,會否問	暴露於 燃燒氣體/	揮發性氣體等的	空氣污染中?
□ 沒有	「 □ 有,	每天1~2小時	□ 有,3~4小時	□ 有,5小時或以上
1.12b 在戶	外工作時(包括上	班和下班的時間)	,會否長時間接	觸路面的交通?
□ 沒有	頁 □ 有,	每天1~2小時	□ 有,3~4小時	□ 有,5小時或以上
第二部分:	吸煙與被動吸煙			
2.1 過去 您	的吸煙習慣?			
□ 從不	、吸煙 → <u>到2.5</u>	□ 偶然吸煙	臣(不是每天)	□ 每天吸煙
?? 你	一百丝年?		在	
			++	
2.3 您在戒	煙前平均每天吸炊	垔多少支?	支/天	(少於一支填"0")

2.4	您在戒煙前已吸煙多少年?		_年	(少於一年填	"0")
2.5	過去12個月,您每週在室內接觸二手	煙的時間是多長	?		小時	/週
2.6	與你同住的人中有多少人吸煙?	□ 沒有 □	有,	多少人?		_人

第三部分: 飲食習慣

- 3.1 下列的哪一種情況最能反映您過去12個月的飲酒習慣?
 - □ 完全沒飲/僅在特別場合飲(一年1-2次)
 - □ 每週少於1次
 - □ 每週4-6次

3.2 每週有多少餐(正餐)在家中煮食/進食?

3.	3 您進食以下各類食物		每月	Ĵ		每星期	
	平均有多頻密?	不食	少於1次	1-3次	1-3次	4-6次	每天
а	新鮮水果						
b	新鮮蔬菜						
с	豆腐、豆漿、腐皮、豆腐花						
d	牛奶/奶粉、芝士						
e	中國茶 – 綠茶						
	(如:龍井、碧螺春)						
\mathbf{f}	中國茶 - 半發酵/全發酵						
	(如:普洱、鐵觀音)						
g	魚類 – 淡水魚						
h	魚類 – 海鮮						
i	肉類 – 紅肉(如:豬、牛)						
j	肉類 – 白肉 (如:雞)						
k	蛋類						

□ 每月少於1次

□ 每週1-3次

□ 每天或幾乎每天

餐

3.4 您平均每天進食以下各組食物的比例是多少?

	第一級	第二組			第三組	
食物種類	穀類、麵包、 飯、粉、麵		水果、蔬菜、瓜類		瓜類	瘦肉、家禽、 魚類、豆類、 蛋類、牛奶、 奶類產品、芝士類
進食的比例	例如:	3	:	2	:	1
(請填上適當數						
字,						
進食愈多數值愈			•		·	
大)						

第四部分:體力活動狀況

.1 過去7天您平均每天做 家務或體力勞動 的時間是?							
4.2 過去7天您平均每天	的步行時間是?			小時	分鐘		
4.3a 除了做家務或體力]勞動 外您做比步行	亍較劇 烈的	的運動 平均有	百多 頻密 ?			
□每天 □	每星期4-6天 [] 每星期	引-3天	□ 每星期	少於1天		
4.3b 過去7天您平均每	天做 比步行較劇烈	的運動時	間是?	小時	分鐘		
4.3c 您通常在哪裏做這	這些 較劇烈的運動 ?						
室内 :□ 家中	□ 體育館/社區	中心	□ 其他,言	青說明:			
戶外:□ 公園 (哪	個公園?)	□ 其他,言	青說明:			
第五部分:室内空氣污	染						
5.1 您在家中煮食是否	用明火煮食爐?			□ 是	□否		
5.2 過去7天每天在家中	中的時間(包括睡覺)?			_小時/日		

