LNG RECEIVING TERMINAL AND ASSOCIATED FACILITIES

PART 2 – SOUTH SOKO EIA SECTION 5 - NOISE ASSESSMENT

CONTENTS

5	NOISE ASSESSMENT	1
5.1	Introduction	1
5.2	LEGISLATION REQUIREMENT AND EVALUATION CRITERIA	1
5.3	BASELINE ENVIRONMENTAL CONDITIONS AND NOISE SENSITIVE RECEIVERS	4
5.4	POTENTIAL SOURCES OF IMPACTS	6
5.5	ASSESSMENT METHODOLOGY	8
5.6	EVALUATION OF IMPACTS	10
5.7	MITIGATION MEASURES	11
5.8	ENVIRONMENTAL MONITORING AND AUDIT	12
5.9	CONCLUSIONS	12

ANNEXES

Annex 5	Noise Assessment Supporting Information
Annex 5-A	Terrain Profile
Annex 5-B	Construction Programme for Noise Assessment
Annex 5-C	Construction Plant Inventory
Annex 5-D	Equipment Inventory during Operational Phase
Annex 5-E	Construction Noise Assessment
Annex 5-F	Operational Noise Assessment

5 NOISE ASSESSMENT

5.1 Introduction

This section provides an evaluation of the noise impacts arising from the construction and operation of the LNG terminal proposed on South Soko Island. Activities during the construction phase, including reclamation, site formation and building construction and fixed plant noise sources during the operational phase, have the potential to cause noise impacts to the surrounding area. Appropriate mitigation measures will be recommended, where necessary, in order to mitigate any adverse impacts.

5.2 LEGISLATION REQUIREMENT AND EVALUATION CRITERIA

5.2.1 Construction Phase

General

The noise impacts associated with the LNG terminal construction will be assessed according to the *Environmental Impact Assessment Ordinance (Cap.*499) and its *Technical Memorandum, EIAO-TM*. The assessment criteria are defined in *Annex 5* of the *EIAO-TM* and the principal legislation for controlling construction noise is the *Noise Control Ordinance, Cap.* 400 (NCO). A number of technical memoranda (TMs) have been issued under the NCO to stipulate control approaches and criteria and those that may be relevant to the construction of the terminal include the following:

- Technical Memorandum on Noise from Construction Work Other than Percussive Piling (GW-TM) which provides the guidelines for controlling the construction noise from power mechanical equipment (PME) in general construction works.
- Technical Memorandum on Noise from Construction Work in Designated Areas
 (DA-TM) which deals with control of noise generated by specified
 powered mechanical equipment (SPME) and prescribed construction
 work (PCW) within designated areas.
- *Technical Memorandum on Noise from Percussive Piling (PP-TM)* which addresses the control of noise from percussive piling in addition to issuance of Construction Noise Permit (CNP).

Percussive Piling

Under the *PP-TM*, percussive piling is prohibited at any time on Sundays and public holidays and during evening and night-time hours (1900 - 0700 hours), Monday through Saturday. A CNP is required in order to carry out such work during daytime hours (0700 - 1900 hours) Monday through Saturday.

In addition, percussive piling is prohibited at any time on Sundays and public holidays and during evening and night-time hours (1900 - 0700 hours), Monday through Saturday.

As the issuance of a CNP by the *Noise Control Authority* would depend on the submission of an application by the contractor, and therefore on the contractor's compliance with the percussive piling noise limits set out within the *PP-TM*, the assessment of this type of noise has not been included in this EIA.

General Construction Works During Restricted Hours

The *NCO* provides statutory controls on general construction works during restricted hours (i.e., 1900 - 0700 hours Monday to Saturday and at any time on Sundays and public holidays). The use of PME for carrying out construction works during these restricted hours would require a CNP. The *Noise Control Authority* will assess all CNP applications on a case-by-case basis and, in doing so, the authority advises that they will be guided by the *GW-TM*.

When assessing an application for the use of PME, the *Noise Control Authority* will compare the Acceptable Noise Levels (ANLs) specified in the GW-TM with the CNLs (adjusted for any barrier and reflection effects) associated with the proposed PME operations. The NCO requires that noise levels from construction at affected NSRs be less than the specified ANL. The ANLs are related to the inherent noise sensitivity of the noise receiver areas in question, which in turn relate to the background noise characteristics of these areas. Each noise receiver area is then assigned an Area Sensitivity Rating (ASR) based on its predominant land use and the presence, if any, of Influencing Factors (IFs) such as nearby industrial areas, major roads or airports. The relevant ANLs are shown in *Table 5.1*. Factors influencing the outcome of a CNP application, such as the assigning of ANLs, would be determined by the Noise Control Authority at the time of the application review based on the prevailing site conditions which may change from time to time. It should be noted that nothing in this report shall bind the Noise Control Authority in making their decision. If a permit is to be issued, the Authority shall include any condition it thinks fit, and such conditions shall be followed while the works covered by the permit are being carried out. Failure to comply with any conditions could result in the cancellation of the permit and prosecution action under the NCO.

Table 5.1 Acceptable Noise Levels (ANLs) for General Construction Works to be carried out during Restricted Hours

Time Period	Area Sensitivity Rating ^(a) $L_{Aeq, 5 min}$ (dB(A))							
	A	В	C					
All days during the evening (1900 - 2300 hours) and general holidays (including Sundays) during the daytime and evening (0700 - 2300 hours)	60	65	70					
All days during the night-time (2300 - 0700 hours)	45	50	55					
Note:	-10							
(a) The standards apply to uses which rely on opened windo	ws for ven	tilation.						

General Construction Works During Normal Working Hours

Although the *NCO* does not provide for the control of noise from construction activities during normal working hours (0700 - 1900, Monday to Saturday), *Annex 5* of the *EIAO-TM* specifies a limit of L_{eq} , $_{30\,min}$ 75 dB(A) for residential NSRs. *Annex 5* also provides construction noise limits of L_{eq} , $_{30\,min}$ 70 dB(A) and 65 dB(A) for schools during normal teaching periods and examination periods respectively.

5.2.2 Operational Phase

Fixed plant noise is controlled under *Section 13* of the *NCO* and the predictions will be undertaken in accordance with the *Technical Memorandum on Noise from Places other than Domestic Premises, Public Places or Construction Sites (IND-TM*). The criteria noise limits are set out in the *EIAO-TM* as follows:

- The total fixed source noise level at the facade of the nearest NSR is at least 5 dB(A) lower than the appropriate ANL (as shown in *Table 5.2*) as specified in the *IND-TM*; or
- Where the prevailing noise level in the area is 5 dB(A) or more below the appropriate ANL, the total fixed source noise level must not exceed this noise level.

The criteria noise limits stipulated in the *IND-TM* apply for all days and general holidays and are dependent on the Area Sensitivity Rating (ASR) of the NSRs, as shown in *Table 5.2*.

Table 5.2 ANLs to be used as Operational Noise Criteria

Time Period	L _{Aeq 30min} (dB(A))									
	ASR "A"	ASR "B"	ASR "C"							
Daytime (0700 - 1900)	60 (55)	65 (60)	70 (65)							
Evening (1900 - 2300)	60 (55)	65 (60)	70 (65)							
Night-time (2300 - 0700)	50 (45)	55 (50)	60 (55)							

 $L_{Aeq 30min} (dB(A))$

Note:

The number in brackets indicates the noise limit (ANL -5) for operational noise impact assessment.

As the site is located in a rural area and no influencing factors affect the NSRs, which are located at more than 6 km away from the site, an ASR "A" has been assumed for the NSR located in the vicinity of the proposed site. Baseline noise measurement has been conducted to investigate the prevailing noise levels at Shek Pik (the nearest sensitive area) and to establish the noise limit for the assessment of the operational noise impact. Details of the noise measurement will be further discussed in *Section 5.3.3*.

The Area Sensitive Rating assumed in this Report is for an indicative operational noise assessment only. It should be noted that fixed noise sources are controlled under *Section 13* of the *NCO*. At the time of investigation, the *Noise Control Authority* shall determine noise impact from concerned fixed noise sources on the basis of prevailing legislation and practices being in force, and taking account of contemporary conditions / situations of adjoining land uses.

5.3 BASELINE ENVIRONMENTAL CONDITIONS AND NOISE SENSITIVE RECEIVERS

5.3.1 Baseline Environmental Conditions

The area of the proposed site is in an uninhabited rural area. Siu A Chau (North Soko Island) is located at approximately 1 km away to the north of the proposed site and is now uninhabited. The background noise environment is dominated by the noise from marine vessel traffic.

5.3.2 Noise Sensitive Receivers

No NSR has been identified on the islands (South Soko and North Soko). The nearest NSR is identified as the Staff Quarters of the Shek Pik Prison on Lantau Island (N1) which is located approximately 6 km away from the site. The location of the NSR is shown in *Figure 5.3a*. According to the Concept Plan for Lantau prepared by Lantau Development Task Force and other plans implemented by other bureaux and government departments, there are no planned or committed uses within 7 km from the site. The headland at North Soko located between the proposed site and the NSR N1 will act as a substantial barrier to reduce the potential construction and operational noise impact to N1. The terrain profile between N1 and the LNG terminal presented in *Annex 5-A* is derived by Digital Elevation Model (DEM) basing on the Land Information Centre (LIC) data from the Lands Department.

