ROUTE 3 TAI LAM TUNNEL \& YUEN LONG APPROACH NORTHERN SECTION

Volume 2

Environmental Monitoring\&Audit Manual

Final Report
October 1995
C CONSULTANTS IN
4 ENVIRONMENTAL
\approx S CIENCES (ASIA) LTD

Room 1201, Tai Yau Building
181 Johnston Road, Wanchai, Hong Kong
Telephone : (852) 28931551 Facsimile : (852) 28910305

QUALITY ASSURANCE POLICY STATEMENT

Consultants in Environmental Sciences (Asia) Ltd is commited to satisfying the requirements of its Clients at the highest standards of professional ethics.

It is the Company's objective to provide services which meet the required specification and are produced on time in a cost-effective manner.

In pursuit of these objectives, the Directors have implemented Quality Systems based on ISO 9001 standard. All employees of the Company have a responsibility for quality.

The quality procedures are under continual review by senior Management to ensure that the changing needs of the Company's Clients are met.

CES（ASIA）LTD DOCUMENT RELEASE FORM			
TITLE	Route 3 Tai Lam Tunnel \＆Yuen Long Approach－ Northern Section Volume 2 － EM\＆A Manual		
CLIENT	Route 3 Contractors Consortium		
REPORT NO．	727	PROJECT NO．	96530
STATUS	Final	DATE OF ISSUE	19／10／95
QUALITY CONTROL	NAME	SIGNATURE	DATE
CHECKED BY	W Tung	Ssiung	$19 / 10195$
TECHNICAL REVIEWER	R Webster	R．Wets	$19 / 10 / 9$
APPROVED BY	A Y Kwok		$19-10-0$

REMARKS ：The information supplied and contained within this report is，to the best of our knowledge，correct at the time of printing．Where information has been supplied by third parties，such information is reproduced here in good faith．

CES（Asia）Ltd accepts no responsibility for changes made to this report by third parties．

CONTENTS

Page
1 INTRODUCTION 1-1
1.1 Background 1-1
1.2 Purpose of Manual 1-1
1.3 Project Site and Works 1-1
2 ENVIRONMENTAL IMPACT ASSESSMENT STUDIES 2-1
2.1 Summary of the PDS2EA 2-1
2.2 Summary of the Detailed EIA 2-2
2.3 Suggested Mitigation Measures 2-3
3 PROJECT ORGANISATION 3-1
3.1 Environmental Responsibilities of the Franchisee 3-1
3.2 Project Organisation 3-1
3.3 Project Programme 3-1
4 ENVIRONMENTAL MONITORING AND AUDIT REQUIREMENTS 4-1
4.1 Introduction 4-1
4.2 Levels of Monitoring 4-1
4.3 Trigger, Action, and Target Levels 4-1
4.4 TAT Action Plans 4-2
4.5 Monitoring Schedule 4-2
4.6 Monitoring Locations 4-9
4.7 Monitoring Methodology 4-11
4.8 Monitoring Equipment 4-12
4.9 Equipment Calibration 4-13
4.10 Ecological Monitoring and Audit 4-14
4.11 Data Recording 4-16
4.12 Pollution Control Requirements 4-17
4.13 Construction Phase Audit 4-20
4.14 Operational Phase Audit 4-20
4.15 Impact Prediction Review 4-21
4.16 Reporting 4-21
5 ENVIRONMENTAL COMPLAINTS RESPONSE PROCEDURES 5-1
5.1 Complaint Response Procedures 5-1
5.2 Complaint Response Action Plan 5-1
5.3 Complaint Response Audit Follow-up Procedures 5-1

Appendices

Appendix 1 Sensitive Receiver Survey
Appendix 2 Reinstatement and Management Plan for Fish Ponds at Au Tau Appendix 3 Field Data Pro-formas

List of Tables
Table 4.1 Air, noise and water TAT levels 4-2
Table 4.2 Action plan for exceedance of TAT levels 4-3
Table 4:3 Summary of baseline, construction and operational monitoring programmes 4-7
Table $4.4 \quad$ Freshwater quality monitoring equipment 4-13
Table 4.5 Summary of committed noise mitigation measures for earthworks 4-18
Table 4.6 Summary of committed noise mitigation measures for structural works 4-18
List of Figures
Figure 3.1 Project Team Organisation 3-2
Figure 3.2 Project Programme 3-3
Figure 4.1 Action Plan in Event of Trigger Level Exceedance 4-4
Figure 4.2 Action Plan in Event of Action Level Exceedance 4-5
Figure $4.3 \quad$ Action Plan in Event of Target Level Exceedance 4-6
Figure 4.4 Location of Noise and Air Monitoring Stations 4-10
Figure 5.1 Complaints Response Procedure 5-2

ACRONYMS

ACE	Advisory Council on the Environment
AIP	Approval in Principle
AQO	Air Quality Objective
CNP	Construction Noise Permit
CO	Carbon Monoxide
DEIA	Detailed Environmental Impact Assessment
DEP	Director of Environmental Protection
DO	Dissolved Oxygen
EIA	Environmental Impact Assessment
EM\&A	Environmental Monitoring \& Audit
EPD	Environmental Protection Department
ET	Environmental Team
HKPSG	Hong Kong Planning Standards and Guidelines
NO_{2}	Nitrogen Dioxides
NOx	Oxides of Nitrogen
NSR	Noise Sensitive Receiver
PDS2EA	Preliminary Design Stage 2 Environmental Assessment
PME	Powered Mechanical Equipment
R3CC	Route Three Contractors Consortium
RSP	Respirable Suspended Particulates
SR	Sensitive Receiver
SS	Suspended Solids
TAT	Trigger, Action \& Target
TLT \& YLA	Tai Lam Tunnel \& Yuen Long Approach
TM	Technical Memorandum
TSP	Total Suspended Particulates
WC	Works Checker

1 INTRODUCTION

1.1 Background

The new Hong Kong International Airport at Chek Lap Kok on the north coast of Lantau Island is scheduled to commence operations in 1997. To serve the new airport as well as the proposed container terminals 10 and 11 (also located on Lantau Island), extensive infrastructure and transport links are required.