5.3 過去7天每天 睡眠 時間?			_小時/日			
5.4 過去7天使用 冷氣 的時間?小時/日						
5.5 過去7天使用暖氣的時間?			小時/日			
5.6 過去7天使用電風扇的時間?			小時/日			
5.7 過去7天使用空氣清新機的時間?			小時/日			
5.8a 過去7天當您在家中時,平均每	天有多少時間 打開窗戶?		_小時			
5.8b 過去7天,您有曾經因為 防止蚊蟲 而關窗嗎? □ 是						
5.8c 過去7天,您有曾經因為 噪音 而關窗嗎?						
第六部分:個人健康狀況						
6.1 與其他同齡的人比較,您認為您	的健康狀況是?					
□ 非常好 □ 好	□ 普通 □ 差	□ 非常	常差			
6.2 過去7天您有否服用藥物?						
□ 沒有 □ 有,請說明	:					
個人病歷						
6.3a 您有否心臟、循環系統的疾病?	? □ 否 →<u>到</u>6. 4 a	_	□有			
6.3b 是哪種疾病?(可多選)						
□ 高血壓	□ 冠心病					
□ 中風	□ 其他,請說明:					
			· · · · · · · · · · · · · · · · · · ·			
6.4a 您有否呼吸系統的疾病?	□ 否 <i>→<u>到</u>6.5a</i>		□有			

6.4b	是哪種疾病?(可多選)		
	□ 慢性支氣管炎	□ 哮喘	□ 肺結核
	□ 肺氣腫	□ 其他,請說明:	
6.5a	您有否神經系統、精神科的	ı疾病? □ 否 →<u>到6.6</u>	a_ □ 有
6.5b	是哪種疾病?(可多選)		
	□ 帕金森遜症□ 抑鬱	□ 腦退化症 (老年癡牙□ 其他,請說明:	- - - - - - - - - - - - - -
6.6a	您有否內分泌、新陳代謝的	」疾病? □ 否 →<u>到6.7</u>	a □ 有
6.6b	是哪種疾病?(可多選)		
	□ 甲狀腺疾病	□ 痛風症	□ 糖尿病
	□ 高膽固醇	□ 其他,請說明:	
6.7a	您有否消化系統的疾病?	□ 否 →<i>到6.8</i>	<u>a</u> □ 有
6.7b	是哪種疾病?(可多選)		
	□ 胃潰瘍	□ 其他,請說明:	
6 82	你有不生菇沁屋的疾病?	□ 不→ 知6 9	
0.0a	心月日土油加水可沃内:	□ □ <i>□ /<u>⊁</u>10.36</i>	
6.8b	是哪種疾病?(可多選)		
	□ 小便失禁 □ 前列	」腺病 □ 其他,請說明:	
<u> </u>			
6.9a	您有否肌肉骨骼的疾病?	□ 否 →<u>到6.1</u>	<u>0a</u> □有

6.9b	是哪種疾病?(可多選)		
	□ 退化性關節炎□ 骨質疏鬆症	□ 肩周炎 □ 其他,請說明:	□ 痛風
6.10a	您有否眼耳鼻喉的疾病?	□ 否 →<u>到</u>(<u>3.11a</u> □ 有
6.10b	是哪種疾病?(可多選)		
	□ 失聰□ 其他,請說明:	□ 白內障	□ 青光眼
6.11a	您有否癌症?	□ 否 →<u>到</u>(<i>5.12</i> 有
6.11b	是哪種癌症?(可多選)		
	□ 乳癌□ 肺癌	□ 子宮頸癌□ 其他,請說明:	□ 腸癌
6.12	您有否其他疾病?		
	□ 否		
	□ 有,請列明:		
		<u></u>	
	*****	**問卷調查完畢*******	*****

<空氣污染與生物標記>

(由研究員填 寫)研究編號:

日期:

物理體檢 (由研究員填寫)

- 1 抽血時間
- 2 呼氣測試(一氧化碳濃度)
- 3 身高(脫鞋)
- 4 體重(脫鞋、單衣)
- 5 血壓和心率 (靜坐5分鐘後測量)

6 肺功能(用力肺活量FVC, 第一秒吐出量FEV1)