An approximately 40-km long submarine gas pipeline linking the proposed LNG terminal at the South Soko Island to the existing Black Point Power Station and gas receiving station (GRS) will be constructed (*Figure 5.4a*). The

Figure 5.3a

Location of Noise Sensitive Receiver at Shek Pik

Environmental Resources Management

installation of the submarine gas pipeline will use a combination of dredging and jetting methods. The nearest NSRs that may be affected by the installation of gas pipeline and GRS are identified as the Tai O Barracks (N2) at Tai O (*Figure 5.3b*) and the village house at Lung Kwu Sheung Tan (N3) (*Figure 5.3c*) respectively. The village house (N3) at Lung Kwu Sheung is used as an office for the outdoor karting track, according to the approved EIA Report for Proposed Karting Track in D.D.134, Lung Kwu Sheung Tan, Tuen Mun (EIA-116/2005). To present a worse case scenario, the construction noise impact at this village house has also been assessed.

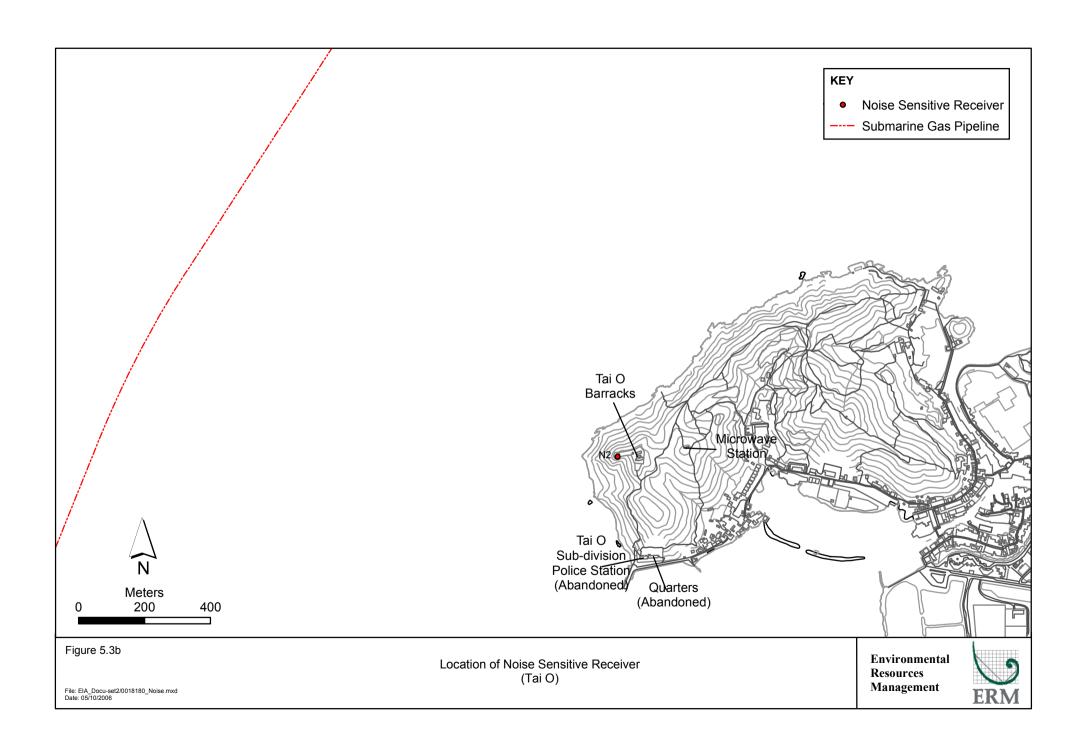
5.3.3 Baseline Noise Measurement

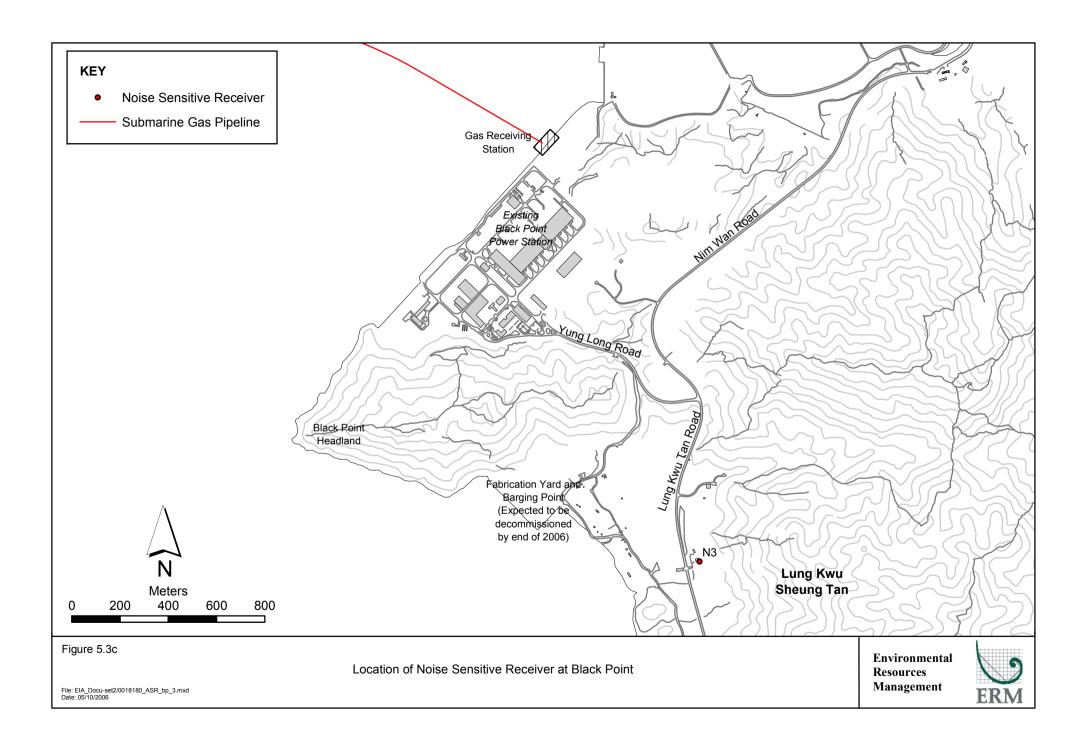
To investigate the prevailing noise levels at Shek Pik area, two sets of continuous 24-hour noise measurement were made from 19 to 20 January 2006 at the roof top of Block J of the Staff Quarters (N1a) and at the 4/F of Block K of Staff Quarters (N1b) from 13 to 14 July 2006 (*Figure 5.3d*). The noise measurements were conducted using Solo 01 Premium Sound Level Meter (Type 1) and were calibrated using B&K Sound Level Calibrator Type 4231 with a calibration signal of 94.0 dB(A) at 1 kHz. The measurements were conducted with reference to the calibration and measurement procedures as stated in the *IND-TM*.

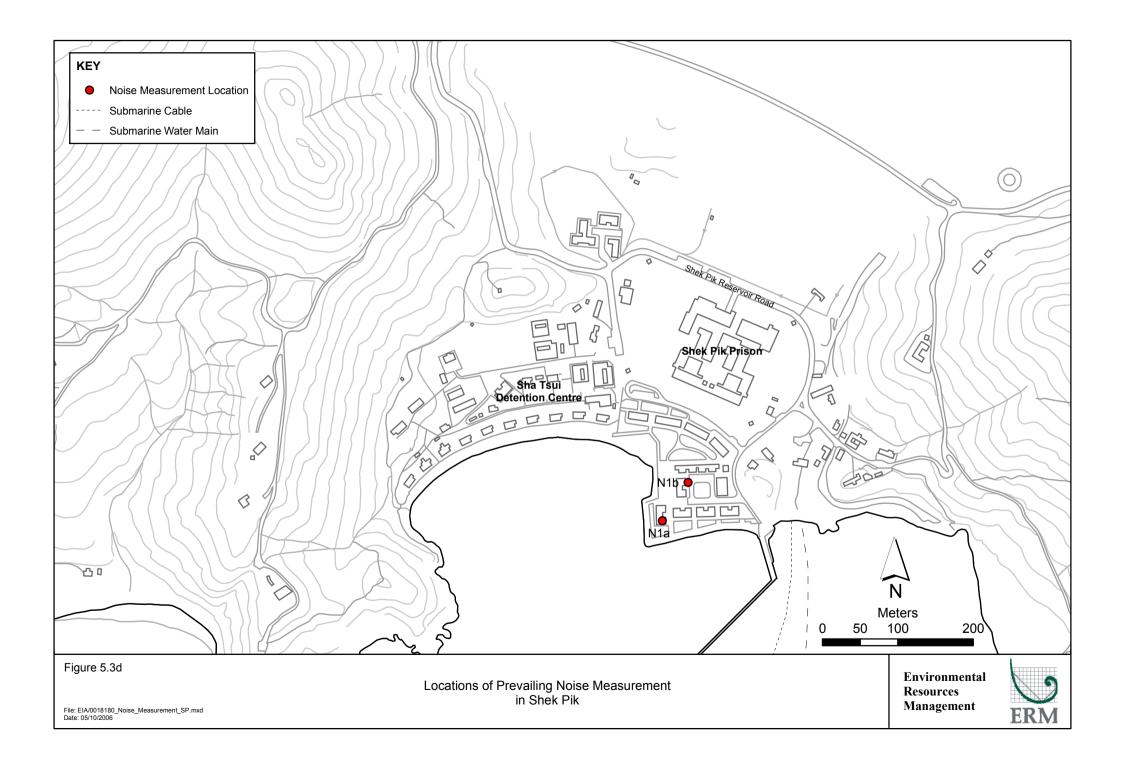
The measurement results are summarised in *Tables 5.3 and 5.4* and timeline charts showing the prevailing noise levels are presented in *Figures 5.3e* and *5.3f*.