Route 3 Tai Lam Tunnel and Yuen Long Approach (R3 TLT\&YLA) is an integral part of this supporting transport network, extending from Ting Kau to Au Tau, including the Northern Link (Au Tau Interchange to Yuen Long) and the connection to the New Territories Circular Road.

An Environmental Assessment (EA) study for the R3 TLT \& YLA (including the conveyor system under a separate cover) Preliminary Design Stage 2 (PDS2) was undertaken by Freeman Fox Maunsell for Highways Department according to a brief provided by the Environmental Protection Department (EPD). This study, hereafter referred to as the PDS2EA, was completed in March 1994, was conditionally recommended for endorsement by the Advisory Council on the Environment (ACE) EIA Subcommittee on 5 July 1994 and was subsequently endorsed by the full ACE committee, subject to certain conditions.

This project is now being undertaken by a franchisee, Route 3 (CPS) Company Limited, that has delegated responsibilities for design and construction to Route 3 Contractors Consortium (R3CC). A set of Construction Requirements are given in Appendix 5 Part I of the Project Agreement, including requirements for a Detailed Environmental Impact Assessment (DEIA) for aspects which were not covered adequately by the PDS2EA or which has undergone considerable design changes.

The R3 TLT \& YLA (Northern Section) DEIA fulfills the requirements of the assessment for the Northern Section of the Main Line, extending from north of the Kam Sheung Access Road to Au Tau in Yuen Long. This Manual is designed to meet the environmental monitoring and audit (EM\&A) requirements of the Construction Requirements, and forms Volume 2 of the Northern Section DEIA.

1.2 Purpose of Manual

This Manual outlines the monitoring and audit programmes to be undertaken for the construction and operational phases of the northern section of the R3 TLT \& YLA in accordance with the Construction Requirements, included in clauses 10.4 to 10.10. The aims of these programmes are to verify the DEIA predictions, confirm the effectiveness of environmental impact mitigation, and to ensure compliance with construction licence conditions and pertinent environmental legislation. Pro-active response is emphasised in this Manual through a series of systematic monitoring and checking procedures to detect and mitigate environmental impacts at their early stages.

1.3 Project Site and Works

The project extends northwards from the Kam Sheung Access Road (north of the proposed Tai Lam Tunnel), along the Kam Tin Valley. The western arm of the alignment
connects with Yuen Long Southern Bypass at the proposed Au Tau Interchange. The mainline of the road proceeds north to connect to the New Territories Circular Road. Two link roads (I and J) connect the alignment to the Kam Tin Road between the settlements of Ko Po Tsuen and Kat Hing Wai. Excavation, cutting and filling will be undertaken to form the road bed. A large number of superstructure works will be constructed including bridges, slip roads and interconnections. The proposed alignment requires the reclamation of fish/duck ponds around Au Tau. A large works area will be required at the Au Tau Interchange.

2 ENVIRONMENTAL IMPACT ASSESSMENT STUDIES

2.1 Summary of the PDS2EA

2.1.1 Air Quality Impacts

Construction Phase
Considering the anticipated size of the construction sites and the number of assumed concurrent construction activities taking place, both the 1-hr and 24-hr total suspended particulates (TSP) limits ($500 \mu \mathrm{gm}^{-3}$ and $260 \mu \mathrm{gm}^{-3}$ respectively) were expected to be exceeded at nearby sensitive receivers (SRs). However construction dust generation is generally amenable to mitigation measures, and emissions can be effectively reduced through their implementation.

Operational Phase

Pollutant concentrations in close proximity to the roadway may exceed Air Quality Objective (AQO) maxima during peak hours. Where this occurs, the only practical mitigation measure is to remove affected receivers from the proximity of the roadway to a more distant position. The necessity for this will need to be confirmed during the detailed design stage through further assessment.

2.1.2 Noise Impacts

Construction Phase

During the construction phase exceedance of desirable noise levels (daytime limit 75 $\mathrm{dB}(\mathrm{A})$) was predicted at areas adjacent to the works. Appropriate mitigation measures (including good site practice, use of barriers) and a monitoring programme were proposed to minimise the exceedances.

Operational Phase

Traffic noise levels were predicted to be high and above $70 \mathrm{~dB}(\mathrm{~A})$ at several locations. Much of the exceedance was attributable to traffic on existing roads. In some sections the numbers of SRs potentially affected were such that mitigation at the receiver would be the most appropriate approach. However much of the development within the area consisted of low grade structures whereby the installation of mitigation measures at the receivers may be inappropriate. Depending on the status of the building these premises could be removed or repositioned. Further detailed noise assessment during the detailed design stage was strongly recommended.

2.1.3 Water Quality Impacts

Construction Phase

During the construction phase, the key issue was the prevention of run-off (which may be contaminated with chemicals, fuels, oils, sewage and high suspended solid concentrations) from entering water courses. Suitable clauses for inclusion in the contract documentation were recommended to ensure the control of run-off.

Operational Phase

Potential impacts arising during the operational phase would be related to road traffic accidents involving the spillage of toxic and/or hazardous materials, and the roadway runoff, which may contain high levels of suspended solids. The former would be a rare event, in common with most roads in the Territory. The suspended solid content would be especially important during the early years of operation, when the landscaping and revegetation works are not fully established. Suitable clauses should be included in the contract documentation to ensure impacts are kept to acceptable levels.

2.1.4 Ecological Impacts

The TLT and YLA (N) runs through areas that were highly disturbed in nature including fish ponds used by wading birds. On the basis of the surveys conducted, flora in the disturbance corridor comprised no known habitats of conservation significance. No terrestrial or avian wildlife of conservation importance was recorded in the survey area. The principal habitats to be disturbed were fish ponds which were abundant in the region.