□ 完成2次 □ 完成1次 □ 未能完成

ppm

釐米

公斤

Appendix 4 Assay Protocol for the biomarkers

Note: Modifications of the assay from the manufacturer protocols was <u>Underlined</u>.

i) Assay Protocol for 8-OHdG level

- 1. Bring all reagents and samples to room temperature (20-25°C) before use.
- 2. Reconstitute the Primary Antibody with the Primary Antibody Solution.
- 3. Add 50 µl of sample or Standard per well.
- Add 50 μl of reconstituted primary antibody per well. Shake the plate from side to side and mix fully. Cover the plate with an adhesive strip, making sure it is sealed tightly. Incubate at 37°C for 1 hour.
- 5. Mix 1 volume of Washing solution (5X) with 4 volumes of distilled water.
- 6. Pour off contents of wells into sink. Pipette 250 µl washing solution into each well. After washing thoroughly by shaking the plate from side to side, dispose of washing solution. Invert plate and blot against clean paper towel to remove any remaining washing buffer. Repeat wash two times more.
- 7. Reconstitute the Secondary Antibody with the Secondary Antibody Solution.
- Add 100 μl of constituted secondary antibody per well. Shake the plate from side to side and mix fully. Cover the plate with an adhesive strip. Incubate 37°C for 1 hour.
- 9. At the end of the incubation period, repeat washing as in Step 6.
- 10. Prepare substrate solution. Add 1 volume of the Chromatic Solution to 100 volumes of the Diluting Solution just before use. Add 100 μ l of substrate solution per well. Shake the plate from side to side and mix fully. Incubate at room temperature for 15 minutes in the dark.
- 11. Add 100 μ l of the Reaction Terminating Solution. Shake the plate from side to side and mix fully.
- 12. Measure the absorbance at 450 nm using micro-titer plate reader.
- 13. Use a standard curve to determine the amount of 8-OHdG present in test samples. Generate the standard curve by plotting absorbance vs log (concentration of standards). Then use the absorbance values obtained for the test samples to determine the concentrations.

ii) Assay Protocol for MDA level

- A) Reagent Reconstitution:
- 1. Take one vial of TBA and add of 7.5 ml <u>Acetic Acid</u> and mix.
- 2. Transfer the slurry to another tube and add ddH₂O to a final volume of 25 ml. Mix well to dissolve.

- B) Sample Preparation:
- 3. Mix 10 μ l with 500 μ l of 42 mM H₂SO₄ in a microcentrifuge tube.
- 4. Add 125 μl of Phosphotungstic Acid Solution and vortex.
- 5. Incubate at room temperature for 5 minutes, then centrifuge for 3 minutes at 13,000 x g.
- 6. Collect the pellet and re-suspend on ice with $100 \ \mu l \ ddH_2O$ (with 2 $\ \mu l \ BHT$).
- 7. Adjust the final volume to 200 μ l with ddH₂O.
- C) MDA Standard Curve:
- 8. Dilute 10 μ l of the MDA standard with 407 μ l of ddH₂O to prepare a 0.1 M MDA solution, then dilute 20 μ l of the 0.1 M MDA solution with 980 μ l of ddH₂O to prepare a 2 mM MDA Standard.
- For colorimetric analysis, add <u>0, 0.5, 1, 1.5, 2, 2.5 μl</u> of the 2 mM MDA Standard into separate microcentrifuge tubes and adjust the volume to 200 μl with ddH₂O to generate <u>0, 1, 2, 3, 4, and 5 nmol</u> Standard.
- D) Develop:
- Add 600 µl of TBA reagent into each vial containing standard and sample. Incubate at 95°C for 60 minute. Cool to room temperature in an ice bath for 10 minutes. Pipette 200 µl (from each 800 µl reaction mixture) into a 96-well microplate for analysis.
- E) Measure:
- 11. For colorimetric analysis, read the absorbance at 532 nm.
- F) Calculation:
- 12. Plot the MDA Standard Curve and determine the MDA amount in the test sample in nmol by interpolation from the standard curve.