Table 5.3 Measured Prevailing Facade Noise Level at N1a

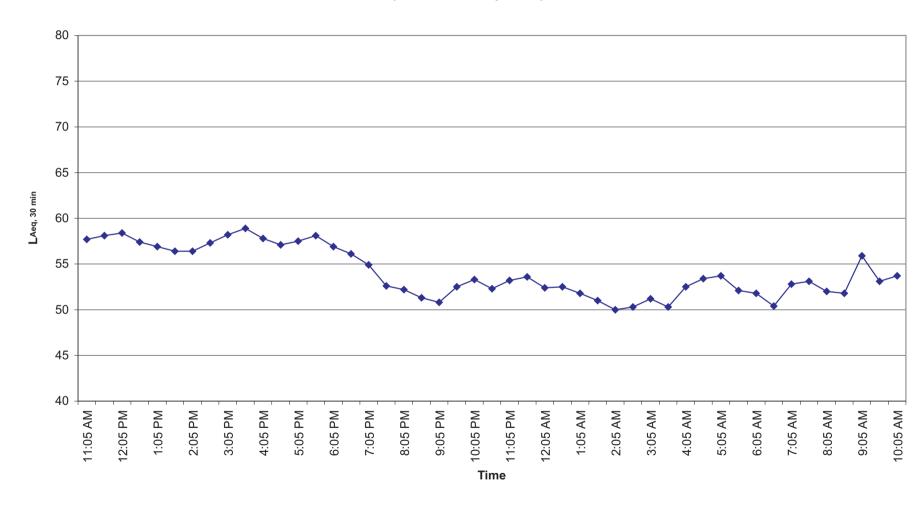
Period	L _{Aeq, 30min} dB(A)									
	Minimum	Average	Maximum							
0700 - 2300 hours	51	55	59							
2300 - 0700 hours	50	52	54							

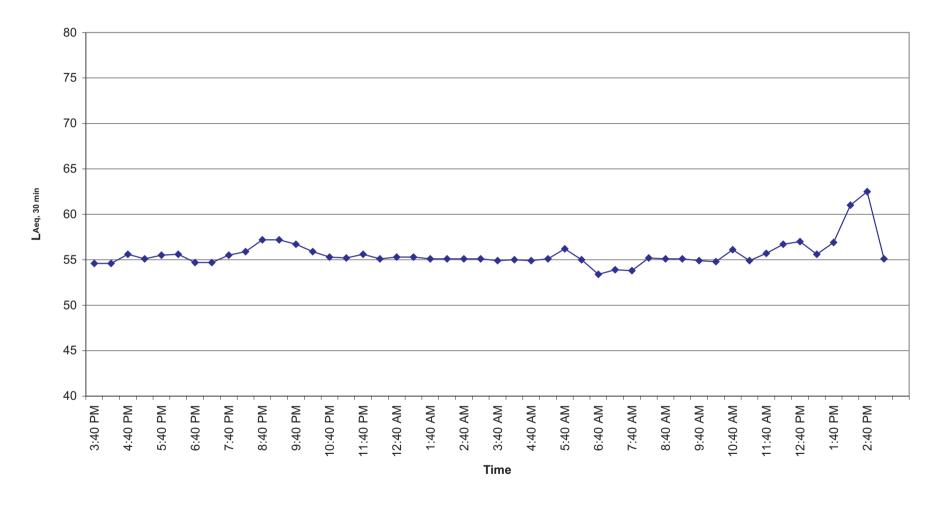

Table 5.4 Measured Prevailing Facade Noise Level at N1b


Period	L _{Aeq, 30min} dB(A)										
	Minimum	Average	Maximum								
0700 - 2300 hours	54	56	63								
2300 - 0700 hours	53	55	56								


The minimum measured prevailing noise levels at the Shek Pik Staff Quarter are in the range of 50 -53 dB(A) during night-time period, which are higher than the (ANL-5) criterion, and therefore the (ANL – 5) criterion, i.e., 45 dB(A) $L_{\text{Aeq, 30min}}$ for the night-time period will be adopted as the stipulated noise limit for the assessment of operational noise impacts.

Measured Prevailing Noise Levels at N1a (Shek Pik Prison - Staff Quarter Block J) (19 - 20 January 2006)




Figure 5.3e

Measured Prevailing Noise Levels at N1a (Staff Quarter Block J)

Environmental Resources Management

Measured Prevailing Noise Levels at N1b (Shek Pik Prison - Staff Quarter Block K) (13 - 14 July 2006)

5.4 POTENTIAL SOURCES OF IMPACTS

5.4.1 Construction Phase

Potential noise sources during the construction phase of the LNG terminal will mainly arise from PME operating at the construction work sites. As discussed in Part 1, an LNG terminal located at South Soko will necessitate the installation of a submarine electricity circuit and a submarine water supply pipeline from Shek Pik Reservoir in South Lantau to the western shore on South Soko Island, a natural gas pipeline and a Gas Receiving Station (GRS) located at the existing GRS for the Yacheng Pipeline (*Figure 5.4a*). The major construction work will include the following key activities:


- Land based works at South Soko Island:
 - Site clearance;
 - Soil compaction; and
 - Blasting and excavation.
- Reclamation:
 - Dredging;
 - Seawall construction;
 - Placing fill; and
 - Drainage works.
- Main Jetty works:
 - Ground investigation;
 - Construction of jetties and access bridge;
 - Dredging of approach channel and turning basin; and
 - Intake and outfall construction.
- Civil works at terminal:
 - Civil and structural construction works for the terminal facilities.
- Installation of Water Main & Cable
- Installation of Submarine gas pipeline
- Installation of Gas Receiving Station:
 - Dredging;
 - Seawall construction; and
 - Placing fill.

The construction noise assessment will be undertaken based on the construction programme and plant inventories summarised in *Annexes 5-B* and *5-C* respectively.

The plant inventory has been checked by Project Proponent and is confirmed to be practical and feasible to complete the project within the scheduled

timeframe and the PMEs are available in the market. Liaisons on the blasting works are being conducted with the Mines Division of GEO and CEDD in the preparation of the report. No opencast blasting will be carried out during evening and night-time periods (1900 – 0700 hours).

The standard working hours will be from 0800 to 1800 hours. However, the following works may be carried out during the evening or the night-time periods:

- Blasting and excavation works;
- Dredging by the larger Trailing Suction Hopper Dredger (TSHD);
- Clearing and crushing of the blasted rocks and their transportation off site during the evening;
- Installation of gas pipeline;
- Occasional large concrete pours on the jetty head or the intake and outfalls being carried out overnight, especially if daytime temperatures are high; and
- Facility construction works for the terminal facility including tank construction.

It should be noted that the onshore installation of the water main and cable circuit will not be carried out during the restricted hours.

5.4.2 *Operational Phase*

Noise associated with the operational phase of the LNG terminal would mainly arise from the plant at the terminal site. There will be no plant emitting noise in the GRS and the dominant noise sources are mainly from the machines at the LNG terminal on South Soko including the following equipment:

- Heat exchangers, including LNG submerged combustion vaporizers;
- Compressors and diesel emergency generators;
- Various kind of pumps; and
- Special equipment such as unloading arms and nitrogen generator.

The noise data for the equipment have made reference to manufacturers' data and the results of field measurement conducted at overseas LNG terminals. To minimise the noise impact to the environment, most of the noise sources will be housed within individual enclosures or claddings. As a conservative approach, it is assumed that all equipment will be operated on a 24-hour basis. With reference to the overseas LNG terminals, the equipment inventory are

developed by the Engineers and their respective sound power levels (SWLs) in one-one octave bands provided by the Project Proponent are presented in *Annex 5-D*.

The suppliers of equipment should guarantee the specified SWL and the equipment should be free of the characteristics of tonality, impulsiveness and intermittency, by providing certificate of measurement and verify the SWL during testing and commissioning in accordance with international standard procedures. With such guarantee included in LNG Procurement Contract, the noise emission from the equipment should comply with the tender specification. If necessary, the suppliers should apply attenuation measures to achieve the guaranteed noise levels determined during the detailed design stage. The proposed equipment is also confirmed to be available in the market.