2.2 Summary of the Detailed EIA

2.2.1 Air Quality Impact

Construction Phase

With the committed mitigation measures, dust levels during construction were predicted to comply with the 1-hr average TSP guideline limit and the $24-\mathrm{hr}$ and annual average AQOs for TSP at all SRs. This will be confirmed through the EM\&A programme.

Operational

The air quality impacts of the introduction of the Route 3 road network will be confined to the area in close proximity of the proposed road alignment. Nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ levels during the operational phase were predicted to comply with the $1-\mathrm{hr}, 24-\mathrm{hr}$ and annual average AQO for NO_{2} at all SRs.

2.2.2 Noise

Construction Phase

Mitigation measures will be required to reduce construction noise. For daytime activities, the effectiveness of measures will be confirmed in practice by a rigorous EM\&A programme. For restricted hours activity, Construction Noise Permits (CNP) are required. The Contractors will adhere to statutory requirements under the CNP.

Operational Phase

A comprehensive noise barrier arrangement has been proposed for the Route 3 alignment north of the Toll Plaza. However, an estimated 120 dwellings and Pok Oi Hospital will remain affected by noise levels in excess of the HKPSG standard. This is attributable to the existing roads (Castle Peak Road and Kam Tin Road) as well as the proximity and
elevation of the receivers in relation to the Route 3 alignment. Of these, 47 dwellings and Pok Oi Hospital would be eligible for indirect technical remedies.
2.2.3 Water

Construction Phase

Potential water quality impacts during construction include site run-off, sewage and wastewater generated by workers, dewatering of ponds and pond mud leachate. Mitigation measures include suspended solids removal using stilling ponds, oil and grease removal using grease traps, and the use of septic tanks and chemical toilets for sewage from the workforce.

Operational Phase

Residual impacts have been addressed, and are considered to be similar to those identified in the PDS2EA, i.e. roadway run-off. The run-off is not expected to differ from any other urban run-off from large scale vehicular transport infrastructure. The impact will be reduced through installation of silt traps and oil interceptors at strategic locations and by effective management of spillages or traffic accidents.

2.2.4 Landscaping and Visual Issues

The summary of potential landscape and visual impacts outlined in the PDS2EA remains valid, since sign revisions are minimal. In particular, the size of the Au Tau Interchange has been reduced and this should not alter the landscape and visual profile predicted in the PDS2EA.

2.2.5 Ecology

Construction Phase

Habitat loss included 0.8 ha of woodland, 3.0 ha of shrub land, and 13.09 ha of fish ponds. It was also predicted that heronries near the works boundary near Tung Shing Lei and, to a lesser extent, Ko Po Tsuen will be disturbed. One of the heronries at Tung Shing Lei may be lost due to construction of the Au Tau Interchange. Overlapping of the works period with the ardeid breeding season (March to September) may negatively impact on Tung Shing Lei and Ko Po Tsuen heronries.

Operational Phase

Ardeid use of existing heronries at Tung Shing Lei and Ko Po Tsuen following completion of construction is unknown at this stage. This is also true for egret or heron use of bamboo stands to be planted following completion of construction. Monitoring and audit will be implemented upon completion of construction.

2.3 Suggested Mitigation Measures

Mitigation measures as suggested in the PDS2EA and the R3 TLT \& YLA DEIA for the Northern Section are summarised as follows:

2.3.1 Air Quality Impacts

- frequently wet or cover exposed site surfaces; use chemical wetting agents when appropriate
- use chemical stabilizers on completed areas of cut and fill
- cover and dampen truck loads
- gravel or seal unpaved site roads
- regulate traffic speed on unpaved roads
- provide wheel washing facilities at all vehicle exit points
- adopt automatic water spraying system for stone crushing and associated processes
- apply water and possibly chemical wetting agent to better wet the stockpiles.

2.3.2 Noise Impacts

- site noisy equipment and activities as far from SRs as is practical
- use quieter equipment and processes where possible
- turn off or throttle down idling equipment. Noisy equipment to be properly maintained and used no more than is necessary
- avoid parallel noisy operations and reduce the numbers of operating items of powered mechanical equipment (PME) where possible
- install mobile noise barriers around fixed items of PME. Effective barriers are typically lined on the noise-generating side with noise-absorbing material.
- use temporary noise barriers or earth embankments to screen specific receivers where necessary
- place permanent noise barriers, use friction course, and implement indirect technical remedies such as window improvements and provision of air conditioners (operational phase).

2.3.3 Water Quality Impacts

- install drainage channels and stilling ponds in site compounds to control sediment laden surface run-off
- clean and maintain silt traps regularly to ensure that they function properly
- hydroseed excavated area as soon as possible to reduce erosion
- cover short-term stockpiles with tarpaulins to reduce sediment laden run-off, where possible
- provide appropriate effluent treatment facilities at site works areas
- install oil interceptors in site compounds and empty contents regularly. Provide a bypass to prevent flushing during rain storm events
- oil and fuel storage facilities should be drained through an oil inceptor; chemical facilities should be bunded (to hold 120% of maximum storage volume) and covered with an impervious liner
- connect all sewage discharges to either a treatment facility, or alternatively provide chemical toilet facilities on works sites
- construct a trench to divert run-off from the stream to avoid contamination.