iii) Assay Protocol for GSH/GSSG ratio

- A) Preparation of stock solution:
- 1. Add 200 µl of Assay Buffer into the vial of GSH Standard to make 1 mM GSH standard stock solution.
- 2. Add 200 μ l of ddH2O into the vial of GSSG Standard to make 1 mM GSSG standard stock solution.
- 3. Add 100 μ l of DMSO into the vial of Thiol Green Indicator to make 100X Thiol Green stock solution.
- *B) Preparation of assay mixtures:*
- Add 100 μl of 100X Thiol Green stock solution into 10 ml of Assay Buffer and mix well to make the GSH Assay Mixture (GAM)

- 5. Add 5 ml of GAM into the bottle of GSSG probe and mix well to make the total GSH Assay Mixture (TGAM).
- *C) Preparation of GSH Standards:*
- 6. Add 10 μ l of GSH standard stock solution into 990 μ l of Assay Buffer to generate 10 μ M GSH standard solution.
- Add 200 μl of 10 μM GSH standard solution to perform 1/2 serial dilutions to get 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.1563 and 0 μM serially diluted GSH standards.
- 8. Add GSH standards and test samples into a solid black 96-well microplate.
- D) Preparation of GSSG Standards:
- Add 10 μl of GSSG standard stock solution into 990 μl of Assay Buffer to generate 10 μM GSSG standard solution.
- Take 200 μl of 10 μM GSSG standard solution to perform 1/2 serial dilutions to get 5, 2.5, 1.25, 0.625, 0.3125, 0.1563, 0.0781, and 0 μM serially diluted GSSG standards. The concentrations of Total GSH standard solutions should be twice the concentrations of GSSG standard solutions as 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.1563, and 0 μM.
- 11. Add GSSG standards and test samples into a solid black 96-well microplates.
- E) Run GSH and Total GSH Assay:
- 12. Add 50 μ l of GSH Assay Mixture into the wells of GSH standard, blank control, and test samples to make the total assay volume of 100 μ l/well.
- 13. Add 50 μ l of Total GSH Assay Mixture into the wells of GSSG standard, a new blank control, and the other set of test sample to make the total assay volume of 100 μ l/well.
- 14. Incubate the reaction at room temperature for <u>30 minutes</u>, protected from light.
- 15. Monitor the fluorescence increase at Ex/Em = 490/520 nm with a fluorescence plate reader.
- F) Data analysis:
- 16. The fluorescence in blank wells (with the assay buffer only) is used as a control, and is subtracted from the values for those wells with the GSH reactions.

iv) Assay Protocol for Triglyceride level

- A) Sample preparation:
- 1. Add $\underline{12 \ \mu l}$ test samples to a 96-well plate. Adjust the volume was adjusted to 50 μl /well with Triglyceride Assay Buffer.
- A background control is performed by replacing 2 µl Lipase with 2 µl Triglyceride Assay Buffer. The background is subtracted from all readings.

- *B) Standard curve preparation:*
- For the colorimetric assay, dilute 40 µl of the 1 mM Triglyceride into 160 µl Triglyceride Assay Buffer, mix to generate 0.2 mM Triglyceride Standard.
- 4. Add 0, 10, 20, 30, 40, 50 µl of the 0.2 mM Triglyceride Standard into a series of wells.
- 5. Adjust volume to 50 μl/well with Triglyceride Assay Buffer to generate 0, 2, 4, 6, 8, 10 nmol/well of Triglyceride Standard.
- C) Lipase:
- 6. Add $2 \mu l$ of Lipase to each Standard and sample well.
- 7. Mix and incubate for 20 minutes at room temperature to convert triglyceride to glycerol and fatty acid.
- *D) Triglyceride reaction mix:*
- 8. Mix enough reagent for the number of assays to be performed: For each well, a total 50 µl Reaction Mix is prepared with 46 µl Reaction Mix Triglyceride Assay Buffer, 2 µl Triglyceride Probe, and 2 µl Triglyceride Enzyme Mix.
- Add 50 μl of the Reaction Mix to each well containing the Triglyceride Standard, samples and background control. Mix well. Incubate at room temperature for <u>60 minutes</u>. Protect from light.
- *E) Measurement and calculations:*
- 10. Measure absorbance at 570 nm in a microtiter plate reader for colorimetric assay.
- 11. Subtract 0 Standard reading from all readings. If sample background control reading is significant then subtract the sample background control reading from sample reading. Plot the TG Standard Curve.