5.5 ASSESSMENT METHODOLOGY

5.5.1 *Construction Phase*

Construction Works Carried out During Normal Working Hours

The methodology for the noise impact assessment is in accordance with the procedures outlined in the *GW-TM*, which is issued under the *NCO* and the *EIAO-TM*, and is summarized as follows:

- Identifying the likely type, sequence and duration of principal noisy construction activities required for the implementation of the project;
- Identifying a list of construction plant likely to be required for each construction activity;
- Calculating the maximum total SWL for each construction activity using the plant list and SWL data given for each plant in the technical memorandum. When the PME is not listed in the TMs, SWLs provided in the document prepared by the *Noise Control Authority* (http://www.epd.gov.hk/epd/english/application_for_licences/guidan ce/files/OtherSWLe.pdf) and *British Standard* 5228, *Noise and Vibration Control on Construction and Open Sites Part* 1 (BS5228: Part 1: 1997) (1) are referred;
- Identifying representative NSRs as defined by the *EIAO-TM* based on existing and committed land uses in the Study Area that may be affected by the worksite;
- As a conservative approach, calculating the distance attenuation to an NSR from nearest worksite; and
- British Standard 5228, Noise and Vibration Control on Construction and Open Sites Part 1. Code of Practice for Basic Information and Procedures for Noise and Vibration Control

• Predicting construction noise levels at NSRs in the absence of any mitigation measures.

Using a conservative approach, each work activity has been assumed to operate simultaneously and the time schedule of each activity has been provided in *Annex 5-B*. Based on the construction programme, cumulative noise impact throughout the construction phase has been assessed.

Due to the large separation distance between the construction site and the NSR (approximately 6 km), the noise will be reduced due to energy lost through atmospheric absorption during transmission, therefore, a correction factor for the atmospheric absorption has been calculated based on the ISO $9613^{(1)}$ procedure. Additionally, a facade correction of +3 dB(A) is applied. Predictions are made of the most conservative case construction noise levels at the identified representative NSR.

Construction Works Carried out During Restricted Hours

Considering the construction programme of the Project, night-time construction works will need to be carried out. The site is located outside designated areas as defined in *DA-TM* and the construction noise assessment for night-time works has been carried out in accordance with the requirements of the *GW-TM* in the context of programming only.

5.5.2 Operational Phase

The methodology for the noise impact assessment is in accordance with the procedures outlined in the *ISO 9613-1* and *IND-TM*, which is issued under the *NCO* and the *EIAO-TM*. The methodology for the fixed plant noise assessment is presented below:

- Identifying types of equipment and the number of equipment;
- Calculating the maximum total SWL for each type of equipment;
- Identifying representative NSRs as defined by the EIAO-TM based on existing and committed land uses in the Study Area that may be affected by the worksite;
- Calculating the distance attenuation to the NSRs from noise sources; and
- Presenting the results in terms of $L_{Aeq (30min)} dB$, as specified in the TM.

With the considerable separation between the site and the noise sensitive receivers, the atmospheric absorption during sound transmission is considered as one of the major factors that will have a significant impact on the noise prediction. Assessment results have been predicted in a

 ISO9613-1 Acoustics - Attenuation of Sound during Propagation Outdoors - Part 1: Calculation of the Absorption of Sound by the Atmosphere

conservative approach without other attenuations due to foliage of trees and shrubs, ground effects and buildings/claddings in which the equipment are placed.

The predicted noise levels at the NSR are compared with the criteria set out in *Section 5.3.3*. Mitigation measures will be proposed should any exceedance be predicted.

5.6 EVALUATION OF IMPACTS

5.6.1 *Construction Phase*

Construction Works Carried out During Normal Working Hours

The unmitigated construction noise levels at the NSRs (Staff Quarter of Shek Pik Prison, Tai O Barrack and village house at Lung Kwu Sheung Tan) have been predicted and are presented in *Annex 5-E*. The predicted construction noise levels at the identified NSRs are in the range of 20 – 70 dB(A), which are below the daytime construction noise criterion of 75 dB(A) throughout the construction period and utilized the conservative set of assumptions in the analysis.

Percussive Piling

Percussive piling will be utilised for the construction of the trestle and LNG jetty. As the issuance of a CNP for percussive piling by the *Noise Control Authority* would depend on the submission of an application by the contractor, and therefore on the contractor's compliance with the percussive piling noise limits set out within the *PP-TM*, the assessment of this type of noise has not been included in this assessment. However, the contractors will follow the procedure set out in the *PP-TM*, as described in *Section 5.2.1* to assess the noise impact in the application of the CNP.

Construction Works Carried out During Restricted Hours

The predicted noise levels for the installation of the water main and electric cable, which will be conducted during the daytime period, comply with the stipulated noise criterion of 75 dB(A). As mentioned in *Section 5.4.1*, some of the construction activities may be carried out during restricted hours (1900 – 0700 hours), the predicted noise levels as shown in the *Annex 5-E* are within the ANLs stipulated in *GW-TM* throughout the restricted hours. A CNP, as described in *Section 5.2.1*, is required for the construction works being carried out during the evening and night-time period (1900 - 0700 hours) Monday through Saturday.

Based on the preliminary implementation programme, some of the construction works may be carried out during restricted hours. Without evening and night-time works, the project will be delayed by 16 - 19 months. Assessment on the construction works to be carried out during restricted

hours (1900 – 0700 hours) is included to preliminarily appraise the feasibility in the context of programming. However, it should be noted that the assessment provided here is for indicative purpose only and serves as a reference for the future design and construction stage. Whether a CNP could be issued would be subject to the discretion of the Authority taking into account the details and information provided and the circumstance when the CNP application is filed. The actual amount of construction work and the resultant noise levels would comply with the requirement of CNP.

Cumulative Impact

The construction of the karting track (as mentioned in *Section 5.3.2*) has been completed and is operational in August 2006. In addition, the village house (NSR N3) within the karting track site is used as an office.

As mentioned in *Section 3.7*, there will be no concurrent major projects to be constructed in the vicinity of the NSRs, and therefore there will be no cumulative impact from the construction of the LNG terminal and other major projects.

5.6.2 Operational Phase

The most conservative case noise levels at the NSR N1 (Staff Quarter of Shek Pik Prison) during the operational phase of the LNG terminal have been predicted. The detailed calculation of the predicted noise levels is presented in *Annex 5-F*. The predicted noise levels is 29 dB(A) and is below the ANLs stipulated in the *IND-TM* during both daytime and night-time period.

Cumulative Impact

No major projects are identified in the vicinity of the NSR N1, and therefore there will be no cumulative impact at the NSR during the operational phase.

5.7 MITIGATION MEASURES

5.7.1 *Construction Phase*

The predicted noise levels are low and below the daytime and night time criteria as a result of the considerable separation distance between the NSR and the Project. Mitigation measures are therefore not required.

5.7.2 *Operational Phase*

The predicted noise levels are below the daytime and night time criteria as a result of the considerable separation distance between the NSR and the Project. Mitigation measures are therefore not required.

5.8 ENVIRONMENTAL MONITORING AND AUDIT

5.8.1 *Construction Phase*

Given the compliance with the stipulated noise criterion, noise monitoring is not anticipated to be required during the construction phase.

5.8.2 Operational Phase

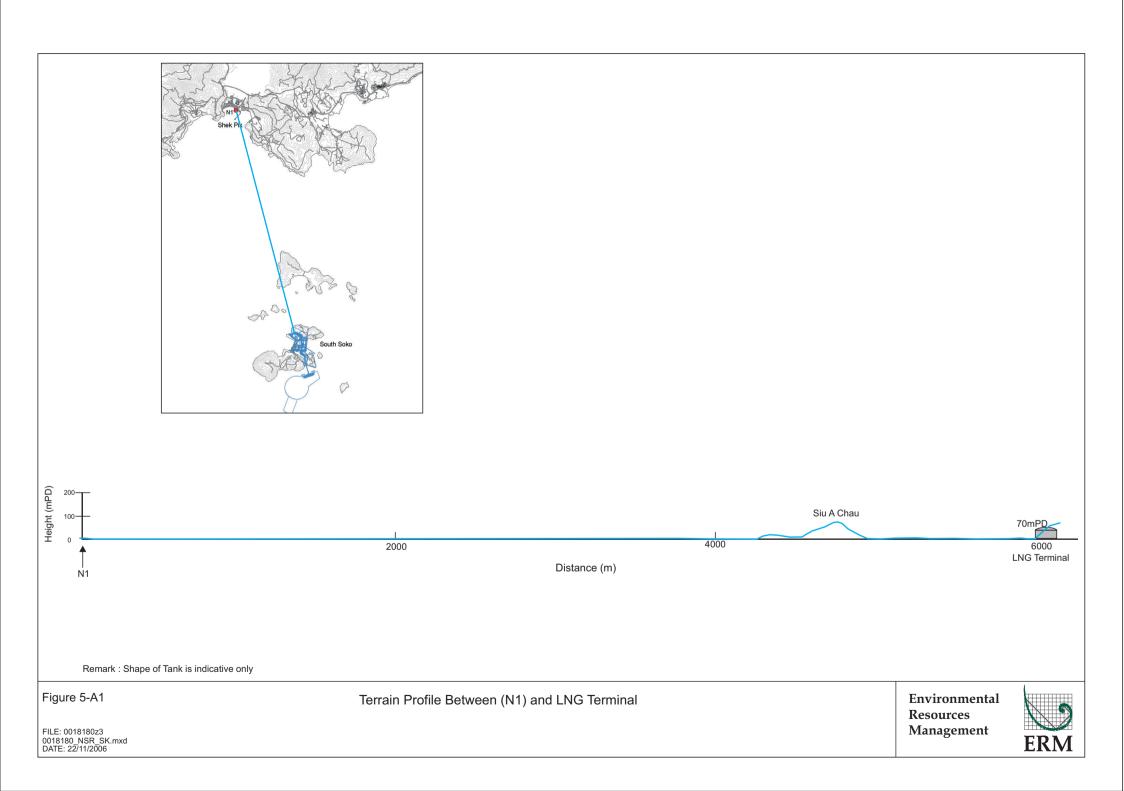
Given the compliance with the stipulated noise criterion, noise monitoring is not anticipated to be required during the operational phase.