2.3.4 Landscape and Visual Impacts

- restrict volume of construction traffic on local road network
- restrict the construction working areas to a minimum, siting them if possible in visually isolated positions
- enclose the working areas, where possible, to define boundary edge and screen low level construction activities (e.g. car/truck movement) from surrounding receivers
- restrict heights of storage materials, stock piles and spoil heaps to low levels
- minimise night-time working and lighting
- hydroseed bare ground as soon as possible

2.3.5 Ecological Impacts

- implement compensatory planting in a ratio of 3:1 (replacement area to lost area of woodland) using native species as suggested
- restore fish ponds which are used temporarily during project construction
- plant bamboo stands at restored fish ponds and at the retained Tung Shing Lei eastern nesting site to enhance or restore lost heron and egret nesting substrates
- provide adequate site drainage to minimise risk of sediment or pollution run-off from construction site into ponds outside the works boundary
- workers and works vehicles shall pay strict observance to the site limits to protect the bund structure of ponds outside the works boundary

2.3.6 General Nuisance Control Measures

In addition to the environmental impact mitigation measures outlined above, general nuisance control measures shall be implemented by the Contractor, including:

- comply with Public Cleansing and Prevention of Nuisances By-Law 1972
- maintain work sites in a clean and tidy condition, store materials for temporary works in an orderly fashion
- remove rubbish and debris from site frequently
- do not burn wastes and other materials on site
- collect and dispose wastes from grease traps by a licensed contractor
- do not deposit earth, rock or debris on public or private rights of way
- keep existing stream courses and drains within and adjacent to the site safe and free from any debris and any excavated material arising from the works
- provided adequate precautions to ensure that spoil or debris is not allowed to be pushed, washed down, fall or be deposited on land adjacent to the site.

3 PROJECT ORGANISATION

3.1 Environmental Responsibilities of the Franchisee

Under the contract, the Franchisee is required to impose specific conditions on the Contractor regarding:

- Cleanliness of works site
- Abide with the pertinent environmental legislation
- Water Pollution Control Ordinance (WPCO)
- Noise Control Ordinance (NCO)
- Air Pollution Control Ordinance (APCO)
- Waste Disposal Ordinance
- Compliance with established noise criteria/guidelines
- Maintenance of all roads, footways, access roads, streams, drains etc.
- Discharge or disposal of all water and waste products
- Construction, maintenance, removal and reinstatement of temporary drain
- Dust suppression measures
- Operation of cutting and excavation equipment and procedures for the avoidance of pollution during cutting/excavation, conveyance and removal of spoil material
- Operation of rock crushing plant
- Protection of water quality at water intakes
- Construction and working methods to ensure compliance with relevant standards and the conditions of land within the site

The above responsibilities will be discharged by setting up an Environmental Team (ET) for the task. The ET will be responsible for carrying out EM\&A to the standard required by EPD as described in the Construction Requirements, Appendix 5 Part I of the Project Agreement. For design and construction works, these responsibilities have been delegated to the Route 3 Contractors Consortium (R3CC) by the Franchisee.

3.2 Project Organisation

3.2.1 Internal Organisation of the Project Team

Figure 3.1 outlines the structure of the project management team.

3.2.2 Internal Organisation of the Environmental Team

The Environmental Manager (Gael Ogilvie, of R3CC) is experienced in monitoring and audit of construction work. She will be supported by specialists in each environmental area of environmental impact concern as well as a field monitoring team. The Environmental Manager will report to R3CC on all environmental issues.

3.3 Project Programme

The project programme has been laid out in detail in the proposal agreed by Government with the Franchisee. This calls for the whole project to be completed within 38 months. The main Northem Section works will commence after control of the land is given to R3CC by the Government. A summary of the Route 3 TLT \& YLA Northern Section project programme is given in Figure 3.2.

Figure 3.1 Project Team Organisation

....... communication channel

Figure 3.2 Project Programme
See colour A3 copy from Maunsells. (We have 30 copies)

4 ENVIRONMENTAL MONITORING AND AUDIT REQUIREMENTS

4.1 Introduction

EM\&A requirements set out in this section were designed to comply with those given in the Construction Requirements and the PDS2EA.

4.2 Levels of Monitoring

4.2.1 Baseline Monitoring

Baseline monitoring of noise and air quality before the project starts is required to ascertain the site area's existing conditions for setting the trigger, action and target (TAT) levels. Baseline checking will also be undertaken during construction when no construction activity is taking place.

4.2.2 Compliance Monitoring

Compliance monitoring of noise, ecology, air and water quality during both construction and operation phases will be undertaken to verify impact assessment predictions and the effectiveness of mitigation measures, and to facilitate immediate action when problems arise.

4.3 Trigger, Action, and Target Levels

The basic method of recording any change in the environmental conditions is through monitoring of noise, air and water quality. It is an accepted practice to apply a preset range of TAT levels as a framework for interpreting monitoring results. These levels are defined as follows:

Trigger - trigger levels provide an indication of deteriorating ambient environmental quality

Action - action levels indicate the necessity to adopt appropriate remedial actions to prevent the environmental quality from going beyond the target limits.

Target - target levels are stipulated in relevant pollution control ordinances, Technical Memoranda (TM), and Hong Kong Planning Standards and Guidelines (FIKPSG). These are the maximum levels at which the works will proceed. If levels go above the target, appropriate remedial action, including critical review of plant and work methods would be required

Upon completion of baseline monitoring, the TAT levels for this project will be established in accordance with the criteria given in Table 4.1, subject to the existing baseline conditions and confirmation with EPD.

Table 4.1 Air, noise and water TAT levels

Parameter		Tifiger sevel	Action evel	Target level
Air Quality	$\begin{aligned} & \text { TSP (Ihr) } \\ & \text { TSP (} 24 \mathrm{hr} \text {) } \end{aligned}$	TSP(1hr): to be established on review of baseline data TSP (24 hr): to be established on review of baseline data	Average of Trigger and Target Levels	$\begin{aligned} & 500 \mu \mathrm{gm}^{-3}(1 \mathrm{hr} \\ & \text { average }) \\ & 260 \mu \mathrm{gm}^{-3}(24 \mathrm{hr} \\ & \text { average }) \end{aligned}$
Noise*	$\mathrm{L}_{\text {Aeq (30 min) }}$	1 complaint	2 complaints	$75 \mathrm{~dB}(\mathrm{~A})$
Fresh Water Quality	DO SS/turbidity	N/A	N/A	Technical Memorandum(TM) Standards for Group D Waters: DO: no TM standard $\mathrm{SS}: 30 \mathrm{mgl}^{-1}$ Turbidity: no TM Std

Note* Applies during non-restricted hours (0700-1900 hrs weekdays, except for public holidays). During restricted hours a CNP will be required, and the conditions stipulated in the CNP will be followed.