v) Assay Protocol for HDL-C level

- A) Separation of HDL-C and LDL-C:
- Mix 100 µl of 2X Precipitation Buffer with 100 µl of serum sample in microcentrifuge tubes. Incubate 10 minutes at room temperature, centrifuge at 5000 rpm on bench-top microcentrifuge for 10 minutes.
- 2. Transfer the supernatant into new labelled tubes. This is the HDL-C fraction.
- *B)* Standard curve and sample preparation:
- Dilute the Cholesterol Standard to 0.25 μg/μl by adding 20 μl of the Cholesterol Standard to 140 μl of Cholesterol Assay Buffer, mix well.
- 4. Add 0, 4, 8, 12, 16, 20 μ l into a series of wells in a 96-well plate.
- 5. Adjust volume to 50 µl/well with Cholesterol Assay Buffer to generate 0, 1, 2, 3, 4, 5 µg/well

of the Cholesterol Standard.

- 6. For sample testing, using 1 to 20 μ l of the HDL-C fraction, adjust the total volume to 50 μ l/well with the Cholesterol Assay Buffer.
- *C) Reaction mix preparation:*
- Mix enough reagent for the number of assays performed. For each assay, prepare a total 50 µl Reaction Mix containing: 44 µl Cholesterol Assay Buffer, 2 µl Cholesterol Probe, 2 µl Enzyme Mix, and 2 µl Cholesterol Esterase.
- Add 50 µl of the Reaction Mix to each well containing the Cholesterol Standard or test samples, mix well.
- 9. Incubate the reaction for 60 minutes at 37°C, protect from light.
- D) Measurement and calculations
- 10. Measure O.D. at 570 nm in a micro-titer plate reader.
- 11. Subtract 0 standard reading from readings. Plot the standard curve. Apply the sample readings to the standard curve to determine sample cholesterol amount in the reaction well.

	df 1 ^a	df 2	8-OHdG	MDA	GSH/	HDL-C	Trigly-	Heart	DBP	SBP
					GSSG		ceride	rate		
Demographic										
Age	1	107	0.60	0.64	0.19	0.17	0.55	2.17	0.02	6.45*
Gender	1	107	4.27*	0.12	0.15	12.5***	0.66	0.07	13.8***	6.32*
BMI	4	294	0.66	0.83	1.07	4.56**	0.41	0.41	1.64	1.32
Lifestyles										
Exercise frequency	3	105	0.55	0.14	0.27	1.17	0.30	0.84	0.67	0.42
Passive smoking	1	107	0.31	0.27	0.09	0.01	0.28	6.55*	1.52	0.49
Alcohol drinking	4	104	0.31	0.86	3.19*	0.82	1.62	0.85	1.83	2.04
Dietary										
Fruit	1	107	0.69	1.06	0.70	2.70	0.01	0.44	1.92	0.12
Vegetables	1	107	5.47*	0.45	0.34	4.76*	0.22	0.28	1.71	1.95
Green tea	1	107	0.67	0.02	5.47*	1.02	0.00	10.2**	0.02	0.00
Red tea	1	107	1.51	0.04	5.58*	0.20	0.17	0.40	0.40	0.20

Appendix Table 4. ANOVA F-Ratio for Differences Between Groups Adjusted for Time of Visit