5.9 CONCLUSIONS

The identified noise sensitive receivers will not be affected by the construction activities with the predicted construction noise levels at the NSRs in the range of $20 - 70 \, dB(A)$, which is within the stipulated noise criterion of 75 dB(A). In view of the insignificant construction noise impact, mitigation measures are not anticipated during the construction phase.

Based on the most conservative case, the noise levels generated from the equipment at the LNG terminal have been predicted. Due to the large separation distance between the NSR at Shek Pik and the noise source, the predicted operational noise level is 29 dB(A), which is within daytime and night-time noise criteria. Therefore mitigation measures are not anticipated required during the operational phase.

In view of the anticipated insignificant noise impact in both construction and operational phases, noise monitoring is not considered to be necessary.



Annex 5

Noise Assessment Supporting Information

Annex 5-A

Terrain Profile

Annex 5-B

Construction Programme for Noise Assessment

Annex 5-B - Preliminary Construction Programme											1																1 1	-					$\overline{}$	_
Annex 5-b - Preliminary Construction Programme	++			+	++	+	+	-			1			-	\vdash		-	+	1		+	+	_					_		+			++	4
COLUMN COMO OPERON																																		
SOUTH SOKO OPTION	\vdash										-							+-																_
Construction Item				Ш,	/r 1							Yr									Yr 3									Yr 4				_
Construction Item	3.64					10 10 10	0 3 55 4 3 55	0 1 110							1.00										2000									
T ID IW I	M1 I	M2 N	ИЗ M4	M5 M6	M7 N	18 M9 M	0 M11 M1	2 M13	M14	M15 M16	M17	M18 I	M19 M2	0 M21	M22	M23 M	124 M	25 M26	5 M27	M28 M2	9 M30 N	131 M32 N	133 M3	34 M35	M36 N	137 M38	M39	M40 N	M41 M4	2 M43	M44 N	/145 M4	16 M47 M	:48
Land Based Works	\vdash										-							+-																_
Site Preparation Work Site Clearance	\vdash			YY							-							+-																_
	\vdash		Y			(Y Y			27		-							+-																=
Soil Compaction	-		Y	Y Y			YY			2/ 2/	Y										_													=
Blasting and Excavation Slope Stabilization and Drainage Works	-													-	L			+															+-+	
						YY	YY	Y	Y	YY	Y	Y	Y Y	Y	Y	Y	Y																	_
Reclamation																																		
Dredging			Y	Y																														_
Seawall Construction																																		_
Placing Seawall Core	\vdash	_		Y		YY					1-							_	1		+		_					_		4			$+\!-\!\!\!+$	_
Placing Seawall Rock Armour				Y			Y Y	Y																										
Placing Fill					,	YY																												
Drainage Works																																		
Install of Temporary Work						Y																												
Laying of Drainage Pipes						Y																												
Backfilling					,	Y																												
Main Jetty																																		
Ground Investigation				Y Y	Y																													
Jetties and Access Bridge																																		
Steel Piles Construction				Y Y	Y	YY	YY	Y	Y																									
Concrete Caps, Slabs and Foundations										YY	Y	Y	YY	Y	Y	Y	Y	Y	Y	YY														
Dredging of Approach Channel and Turning Basin					,	YY					Y	Y																						
Intake and Outfall Construction)	YY	Y	Y	Y Y	Y	Y	Y																					
LNG Terminal, Civil, M&E Work																																		
Terminal Civil, M&E Work										Y Y	Y	Y	Y Y	Y	Y	Y	ΥY	′ Y	Y	Y Y	Y	YY	Y Y	Y	Y	YY	Y	Y	Y Y	Y	Y	Y Y	1	
Installation of Water Main & Cable																																		
Dredging)	YY																											
Water Pipeline Installation								Y	Y	Y																								
Post Trenching Jetting										Y Y																								
Backfilling									Y	Y Y	Y	Y	Y																					
Submarine Cable Installation by Direct Burying (Jetting)																	ΥY	Y																\neg
Installation of Submarine Gas Pipeline																																		
Pipeline Installation by Dredging								Y	Y	Y Y	Υ	Y	Y Y	Y																			_	-
Installation of Gas Receiving Station								-	-	1	Ť		- '	1	\vdash																		++	-
Dredging						YY																	_					-					+-+	\dashv
Seawall Construction	++	-			+	1 1	+ +	+			1			-	\vdash			+	+		+		_					\dashv		+			++	-
Placing Seawall Core					+-+		YY				1	\vdash		-	\vdash						+		_				+	-		-			$+\!-\!+$	\dashv
					+-+	+ + ,	YY			Y	1	\vdash		-	\vdash						+		_				+	-		-			$+\!-\!+$	\dashv
Placing Seawall Rock Armour					+		Y	_		Y	1			-					1		+									+			+	_
Placing Fill						1 1	Y	Y	Y	Y					ш																			

Annex 5-C

Construction Plant Inventory

Annex 5-C - Preliminary Construction Plant Inventory

SOUTH SOKO OPTION

LAND BASED WORKS

Activity	Plant Required	No. of PME	CNP / BS5228 Ref.	SWL	Overall SWL
<u>Earthwork</u>					
- Site Clearance	Bulldozer / Excavator	2	CNP 030	115	118
	Backactor mounted with Breaker	3	CNP 027	122	127
	Truck	1	CNP 067	117	117
	Mobile Crane	4	CNP 048	112	118
	Water Pump	2	CNP 282	103	106
			Sub-tot	al SWL =	128
- Soil Compaction	Pneumatic Roller	1	CNP 185	108	108
*	Mobile Crane	4	CNP 048	112	118
	Water Pump	2	CNP 282	103	106
	•		Sub-tot	al SWL =	119
- Blasting and Excavation	Bulldozer / Excavator	10	CNP 030	115	125
ŭ .	Backactor mounted Drilling Rig	10	CNP 027	122	132
	Backactor mounted with Breaker	4	CNP 027	122	128
	Truck	18	CNP 067	117	130
	Electric Generator	4	CNP 101	108	114
	Concrete crushers, excavator mounted	1 2	(1)	103	106
	Mobile Crane	1	CNP 048	112	112
	Air Compressor	2	CNP 003	104	107
	Water Pump	2	CNP 282	103	106
	Derrick Lighter	14	CNP 061	104	115
			Sub-tot	al SWL =	135
- Slope Stabilization and Drainage Works	Backactor mounted Drilling Rig	3	CNP 027	122	127
	Water Pump	2	CNP 282	103	106
	Backactor mounted with Breaker	3	CNP 027	122	127
	Concrete Pumps	2	CNP 047	109	112
	Grout Pump w/Mixer	2	(1)	105	108
	*		Sub-tot	al SWL =	130

RECLAMATION

Activity	Plant Required	No. of PME	CNP / BS5228 Ref.	SWL	Overall SWL
Dredging	Dredger - Grab	1	CNP 063	112	112
	Tug Boat / Motor Boat	1	CNP 221	110	110
	Split Bottom Barge	1	CNP 061	104	104
			Sub-tot	al SWL =	115
Seawall Construction					
Placing Seawall Core	Tug Boat / Motor Boat	2	CNP 221	110	113
ŭ	Derrick Ligher	2	CNP 061	104	107
	· ·		Sub-tot	al SWL =	114
Placing Seawall Rock Armour	Derrick Lighter	1	CNP 061	104	104
ŭ	Backactor	1	CNP 027	122	122
			Sub-tot	al SWL =	122
Placing Fill	Derrick Lighter / Pelican Barge	1	CNP 061	104	104
	Water Pump	2	CNP 282	103	106
	•		Sub-tot	al SWL =	108
Drainage Works					
Install of Temporary Work	Backactor mounted with Vibrator	2	CNP 027	122	125
	Cutter, circular, steel (electric)	2	(1)	112	115
	Grinding Machine	2	CNP 065	98	101
	Water Pump	1	CNP 282	103	103
			Sub-tot	al SWL =	125
Laying of Drainage Pipes	Backactor	2	CNP 081	112	115
, , , , , ,	Truck	1	CNP 067	117	117
	Water Pump	1	CNP 282	103	103
	-		Sub-tot	al SWL =	119
Backfilling	Pneumatic Roller	1	CNP 185	108	108
	Backactor	2	CNP 081	112	115
	Water Pump	1	CNP 282	103	103
	*		Sub-tot	al SWL =	116