In the event that the measured noise levels exceed the non-statutory daytime limit of $75 \mathrm{~dB}(\mathrm{~A})$, the net contribution to the noise level from construction works will be calculated. In these instances a sound pressure level equal to the 95%-ile of the baseline data (in $\mathrm{L}_{\text {Aeq(30 min) }}$) is subtracted from the recorded value. If the remaining sound pressure level still exceeds $75 \mathrm{~dB}(\mathrm{~A})$, then the target level is regarded as being exceeded.

4.4 TAT Action Plans

The action plan as determined by the frequency of complaints and/or exceedance of the compliance monitoring levels is given in Table 4.2. This is illustrated in Figures 4.1 to 4.3 with flow charts for actions taken at each level of exceedance.

4.5 Monitoring Schedule

The ET will be responsible for undertaking both baseline and compliance monitoring and audits. Specifics in terms of methodology, monitoring location and equipment required are presented in the following sections. Monitoring schedules are summarised in Table 4.3.

4.5.1 Baseline Monitoring

Air Quality

Baseline monitoring of $1-\mathrm{hr}$ and $24-\mathrm{hr}$ TSP at SRs will be carnied out daily for two consecutive weeks prior to commencement of construction. 1-hr TSP monitoring will involve sampling three times per day when the highest dust levels are expected (as determined by the Environmental Manager). 24-hr TSP monitoring locations may be constrained by access and availability of power. If a station proves to be unsuitable due to above difficulties, an alternative site of similar nature will be used.

Table 4.2 Action plan for exceedance of TAT levels

Exceddance			
		Conluraion	Engrieer
Trigger Level - Once	Inform Contractor \& WC	- Rectify unacceptable practice	
Trigger Level - More than two consecutive sampling days	- Repeat in-situ measurement to confrm findings - Inform Contractor \& WC. Identify source - Check monitoring data \& site activities - Discuss mitigation with Engineer \& Contractor - Assess effectiveness of mitigation	- Inform Engineer, discuss \& propose mitigation with ET \& Engineer - Consider changes in working practices - Implement agreed mítigation	- Discuss proposed mitigation with ET \& Contractor - Agree mitigation to be imptemented - Assess effectiveness of mitigation
Action Level Once	- Repeat in-situ measurement to confirm findings - Inform Contractor \& WC. Identify source - Check monitoring data \& site activities - Discuss mitigation with Engineer \& Contractor - Repeat measurement on following day - Assess effectiveness of mitigation	- Inform Engineer in writing, discuss \& propose mitigation with ET \& Engineer - Consider changes in working practices - Implement agreed mitigation	- Discuss proposed mitigation with ET \& Contractor - Agree mitigation to be implemented - Assess effeciveness of mitigation
Action Level - More than two consecutive sampling days	- Repeat in-situ measurement to confirm findings Inform Contractor \& WC. Identify source Check monitoring data \& site activties Discuss mitigation with Engineer \& Contractor Repeat measurement on following day Prepare to increase monitoring frequency Ensure implementation of miligation Assess effectiveness of mitigation	- Inform Engineer in writing, discuss \& propose mitigation with ET \& Engineer within 3 days of notification - Consider changes in working practices - Implement agreed mitigation	- Discuss proposed mitigation with ET \& Contractor - Agree mitigation to be implemented - Assess effectiveness of mitigation
Target Level Once	Repeat in-situ measurement to confirn findings Inform Contractor, EPD \& WC. Identify source Check monitoring data \& site activities Discuss mitigation with Engineer \& Contractor Repeat measurement on following day Ensure implementation of mitigation Monitor daily until Target no longer exceeded Assess effectiveness of mitigation	- Inform Engineer in writing, discuss \& propose mitigation with ET $\&$ Engineer within 3 days - Check site activities, rectify problems - Critically review working methods - lmplement agreed mitigation	- Discuss proposed mitigation with ET \& Contractor - Request Contractor to review working methods - Agree mitigation measures for implementation - Assess effectiveness of mitigation
Target Level More than two consecutive sampling days	- Repeat in-situ measurement to confirm findings - Inform Contractor, EPD \& WC. Identify source - Check monitoring data \& site activtties - Discuss mitigation with Engineer \& Contractor - Repeat measurement on following day - Ensure implementation of mitigation - Monitor daily until Target not exceeded for 2 days - Assess effectiveness of mitigation	- Inform Engineer in writing, discuss \& propose mitigation with ET \& Engineer within 3 days - Check site activities, rectify problems - Critically review working methods - Implement agreed nitigation - Slow or stop activities causing exceedances according to directions from Engineer	- Discuss proposed mitigation with ET \& Contractor Request Contractor to review working methods Agree mitigation measures for implementation Assess effectiveness of mitigation If necessary, instruct Contractor to slow or stop activities causing exceedances until no exceedance of Target level.