^a df stands for degrees of freedom

*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001

Biomarkers	Crude	Demographic ^a	Demographic	Demographic	Demographic,
			& Lifestyles ^b	& Dietary ^c	Lifestyles, &
					Dietary
CW					
8-OHdG	-0.2767	-0.1904	-0.1676	-0.2336	-0.2185
MDA	-0.3394*	-0.2332	-0.2475	-0.2739	-0.2629
GSH/GSSG	0.0569	-0.1413	-0.1020	-0.1084	-0.0668
MK					
8-OHdG	0.0340	0.0449	-0.2960	0.0193	-0.5295*
MDA	-0.3311	-0.3070	-0.3198	-0.4031*	-0.3608
GSH/GSSG	0.0419	-0.0157	-0.1356	-0.0346	-0.1217
All (CW and	MK)				
8-OHdG	-0.0099	0.0155	-0.0511	0.0356	-0.0189
MDA	-0.2538*	-0.2420	-0.2505	-0.2683*	-0.2739*
GSH/GSSG	0.0252	0.0000	-0.0710	0.0075	-0.0788

Appendix Table 5. Crude and Partial Correlation of Biomarkers and O₃ in Central/Western and Mongkok in Baseline

^a Partial correlation adjusted for demographic factors (age, gender and BMI)

^b Partial correlation adjusted for demographic factors^a and lifestyles (alcohol drinking frequency, exercise frequency, and passive smoking exposure)

^c Partial correlation adjusted for demographic factors^a and dietary (frequency of fresh fruits and vegetables intake, and drinking of tea)

*p-value < 0.05

Biomarkers	Region	Mean	References (by publication year)
8-OHdG	Turkey	7.1	Sertan CU, et al. Psychiatry Res 2015;229:200-5
(ng/ml)	Austria	9.4	Matzi V, et al. Clin Lab 2015;61:587-93
	Taiwan	0.2	Lee HT, et al. Int J Mol Sci 2015;16:3757-68
	Taiwan	4.4	Tsai MC, et al. J Affect Disord 2015;173:22-6
	Turkey	3.7	Tabur S, et al. Tumour Biol 2015;36:2667-74
	Turkey	1.9	Kocael A, et al. Can J Surg 2014;57:183-7
	Turkey	12.1	Hendek MK, et al. J Periodontol 2015;86:273-82
	India	0.2	Basu S, et al. J Perinatol 2014;34:519-23.
	China	12.3	Ma Y, et al. Oxid Med Cell Longev 2013;543760
	Turkey	0.7	Bayram F, et al. Growth Horm IGF Res 2014;24:29-34
	Iran	34.9	Ghorbanihaghjo A, et al. J Health Popul Nutr 2013; 31:343-9
	China	1.4	Gao H, et al. PLoS One 2013;8:e67727
	China	0.8	Lin LY, et al. Sci Total Environ 2013;463-4:176-81
	China	6.3	Chang D, et al. Oxid Med Cell Longev 2013;587826
	Netherlands	0.2	Fischer SG, et al. Int J Mol Sci 2013;14:7784-94
	Poland	0.003	Płonka PE, et al. Pharmacol Rep 2013;65:99-106
	Austria	0.3	Müllner E, et al. Mol Nutr Food Res 2013;57:328-38
	Turkey	9.5	Gönenç A, et al. Eur J Intern Med 2013;24:39-44
	Slovenia	1.1	Letonja MS, et al. Mol Biol Rep 2012;39:10121-30
	Sweden	0.5	Harms-Ringdahl M, et al. Nutr J 2012;11:29
Mean r	ange*		0.2-12.3 ng/ml
MDA	India	1.1	Mukhopadhyay B, et al. J Clin Diagn Res 2016;10:BC08-10
(nmol/ml)	Spain	1.1	Lorente L, et al. PLoS One 2015;10:e0125893
	Turkey	0.4	Erem C, et al. Endocr J 2015;62:493-501
	Brazil	9.6	De Souza GF, et al. BMJ Open 2015;5:e006048
	Austria	0.9	Matzi V, et al. Clin Lab 2015;61:587-93
	Turkey	3.2	Ari E, et al. Int Urol Nephrol. 2014;46:1843-9.
	Turkey	1.1	Erden ES, et al. Eur Rev Med Pharmacol Sci 2014;18:3477-83
	India	2.0	Basu S, et al. J Perinatol 2014;34:519-23.