Main Jetty

Main Jetty Activity	Plant Required	No. of PME	CNP / BS5228 Ref.	SWL	Overall SWL
Ground Investigation	SI Barge + Generator	2	CNP 061+CNP 101	109	112
Glound investigation	Split Bottom Barge	2	CNP 061	104	107
	Spirt Bottom Barge	2		al SWL =	113
Jetties and Access Bridge			5.00 101	5 TTE -	113
- Steel Piles Construction	Crawler Crane	2	CNP 048	112	115
	900 CFM Air Compressor	1	CNP 002	102	102
	Mobile Crane	1	CNP 048	112	112
	350 CFM Air Compressor	1	CNP 001	100	100
	Tugboat	4	CNP 221	110	116
	Truck	1	CNP 067	117	117
	Generator	2	CNP 101	108	111
	SI Barge + Generator	5	CNP 061+CNP 101	109	116
	Water Pump	3	CNP 282	103	108
	Derrick Ligher	7	CNP 061	104	112
	Automatic Grinder Machine	2	CNP 065	98	101
	Poker, vibratory	2	CNP 170	113	116
	Piling, earth auger	3	CNP 167	114	119
	0, 0		Sub-tot	al SWL =	125
	Crawler Crane	2	CNP 048	112	115
- Concrete Caps, Slabs and Foundations	900 CFM Air Compressor	2	CNP 002	102	105
*	Mobile Crane	1	CNP 048	112	112
	350 CFM Air Compressor	2	CNP 001	100	103
	Tugboat	7	CNP 221	110	118
	Truck	1	CNP 067	117	117
	Generator	8	CNP 101	108	117
	Water Pump	11	CNP 282	103	113
	Derrick Ligher	7	CNP 061	104	112
	Concrete Pump	2	CNP 047	109	112
	Bar bender and cutter	4	CNP 021	90	96
			Sub-tot	al SWL =	124
Dredging of Approach Channel and	Dredger - Grab	3	CNP 063	112	117
Turning Basin	Trailing Suction Hopper Dredger	1	Penny Bay EIA ⁽²⁾	109	109
	25 Ton Mobile Crane	1	CNP 048	112	112
	Tugboat	4	CNP 221	110	116
	Generator	1	CNP 101	108	108
	Dredger, chain bucket	2	CNP 062	118	121
	Derrick Ligher	2	CNP 061	104	107
			Sub-tot	al SWL =	124
	D 1 C 1		CNID 0C2	110	110
Intake and Outfall Construction	Dredger - Grab	1	CNP 063	112	112
	Tug Boat / Motor Boat	1	CNP 221	110	110
	Split Bottom Barge	1	CNP 061	104	104
	Derrick Ligher	1	CNP 061	104	104
			Sub-tot	al SWL =	115

LNG TERMINAL CIVIL, M&E WORK

Activity	Plant Required	No. of PMI	CNP / BS5228 Ref.	SWL	Overall SWL
Terminal Civil Work	Machanich & Lub. Service Truck	3	CNP 141	112	117
	Derrick Barge	9	CNP 061	104	114
	Tugboat	5	CNP 221	110	117
	Crawler Crane	15	CNP 048	112	124
	Drill Rig	3	Table C.10 Ref No. 2 ⁽³⁾	112	117
	Backhoe – Track	2	CNP 081	112	115
	Forklift	11	Penny Bay EIA ⁽²⁾	113	123
	Dump truck, with grab	1	(1)	105	105
	Track Drill	1	Table C.3 Ref No. 123(3)	128	128
	Generator	18	CNP 101	108	121
	Air Compressor 375 cfm, Portable	13	CNP 001	100	111
	Air Compressor 900 cfm, Portable	1	CNP 002	102	102
	Air Compressor 1200 cfm, Portable	2	CNP 003	104	107
	Winch - Hoist 2 Drum	1	CNP 263	102	102
	Pump – Submersible	2	CNP 283	85	88
	Water jetting unit	1	(1)	107	107
	Pump – Concrete	4	CNP 047	109	115
	Grout Pump w/Mixer	1	(1)	105	105
	Tractor with Trailer	2	CNP 222	118	121
	Tower Crane	2	CNP 049	95	98
	Automatic Grinder Machine	8	CNP 065	98	107
	Air blower	3	(1)	95	100
	Winch (Power & Pneumatic/3 ton)	8	CNP 261	110	119
	Discharging Pump	4	CNP 282	103	109
	Batching Plant 60 CM/HR	2	CNP 022	108	111
	Concrete Mixer	10	CNP 046	96	106
	Water Pump	14	CNP 282	103	114
	Bar bender and cutter	8	CNP 021	90	99
	Poker, vibratory	8	CNP 170	113	122
			Sub-tota	l SWL =	133

Installation of Water Main & Cable

Activity	Plant Required	No. of PME	CNP / BS5228 Ref.	SWL	Overall SWL	
Dredging	Dredger - Grab	1	CNP 063	112	112	
	hydraulic rock breaker	1	Table C.8 Ref No. 12 ⁽³⁾	106	106	
			Sub-tota	l SWL =	113	
Water Pipeline Installation	Derrick Barge	1	CNP 061	104	104	
		Sub-total SWL =				
Post Trenching Jetting	Derrick Barge	1	CNP 061	104	104	
	, and the second		Sub-tota	l SWL =	104	
Backfilling	Dredger - Grab	1	CNP 063	112	112	
			Sub-tota	l SWL =	112	
Submarine Cable Installation	Derrick Barge	1	CNP 061	104	104	
	<u> </u>		Sub-tota	l SWL =	104	

Installation of Submarine Gas Pipeline

Activity	Plant Required	No. of PME	CNP / BS5228 Ref.	SWL	Overall SWL
Pipeline Installation by	Trailing Suction Hopper Dredger	1	Penny Bay EIA ⁽²⁾	109	109
Dredging			Sub-tot	al SWL =	109

Installation of Gas Receiving Station

Activity	Plant Required	No. of PME	CNP / BS5228 Ref.	SWL	Overall SWL			
Dredging	Dredger - Grab	1	CNP 063	112	112			
	Tug Boat / Motor Boat	1	CNP 221	110	110			
	Split Bottom Barge	1	CNP 061	104	104			
			Sub-to	Sub-total $SWL =$				
Seawall Construction								
Placing Seawall Core	Tug Boat / Motor Boat	2	CNP 221	110	113			
	Derrick Lighter	2	CNP 061	104	107			
			Sub-to	tal SWL =	114			
Placing Seawall Rock Armour	Derrick Lighter	1	CNP 061	104	104			
Ŭ	Backactor	1	CNP 027	122	122			
			Sub-to	tal SWL =	122			
Placing Fill	Derrick Lighter	1	CNP 061	104	104			
	-		Sub-to	tal SWL =	104			

⁽¹⁾ SWL refer to the document prepared by the Noise Control Authority (http://www.epd.gov.hk/epd/english/application_for_licences/guidance/files/OtherSWLe.pdf) (2) SWL refer to the approved EIA Report for the Construction of an International Theme Park in Penny's Bay of North Lantau and its Essential Associated Infrastructures (3) SWL refer to the BS 5228: Part 1: 1997

Annex 5-D

Equipment Inventory during Operational Phase

SOUTH	SOKO OPTION												
Δ-Weighte	ed Correction		26.2	16.1	8.6	3.2	0.0	-1.2	-1.0	1.1			
rroigino	0.0000000000000000000000000000000000000		20.2	70.7	0.0	0.2	0.0		7.0				
				Oc	ctave ar	nd Cent	er Fred	uency	Hz		SWL		
		Data Source ⁽¹	63	125	250	500	1000	2000	4000	8000	dB(A)	No. of plant	
Heat Excha	angers												
E-301A-D	LNG Seawater Vaporizers (& Spare)	F	105	103	97	88	85	85	82	74	94	4	
E-302 A-C	LNG Submerged Combustion Vaporizer	М	97	107	113	121	116	113	108	100	121	3	
Blowers, C	Compressors and Generator (Note 9)												
K-301 A/B	Boil-off Gas Compressors (450 kW)	Е	101	101	101	101	103	99	95	92	106	2	
K-302	Ship Unloading Compressor (900 kW)	Е	107	107	107	107	109	105	101	98	112	1	
K-303	Pipeline Compressor (800 kW)	Е	101	101	101	101	103	99	95	92	106	1	
K-401 A/B	Instrument/Plant Air Compressor & spare	М	59	73	83	88	89	86	81	74	93	2	
G-401 A-C	Gas Turbine Generators (& spare) (South Soko Op only)	М	80	84	86	87	86	92	94	85	98	5	
G-402	Emergency Generator-Diesel Driven	М	80	84	86	87	86	92	94	85	98	1	
Pumps													
P-201 A-D	LNG Send-out Pumps – in LNG Tank (two per tank)	М	94	96	97	96	95	94	91	88	101	4	
P-301 A-D	HP LNG Booster Pumps (& Spare)	F	90	92	93	93	93	98	88	81	101	4	
P-401 A-C	Seawater Pumps (& Spare)	М	80	84	86	87	86	92	94	85	98	3	
P-402 A-D	Firewater Pumps – 2 Electric & 2 Diesel	М	80	84	86	87	86	92	94	85	98	4	
P-403 A/B	Firewater Jockey Pump (& Spare)	М	51	62	72	80	82	81	77	70	86	2	
P-404 A/B	Service Water Pump (& Spare)	М	51	62	72	80	82	81	77	70	86	2	
P-405 A/B	Drinking Water Pump (& spare)	М	51	62	72	80	82	81	77	70	86	2	
P-406	Submerged Combustion Vaporizer Water Overflow Pump	М	87	89	90	89	88	87	84	81	94	1	
P-407	CPI Oily Water Sump Pump	М	87	89	90	89	88	87	84	81	94	1	
P-408 A/B	Process Area Sump Pumps, 2 x 100%	М	87	89	90	89	88	87	84	81	94	2	
Special Eq	uipment												
N-101 A-D	LNG Unloading Arms (& Spare)	М	65	68	69	69	71	66	60	52	74	4	
N-102	LNG Vapor Return Arm	М	65	68	69	69	71	66	60	52	74	1	
N-401	Nitrogen Package for Terminal	М	70	76	82	88	94	98	94	88	102	1	
N-402	Instrument Air Drier and Package	М	79	83	85	77	75	74	74	71	83	1	
Expansion	Case - 1000 MSCFD												
E-301 E/F	LNG Seawater Vaporizer	F	105	103	97	88	85	85	82	74	94	2	
E-302 D/E	LNG Submerged Combustion Vaporizer	М	97	107	113	121	116	113	108	100	121	2	
P-201 E/F	LNG Send-out Pumps - in T-201 C	М	94	96	97	96	95	94	91	88	101	2	
P-301 H-J	HP LNG Booster Pumps	F	90	92	93	93	93	98	88	81	101	2	
P-401 D	Seawater Pump	М	80	84	86	87	86	92	94	85	98	1	
Note:													
	cates noise data obtained from the fie	ld magazinan		1 .				L					3.6.6.