Notes: 1 In the case of noise monitoring, the frequency of sample exceedance corresponds to the number of complaints received. Any follow-up monitoring will be undertaken at the affected NSRs. In the event of creeping ambient noise levels, trigger level $=1$ complaint, action level $=2$ complaints.
2 All TAT exceedances will be reported in the Monthly Progress Report

CES (Asia) Ltd
96530\reportslem\&a-nlem\&a-n. 05

Figure 4.1 Action Plan in Event of Trigger Level Exceedance See 96530/reports/em\&a-n/nFig4_1.xls to be printed in colour by Zoe

Key: $\quad \square=$ Environmental Team (ET)

Figure 4.1A Action Plan in Event of Trigger Level Exceedance

Figure 4.2 Action Plan in Event of Action Level Exceedance See 96530/reports/em\&a-n/nFig4_2.xls to be printed in colour by Zoe

Figure 4.1B Action Plan in Event of Action Level Exceedance

Figure 4.3 Action Plan in Event of Target Level Exceedance See $96530 /$ reports/em\&a-n/nFig4_3.xls to be printed in colour by Zoe

Key: $\begin{aligned} \square & =\text { Environmental Team (ET) } \\ \square & =\text { Contractor } \\ \square & =\text { Engineer }\end{aligned}$
Figure 4.1C Action Plan in Event of Target Level Exceedance

Table 4.3 Summary of baseline, construction and operational monitoring programmes

Subject	Period	Parameters	Location	Frequency	Duration	Additional Requirements
Air Quality	Baseline Baseline Check	TSP (24 hr) TSP (1hr)	Selected SRs	Continuously 3 times daily 4 times a year, interval over one month	Two consecutive weeks prior to construction Two consecutive weeks prior to construction During construction phase	During periods of no construction
	Construction	TSP (24 hr) $\text { TSP (} 1 \mathrm{hr} \text {) }$ Wind speed, direction	Selected SRs Monitoring station	Once every 6 days 3 times every 6 days Continuously		More frequent monitoring depending on site and wind conditions
	Operational	$\begin{aligned} & \hline \mathrm{CO} \\ & \mathrm{RSP} \\ & \mathrm{NO}_{x} \end{aligned}$	SRs	Two times per year	--	Once the project has been in operation for 3 months
Noise	Baseline Baseline Check	$\mathrm{L}_{10}, \mathrm{~L}_{90} \mathrm{~L}_{\text {Aq (}}$ (30min)	SRs	Continuous Every 3 months	Two weeks prior to construction One 24 hour period, during construction phase	During periods of no construction
	Construction	$\begin{aligned} & \mathrm{L}_{\text {Aeq (30min) }}(0700-1900) \\ & \mathrm{L}_{\text {Aeq (5 mini) })}(1900-0700) \end{aligned}$	SRs	3 times per week 3 consecutive measurements 3 times per week (if CNPs are issued)	During construction	More monitoring when appropriate in response to complaints.
	Operational	L_{10} (peak hour)	Tunnel portal	Once per year	Throughout Franchise Period	Report results within 10 days
Fresh Water	Construction	DO, SS, turbidity	Major discharge points into stream	Twice per week		

Note: 1
The precise SR locations cannot be identified until after site inspection and agreement with owners is reached.

Checking of baseline dust levels of both 1-hr and 24-hr TSP will be carried out four times per year when construction activities are not taking place. Intervals between each check will be in excess of one month.

Noise

Continuous baseline noise monitoring of $\mathrm{L}_{\text {Aeq (30 min) }}$ at SRs will occur daily for two consecutive weeks prior to the commencement of construction. Baseline levels will be checked for one 24 -hour period every three months, for a typical 24 -hour period when construction activities are not taking place.

4.5.2 Construction Phase Compliance Monitoring

Air Quality

Continuous 24 -hr TSP will be monitored once every six days. 1-hr TSP sampling will be carried out three times every six days. Each time, three 1-hr TSP readings will be obtained at each location. Wind speed and directions will be recorded continuously at one monitoring station.

Noise

During day time non-restricted hours (0700-1900 hr on normal weekdays), $\mathrm{L}_{\text {Aeq }(30 \text { min })}$ will be recorded at the closest affected SRs three times per week. When works occur during restricted hours (evening and/or night time), three consecutive $\mathrm{L}_{\text {Aeq (5 min) }}$ measurements will be recorded three times per week during restricted hours (if work occurs during both evening and night time hours, at least one set of measurements will be taken for each period).

Freshwater Quality
DO, SS and turbidity will be monitored twice per week at major discharge points into streams, active duck/fish ponds and the Kam Tin River.

4.5.3 Operational Phase Compliance Monitoring

Air Quality

Air quality monitoring during operation will take place once every six months. Respirable suspended particulates (RSP) ($\mathrm{ggm}^{-3}, 24-\mathrm{hr}$), carbon monoxide (CO) (parts per million) and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ (parts per billion) will be monitored to confirm their compliance with AQO, once the road has been operational for three months. Baseline data will be gathered just prior to the commissioning of the road.

To adequately account for the effect of meteorological conditions on air quality, the parameters (except RSP) given above will be logged at least every half hour for one week continuously. 24 -hr RSP will be measured daily for one week continuously.

Reports will be produced every six months within 1 month of completion of the monitoring. The monitoring methodology, including parameters, frequency, locations and reporting requirements will be reviewed after 2 years of monitoring.

Noise

Noise monitoring during the operational phase will be carried out at the tunnel portals after the commissioning of the road. L_{10} (peak hour) will be measured on a working day once per year during the Franchise Period. Reports will be produced within 10 days after completion of each monitoring event.

Freshwater Quality

There is no requirement for monitoring of freshwater quality during the operational phase.

4.6 Monitoring Locations

4.6.1 Review of Sensitive Receivers

Monitoring at various locations will be applied as a means of quantifying and controlling the environmental impacts of this project. To determine the precise monitoring locations a comprehensive SR survey was conducted in Spring 1995. All potential SRs within 300 m either side of the alignment were identified from $1: 1000$ scale maps, totalling 2,212 SR's for R3 TLT \& YLA (Northern Section). A subsequent field survey confirmed that 1,935 SRs were in existence. Each SR's status was assessed as follows. The findings of the survey are given in Appendix 1.