Alvarez SJM, et al. J Nutr Biochem 2014;25:289-94

Kand'ár R, et al. Physiol Res 2014;63:753-62

Nagamma T, et al. Asian Pac J Cancer Prev 2014;15:9467-70

Adamczyk-Sowa M, et al. J Physiol Pharmacol 2014;65:543-50

Wojciechowska C, et al. Mediators Inflamm 2014;147040

Appendix Table 6. Literature Review on the Level of the Oxidative Stress Biomarkers

Italy

India

Poland

Poland

Czech

Republic

1.2

1.0

1.3

1.0

0.8

	Austria	3.9	Walker J, et al. Hum Psychopharmacol 2014;29:537-43
	China	6.2	Ma Y, et al. Oxid Med Cell Longev 2013;543760
	China	2.6	Gao H, et al. PLoS One 2013;8:e67727
	China	3.3	Chang D, et al. Oxid Med Cell Longev 2013;587826
	Netherlands	5.4	Fischer SG, et al. Int J Mol Sci 2013;14:7784-94
	Turkey	5.5	Gönenç A, et al. Eur J Intern Med 2013;24:39-44
	Turkey	4.9	Kaya Y,et al. Int J Med Sci 2012;9:621-6
Mean ra	ange*		0.8-5.5 nmol/ml
GSH/GSSG	UK	17.5	Seshadri S, et al. Acta Ophthalmol 2015;93:e266-74
ratio	Italy	160	De Felice C, et al. Mediators Inflamm 2014;560120.
	Italy	6.3	Ceci R, et al. Redox Biol 2013;2C:65-72
	Italy	9.5	Bellanti F, et al. Redox Biol 2013;1:340-6
	France	0.35	Turki A, et al. Free Radic Biol Med 2012;53:1068-79
	Spain	4.0	Tasset I, et al. Clin Biochem. 2012;45:440-4
	Mexico	7.4	Calderón-Salinas JV, et al. Mol Cell Biochem. 2011;357:171-9
	Mexico	11.5	Guevara-Arauza JC, et al. Chem Cent J 2011;5:10
	Panama	6.7	Rusanova I, et al. Eur J Haematol 2010;85:529-37
	Italy	96	Calabrese V, et al. Neurochem Res. 2010;35:2208-17
	USA	200	Elokda A, et al. J Neurol 2010;257:1648-53
	Turkey	27.8	Sahin E, et al. Ann Clin Biochem 2008;45:369-74
	Portugal	1.5	Machado MV, et al. Scand J Gastroenterol. 2008;43:95-102
	Italy	33.6	De Mattia G, et al. Diabetes Res Clin Pract. 2008;79:337-42
	Chile	7.2	Rodrigo R, et al. Hypertens Res 2007;30:1159-67
	Chile	7.5	Rodrigo R, et al. Mol Cell Biochem. 2007;303:73-81
	Cuba	5.7	Pardo-Andreu GL, et al. Arch Med Res 2006;37:158-64
	Italy	15.2	Veglia F, et al. Biomarkers. 2006;11:562-73
Mean ra	ange*		1.5-160

*Mean range is 2.5% to 97.5% range of the reported mean.

Note: We searched in PubMed with the following string in either title or abstract: [biomarkers] AND (serum OR plasma) AND healthy AND human, where "[biomarkers]" could be either 8-OHdG or MDA or GSH/GSSG.

The most recent 5-year publications for 8-OHdG and MDA, and 10-year publications for GSH/GSSG ratio (last search date 12 May 2016) with full text and the following criteria for each biomarker will be selected to calculate the reported mean level: (1) reported mean level for the biomarker, (2) human blood samples, (3) healthy adult, and (4) non-smoking.