Annex 5-E

Construction Noise Assessment

Annex 5-E - Construction Noise Assessment																																\perp				I	
SOUTH SOKO OPTION	-				-			-	+	+-		-	+			\vdash			-	+			\dashv	-		-	-	-	+	┢		\dashv	+	+	+	+	
NSR: Staff Quarter of Shek Pik Prison																																		=	#	#	
NSR: Stair Quarter of Shek Fik Frison	-				-		C	orrect	ion Fa	ctor			\dashv		+-	╁			-	+			-+	-		+		_	+	+		-+	+	+	+	+	+
Distance from NSR to Sources at Soko Island	6400	m	to the	neares	t site bou	ındary		Dista	nce Atte	nuation	-84	dB(A)		Scr	eening E	ffect (1)	-5	dB(A)			Atmos	pheric a	bsorptic	on ⁽³⁾ -	18 dB(A)		Facad	e 3	dB(A)	\equiv		\blacksquare	\equiv	\perp	
Distance from NSR to Source (Installation of water main & cable)	83	m	to the	neares	t work ar	ea		Dista	nce Atte	nuation	-46	dB(A)		s	creening	Effect	0	dB(A)			Atm	ospherio	absorp	rtion	0 dB(A)		Facad	e 3	dB(A)		-				
Distance from NSR to Source (Installation of submarine																														T							\Box
gas pipeline)	1400	m	to the	neares	t work ar	ea		Dista	nce Atte	nuation	-71	dB(A)	-	S	reening	Effect	0	dB(A)	-	-	Atm	ospheric	absorp	rtion	-4 dB(A)	\vdash	Facad	e 3	dB(A)	-+	+	+		+	+
Distance from NSR to Source (Installation of GRS)	1700	m	to the	neares	t work ar	ea		Dista	nce Atte	nuation	-73	dB(A)	_	Scr	eening E	ffect (2)	-20	dB(A)			Atm	ospheric	absorp	tion	-5 dB(A)		Facad	e 3	dB(A)		_	_	_		
Construction Item		اـــــا			Y	r l			!		-	ll-				(r 2			L							Yr 3	L						Щ,	Yr 4			+
	M1	M2	М3	M4 N	M5 M6	M7	M8 1	M9 N	110 M1	1 M12	M13	M14	M15 N	116 M	17 M18	M19	M20	M21	M22 N	423 N	124 M25	M26	M27	M28 N	M29 M3	0 M31	M32	M33 M3	4 M35	M36	M37	M38 1	M39 1	M40 N	441 M	142 M	43 M44
Land Based Works Site Preparation Work		-				+			-	+	-		-	-	-	┼		-	+	-		-	-+	-+		-	\vdash	-	-	┼	-	-+	+	+	+	+	
Site Clearance	0	0	0	128 1	28 128	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	D 0
Soil Compaction Blasting and Excavation	0	0			19 119		119		19 11			119		-	0	0	0	0		-	0 0	0		-	0 0	0	0	0 0	0	0	0	0	0	0	0 /	0 () 0
Slone Stabilization and Drainage Works	0	0	0	0	0 0	135	135		35 13 30 13		135			35 1		130	130	130			0 0	0	0		0 0		0	0 0		0	0	0		0	0 (0 (0 0
Total SWL	0				29 129				37 13					37 1.			130				30 0				0 0		0	0 0			0				-		0 0
Noise Level in dB(A)	0	0	0	25	25 25	32	33	33	33 33	33	33	33	33	33 3	3 26	26	26	26	26	26 2	26 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 (0 0
Reclamation	-	\vdash				-		+	+	+-	-	-	-+	+	+	+			-	+		-	\dashv	-+		+	+		+	\vdash	-	-+	+	+	+	+	+
Dredging	0	0	0	115 1	15 0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0	0 0
Seawall Construction Placing Seawall Core	0	0	0	0	0 114	114	114	114 1	14 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 0	0 0
Placing Seawall Rock Armour	0	0	0		0 122		122		0 12			0			0	0	0	0			0 0	0			0 0		0		0		0	0	0	0	0 (0 0	0 0
Placing Fill Drainage Works	0	U	0	0	0 0	0	108	108 1	08 0	0	0	U	0	0	0	0	0	U	0	U	0 0	-0	0	0	0 0	0	0	0 0	10	0	0	0	0	-	0 0	0 0	, 0
Install of Temporary Work	0	0	0		0 0		125		0 0		+				0	0	0	0			0 0	0	0		0 0		0	0 0			0					0 0	0 0
Laying of Drainage Pipes Backfilling	0	0	0		0 0	0			0 0		0	0	-		0 0	0	0	0			0 0	0			0 0		0	0 0	0	0	0	0	0	0	0 0	0 0	0 0
Total SWL	0				15 123					122				0 (0	0					0			0 0		0	0 0					0				0 0
Noise Level in dB(A)	0	0	0	11	11 19	19	24	23	11 18	18	18	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 (0 0
Main Jetty																				#			#									二		\Rightarrow	\equiv	丰	
Ground Investigation Jetties and Access Bridge	0	0	0	0 1	13 113	113	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 (0 0
Steel Piles Construction	0	0	0		25 125	125	125		25 12			125		25 1		0	0	0			0 0	0	0		0 0		0	0 0	0	0	0	0	0	0	0 (0	0
Concrete Caps, Slabs and Foundations Dredging of Approach Channel and Turning Basin	0	0	0		0 0	0	124		0 0 24 0			0			24 124 24 124						24 124 0 0	124			0 0		0	0 0			0			0		0 0	0 0
Intake and Outfall Construction	0	0	0	0	0 0	0	0	0 1	15 11	115	115	115	115 1	15 1	15 115	115	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 (0 0
Total SWL Noise Level in dB(A)	0				25 125 22 22		128 1								6 24						24 124 21 21				124 0 21 0		0	0 0			0		0				0 0 0 0
																			\exists													\equiv		\Rightarrow	\perp	#	
LNG Terminal, Civil, M&E Work Terminal Civil, M&E Work	0	0	0	0	0 0	0	0	0	0 0	-	0	0	133 1	33 1	33 133	133	133	133	133 1	133 1	33 133	133	133	133	133 13	3 133	133	133 133	133	133	133	133	133	133	133 1	33 1	33 133
Total SWL	0	0	0	0	0 0	0			0 0	0	0	0	133 1	33 1.	33 133	133	133	133	133 1	33 1	33 133	133	133	133	133 13.	3 133	133	133 133	133	133	133	133	133	133 1			33 133
Noise Level in dB(A)	0	0	0	0	0 0	0	0	0	0 0	0	0	0	29	29 2	9 29	29	29	29	29	29 2	29 29	29	29	29	29 29	29	29	29 29	29	29	29	29	29	29 2	29 2	29 2	29 29
Installation of Water Main & Cable																							_									=		\Rightarrow	=	#	二二
Dredging Water Pipeline Installation	0	0	0	0	0 0	0	0		13 11: 0 0			0 104	104	0	0 0	0	0	0		0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 0	0 0
Post Trenching Jetting	0		0		0 0	0	0	0	0 0	0	0	0	104 1	04	0 0	0	0	0	0	0	0 0	0		0	0 0		0	0 0			0					0 (
Backfilling Submarine Cable Installation by Direct Burying (Jetting)	0	0	0		0 0	0	0		0 0				112 1		12 112	112	0	0			0 0		0		0 0		0	0 0			0			0			0 0
Total SWL	0	0			0 0	0	0								12 112				0	0 1	04 104				0 0			0 0									0 0
Noise Level in dB(A)	0	0	0	0	0 0	0	0	0	70 70	70	61	69	70	59 6	9 69	69	0	0	0	0 (61 61	61	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0 (0 0
OVERALL NOISE LEVEL AT NSR (N1) (dB(A))	0	0	0	25	27 27	32	34	34	70 70	70	61	69	70	59 6	9 69	69	31	31	31	31 6	61 61	61	30	30	30 29	29	29	29 29	29	29	29	29	29	29	29 2	29 2	29 29
Installation of Submarine Gas Pipeline	-	\vdash						+	+	+-	-	-	+	-		+-	H	-	+	+		\vdash	\dashv	-		+	\vdash	-	+	\vdash		-+	+	+	+	+	+
Pipeline Installation by Dredging									_	Τ.						T														Ι.							
Total SWL	0	0	0	0	0 0	0	0		0 0		109 109				09 109 09 109						0 0	0	0	0	0 0		0	0 0	0		0						0 0
OVERALL NOISE LEVEL AT NSR (N2) (dB(A))	0	0			0 0	0			0 0			37			7 37							0		0				0 0								0 (
Installation of Gas Receiving Station	-				-	+		+	+	+	-	-	+	-		+-	\vdash		+	+		\vdash	\dashv	+		+	+	-	+	\vdash		+	+	+	+	+	+
Dredging	0	0	0	0	0 0	0	0	115 1	15 0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0 (0) O
Seawall Construction Placing Seawall Core	0	0	0	0	0 0	0	0	0 1	14 11	114	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0	0	0 (0 0
Placing Seawall Rock Armour	0	0	0		0 0	0	0	0	0 0	122	122	122			0	0	0	0		0	0 0		0	0	0 0		0	0 0			0				0 (0 (
Placing Fill Total SWL	0	0	0		0 0	0	0 1		0 0 17 11:			104 122			0 0	0	0	0			0 0	0			0 0		0	0 0		0	0						0 0
OVERALL NOISE LEVEL AT NSR (N3) (dB(A))		0	0		0 0		0		23 20			28			0	ļ						0			0 0				0							0 (
	-	\vdash			-	+		-	-	+			-	+	-	 	H			-+-	-	\vdash			-	-	 	-	+	\vdash			-	+	+	+	+
Note:									1																	-			1							\pm	
(1) A conservative screening effect of 5 dB(A) is taken (2) A screening effect of 20 dB(A) is taken into accoun	into a	ccoun	t for t	he NSR	due to	topogr	aphy s	Black	ng by	he No	rth an	d Sout	h Soko	head	land.	t to th	ne Proi	ect du	e to to	nogra	nhy sh	elding	7			-	\vdash		+	\vdash		$ \mp$	7	—	_	4	+
(3) With reference to the weather condition in "The Ye	ear's W	Veathe	r - 200	05" issu	ed by H	long K	ong Ob	oserva	tory, a	sound	absor	ption l	y the	atmos	phere a	it 20°0	2 & RF	I 80%	(assur	ned a	t 500 H	z) has l	een a	ccoun	ted for	in acco	rdance	with ISO	9613	B Part	1.		\exists	士	\pm	\pm	+
															Ш.	Ш											Ш					\perp	\perp	ㅗ	\perp	工	ш