1 Abandoned or derelict
2 Poor construction (wood / sheet / no glazing)
3 Solid construction (concrete / brick / glazing)
4 Modern (eg. village house)

4.6.2 Air and Noise

Air and noise monitoring will be carried out at three representative SRs, R350, R382, R1441 and R242 as shown in Figure 4.4. Location of samplers should be remote from influencing factors such as roads, local obstructions etc. Samplers for 24 -hr TSP monitoring will be located in the vicinity of SRs depending on site access constraint and power availability,. If problems are encountered in siting the samplers near SRs, attempts will be made to site the samplers at the works boundaries downwind of the predominant wind direction.

The monitoring stations have been selected as the most affected and representative receivers, taking into consideration site access constraints and power availability. The selection has taken into account other known future developments in the area. However, should another receiver be affected by a future development that is presently unknown of, a suitable alternative will be developed.

4.6.3 Freshwater Quality

Monitoring locations will be at the points of discharge of water from the site. These will be mainly from sedimentation basins provided for settling of site run-off. Exact locations will be determined on the works site in consultation with EPD and the Environmental Manager of R3CC, since these locations will change over time.

4.7 Monitoring Methodology

4.7.1 Air Quality

24-hr TSP will be sampled by drawing air through a pre-conditioned, pre-weighed filter inside the high volume sampler at a controlled flow rate. After 24 hours ($\pm 1 \mathrm{hr}$) of sampling the filter paper, with retained particulates, will be collected and returned to the laboratory for drying in a desiccator, followed by accurate weighing. TSP levels are calculated from the ratio of mass of particulates retained on the filter paper to the total volume of air sampled. The analysis process normally takes approximately two days. All equipment and procedures will follow USEPA Standard Method described in 40 CFR Part 50, Appendix B. Sample collection filters will comprise of glass fibre, quartz fibre or teflon fibre in order to minimise sample degradation.

For 1-hr TSP, a portable dust meter will be used. TSP measurement is based on the principle of light scattering. The meter will be factory calibrated against a known opacity. It will be calibrated in the field, each time prior to deployment, against known standards provided by the manufacturer.

The purpose of the 1-hr TSP monitoring is to enable a fast response action to dust problems. The use of the portable meter is preferred because it enables the ET to obtain instantaneous readouts and if necessary to assist in source identification. The high volume sampler, on the other hand, requires $24-48$ hours for filter paper processing and is therefore less suitable for fast response action plans.

RSP monitoring during the operational phase will be carried out in a similar way to TSP monitoring. The difference being that the high volume sampler will be equipped with an additional PM_{10} assembly which screens out particulates of size $10 \mu \mathrm{~m}$ and above. The gain in weight of the filter will then be used to calculate the RSP level.

Wind velocity will be monitored hourly in conjunction with a data logger, which will be downloaded once a week.

4.7.2 Noise

Noise levels will be measured at the monitoring locations. Where a measurement is to be undertaken outside a building, the assessment point will normally be positioned at 1 m from the sensitive facade, but may be re-positioned at any other point considered appropriate by EPD. Where a measurement is to be made of noise being received at a place other than a building, the assessment point will be at a position 1.2 m above the ground in the free-field.

Noise measurements will be made in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}) measured with an integrating sound level meter. Such measurements will be made over a 30 minute period to give 6 consecutive $L_{\text {eq }}(5 \mathrm{~min})$ readings. The L_{eq} (30 minute) reading will be calculated from the L_{eq} (5 minute) readings within the noise meter. For operational noise monitoring, L_{10} (peak hour) will be measured.

4.7.3 Freshwater Quality

Samples will be taken twice per week from each main discharge point. Two consecutive readings of DO concentration and turbidity will be taken at each location. If they do not agree to within 25%, the readings will be discarded and repeated until two consecutive readings agree to within 25%.

Two water samples will be collected, stored at $4^{\circ} \mathrm{C}$ in a cold box and returned to the laboratory for SS analysis within 24 hours. SS determinations will be carried out according to APHA Standard Methods for the Examination of Water and Wastewater, 17 Edition, 1989 analysis no. 2540D.

In the field each water sample taken for subsequent laboratory analysis will be given a unique sampling number, which is recorded on the sample label and the data form.

4.8 Monitoring Equipment

4.8.1 Air Quality

The following or similar equipment will be used:

Construction

- GMWL-2000 High Volume Air Sampling System
- WD401 Wind Speed and Direction Sensor connected to a MET EL8 Data Logger will be used to collect meteorological data in accordance with the monitoring programme
- HAZ-dust HD-1000 portable dust meter

Operation

- GMWL-2000 High Volume Air Sampling System fitted with Model 1200 HVPM 10 size selective inlets (For RSP $<10 \mu \mathrm{~m}$)
- WD401 Wind Speed and Direction Sensor connected to a MET EL8 Data Logger will be used to collect meteorological data in accordance with the monitoring programme
- Thermo Environmental Instrument Inc. Model 42 Chemiluminescence $\mathrm{NO}-\mathrm{NO}_{2}-\mathrm{NO}_{\mathrm{x}}$ analyser
- Interscan Model 1148 CO analyser equipped with a CO electrochemical cell

The TSP and RSP monitor will be a high volume sampler as referenced in the USEPA Standard Method described in 40 CFR Part 50, Appendix B.

4.8.2 Noise

The sound level meter used will comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). Any other noise measuring and analysis instrumentation used will be of a comparable professional quality. Standard acoustical principles and practices will be followed in the measurement and analysis of the noise under investigation.

Noise will be monitored using Bruel and Kjaer modular precision sound level meter type 2231, with statistical analysis module BE 7101 or other suitable instruments which comply
with the IECP Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications.

4.8.3 Freshwater Quality

For freshwater quality monitoring, the equipment suggested in Table 4.4 or those with similar specifications will be used.