Annex 5-F

Operational Noise Assessment

Annex 5-	F - Operational Noise Impact Assess	sment															
OUTH	SOKO OPTION																
ISR:	Staff Quarter of Shek Pik Prison																
voi.	Start Quarter of Shek Fik Filson																
					Octave a	and Cen	ter Freq	uency F	-lz								
			63	125	250	500	1000	2000	4000	8000							
A-Weiahte	ed Correction		26.2	16.1	8.6	3.2	0.0	-1.2	-1.0	1.1							
	ric absorption (dB/km)		0.079	0.302	1.04	2.77	5.15	8.98	21.3	68.6							
	% 80%RH) (1) (ref. ISO 9613-1:1993(E))		0.070	0.002			0.70	0.00	27.0	00.0							
	rom NSR to Source		6.4	km	to the	nearest	site boi	undarv									
Atmosphe	ric absorption (dB)		0.5	1.9	6.7	17.7	33.0	57.5	136.3	439.0							
					Octave a	and Cen	ter Freq	uency I	lz		Overall SWL			Correction	n, dB(A)		SPL at NS
			63	125	250	500	1000	2000	4000	8000	dB(A)	No. of	No. of Plant	Distance	Barrier ⁽²⁾	Facade	dB(A)
leat Exch	angers	Data Source ⁽³⁾	- 55	120	200	500	1000	2000	-000	5500	(-,	plant	NO. OI FIAIIL	Distance	Darrier '	i acaue	up(A)
E-301A-D	LNG Seawater Vaporizers (& Spare)	F	105	103	97	88	85	85	82	74	87	4	6.0	-84.1	0	3	12
E-302 A-C	LNG Submerged Combustion Vaporizer	M	97	107	113	121	116	113	108	100	102	3	4.8	-84.1	0	3	26
	Service of the servic			1.0.		·-·										<u> </u>	
3lowers, C	compressors and Generator (Note 9)																
	Boil-off Gas Compressors (450 kW)	Е	101	101	101	101	103	99	95	92	89	2	3.0	-84.1	0	3	10
K-302	Ship Unloading Compressor (900 kW)	Е	107	107	107	107	109	105	101	98	95	1	0.0	-84.1	0	3	13
K-303	Pipeline Compressor (800 kW)	E	101	101	101	101	103	99	95	92	89	1	0.0	-84.1	0	3	7
K-401 A/B	Instrument/Plant Air Compressor & spare	М	59	73	83	88	89	86	81	74	71	2	3.0	-84.1	0	3	0
G-401 A-C	Gas Turbine Generators (& spare) (South	М	80	84	86	87	86	92	94	85	73	5	7.0	-84.1	0	3	0
	Soko Op only)																
G-402	Emergency Generator-Diesel Driven	М	80	84	86	87	86	92	94	85	73	1	0.0	-84.1	0	3	0
Pumps	LNO.								0.4								
P-201 A-D	LNG Send-out Pumps – in LNG Tank (two per tank)	М	94	96	97	96	95	94	91	88	84	4	6.0	-84.1	0	3	9
D-301 A-D	HP LNG Booster Pumps (& Spare)	F	90	92	93	93	93	98	88	81	80	4	6.0	-84.1	0	3	5
P-401 A-C	Seawater Pumps (& Spare)	M	80	84	86	87	86	92	94	85	73	3	4.8	-84.1	0	3	0
	Firewater Pumps – 2 Electric & 2 Diesel	M	80	84	86	87	86	92	94	85	73	4	6.0	-84.1	0	3	0
P-403 A/B	Firewater Jockey Pump (& Spare)	M	51	62	72	80	82	81	77	70	61	2	3.0	-84.1	0	3	0
P-404 A/B	Service Water Pump (& Spare)	M	51	62	72	80	82	81	77	70	61	2	3.0	-84.1	0	3	0
P-405 A/B	Drinking Water Pump (& spare)	М	51	62	72	80	82	81	77	70	61	2	3.0	-84.1	0	3	0
P-406	Submerged Combustion Vaporizer Water	М	87	89	90	89	88	87	84	81	77	1	0.0	-84.1	0	3	0
	Overflow Pump																
P-407	CPI Oily Water Sump Pump	М	87	89	90	89	88	87	84	81	77	1	0.0	-84.1	0	3	0
P-408 A/B	Process Area Sump Pumps, 2 x 100%	М	87	89	90	89	88	87	84	81	77	2	3.0	-84.1	0	3	0
Special Eq	-																
	LNG Unloading Arms (& Spare)	M	65	68	69	69	71	66	60	52	56	4	6.0	-84.1	0	3	0
N-102 N-401	LNG Vapor Return Arm Nitrogen Package for Terminal	M M	65 70	68 76	69 82	69 88	71 94	66 98	60 94	52 88	56 71	1	0.0	-84.1 -84.1	0	3	0
N-401 N-402	Instrument Air Drier and Package	M	70	83	85	77	75	74	74	71	71	1	0.0	-84.1 -84.1	0	3	0
1-402	modulient All Dilet allo Package	IVI	19	03	00	11	10	14	/4	7.1	11	1	0.0	-04.1	U	3	-
Fynansion	Case - 1000 MSCFD															-	
	LNG Seawater Vaporizer	F	105	103	97	88	85	85	82	74	87	2	3.0	-84.1	0	3	9
	LNG Submerged Combustion Vaporizer	M	97	107	113	121	116	113	108	100	102	2	3.0	-84.1	0	3	24
P-201 E/F	LNG Send-out Pumps - in T-201 C	M	94	96	97	96	95	94	91	88	84	2	3.0	-84.1	0	3	6
P-301 H-J	HP LNG Booster Pumps	F	90	92	93	93	93	98	88	81	80	2	3.0	-84.1	0	3	2
P-401 D	Seawater Pump	М	80	84	86	87	86	92	94	85	73	1	0.0	-84.1	0	3	0
															TOTAL	SPL at NSR	29
Note:																	
	spheric attenuation coefficients at 20°	C and RE	1.80%	are apr	lied in	the cal	culatio	n with	referer	ice to f	he "The Year	's Weath	er - 2005" issu	ied by Hor	ıσ Konσ Ω	hservatory	
	onservative assessment, the screening											5 WCall	2003 1880	CG Dy 1101	is Kong O	DOCT VALUE Y	
	cates noise data obtained from the fie											se data n	rovided by M	Ianufactur	ers		
7) I IIIII	cares moise data obtained moin the ne	.iu iiicasu	ı CIIICII	condi	acicu d	CHIEL	LIVOI	CIMIN	ur, and	. v 1 11 1UI	cates the non	oc uata p	TOVICE DY IV	unuactul		1	ı