Table 4.4 Freshwater quality monitoring equipment

Equipment Function	Manufacturer	
Turbidity Measurement	Hach	2100 P
Dissolved Oxygen and Temperature Measurement	YSI	Model 59 DO meter with 10m cable and YSI 5739 probe with YSI 5795A submersible stirrer for in situ DO measurements; YSI Model 33 conductivity meter for salinity for calibrating DO meter; YSI temperature sensor for temperature measurement.
Sampling SS Determinations	--	Appropriate plastics container

4.9 Equipment Calibration

All monitoring equipment will be maintained in calibration at all times. Re-calibration will be carried out in accordance with requirements stated in this Manual or those recommended by the manufacturers, whichever is more stringent. Calibrations will be by a HOKLAS accredited laboratory for those parameters under consideration.

4.9.1 Air Quality

The flow rate of each high volume sampler with mass flow controller will be calibrated using an orifice calibrator. Initial five point calibration will be conducted upon installation and prior to commissioning. One point flow rate calibration will be carried out every two months. Five point calibration will be carried out initially and every six months thereafter.

The nitrogen oxides analyser will be calibrated by an Ecotech dynamic calibrator Model 8300 HS equipped with a MonitorLab NO_{2} permeation tube. Zero and span checks will be carried out at each time of use.

The Interscan Model 1148 CO analyser will be subject to a zero and span check at each time of use. Calibration will be against a known standard as recommended by the manufacturer.

The portable dust meters will be calibrated against a known standard on each occasion the meter is used.

4.9.2 Noise Monitoring

The sound level meter will be calibrated using a Bruel and Kjaer Sound Level Calibrator Type 4230, or other similar equipment, prior to and after each set of measurements. The results of the calibration will be recorded on the field data form. The measurement will
be discarded if the calibrations before and after do not agree to within $1 \mathrm{~dB}(\mathrm{~A})$, then repeated until the calibrations before and after agree to within $1 \mathrm{~dB}(\mathrm{~A})$. An annual calibration check will be carried out by the manufacturer.

4.9.3 Freshwater Quality

DO Meter The DO meter will be calibrated against the results of standard Winkler titration every 2 months. The temperature sensor will be calibrated using a standard certified reference thermometer with an accuracy of $0.5^{\circ} \mathrm{C}$.

Turbidimeter The Turbidimeter will be calibrated every two months using standard formazin solutions. It will be standardised with reference formazin gel solutions prior to each use.

Balance The balance will be calibrated against an internationally traceable standard at intervals recommended by the manufacturer.

4.10 Ecological Monitoring and Audit

4.10.1 Monitoring and Audit Schedule

Baseline

A baseline study of flora and fauna was completed in the course of the 12-month study and will be submitted under separate cover.

Construction and Post-construction

During construction, R3CC will monitor

- Ardeid use of Tung Shing Lei and Ko Po Tsuen egretries
- Effectiveness of on-site revegetation as part of landscape planting

For 2 years following completion of construction, R3CC will carry out audits every quarter to quantify ardeid use and twice per year (wet season and dry season) for water quality of ecologically enhanced restored ponds. Although not a contractual requirement R3CC has, nevertheless, committed to the ecological monitoring where indicated.

4.10.2 Ecology Auditing Locations

Construction
Auditing locations for ardeid use of egretries during construction will be at the Tung Shing Lei and Ko Po Tsuen egretries, and Au Tau Interchange. Sites identified in the Northern Section DEIA as sites of frequent usage by ardeids will be audited.

The effectiveness of landscaping will be checked during construction at numerous sites. Exact locations will depend on details of planting plans and specifications upon the approval in principle (AIP). At this stage the draft AIP for the Northern Section of R3 TLT\&YLA has not yet been obtained. Revegetation plans, in general, follow the draft AIPs for the Southern Section (Element 390 and 192), i.e. soft slopes, soil nailed slopes,
berms, and medians.
Post-construction
Ardeid use and water quality of restored ponds will be audited in the Au Tau Interchange area.

4.10.3 Ecology Auditing Methodology

Construction - Landscaping

Auditing methods will be based on landscaping treatments described in the draft AIPs.
Soft Slope Planting: Soft slopes are slopes formed with soft materials suitable for planting. These slopes include:

- all fill slopes
- cut slopes with slope 1:1.5
- upper levels of cut and fill slope

Similarly to the draft AIPs for the Southern Section, all soft slopes will be hydroseeded with grass and tree seeds and planted with whips/seedlings of mainly native tree and shrub species at 1.5 m staggered spacing. Survival and growth of each planting species in this site will be evaluated. Twenty individuals with three duplicates of each species on soft slopes will be number-tagged. The basal diameter and main stem height of each number-tagged individual will be measured at six-month intervals. Evaluation will also be based on photos taken at six month intervals from selected permanent photo points.

Nailed Slope Planting: Nailed slopes (cut slopes formed at 1:1) will be hydroseeded with grass and tree species due to poor soil conditions and site inaccessibility. Survival and growth of vegetation will be evaluated through assessment of photographs taken at selected photo points at six month intervals.

Berm Planting: Flat berms will be constructed along cut slopes. Planters will be constructed and pit planted with trees, shrubs and trailing plants. Survival and growth of vegetation will be evaluated based on photographs taken at selected photo points at six month intervals.

Median Planting: The median along the centre of the road will be planted with native tree and shrub species. These plants will be subjected to traffic exhaust and hence their survival will be closely monitored. Due to the inaccessibility of the site, the site will be evaluated by photographs taken at selected photo points at six month intervals.

Construction - Ardeid Use of Tung Shing Lei and Ko Po Tsuen
Seasonal spatial distribution and habitat use will be audited quarterly from fixed observation points surrounding both egretries. Numbers of birds seen will be recorded at 15 minute intervals, and their locations will be plotted on 1:5000 or 1:1000 scale topographic maps. Habitat use will be recorded for all birds seen. Highway construction activity will be simultaneously recorded to develop quantitative relationships between it and bird activities and spatial distribution.

Nesting will be monitored at the egretries between April and June annually to determine the nesting species, number of nests, and nesting substrate.

Post-construction - Fish Pond Design Audit
Final pond design will be completed in consultation with the design engineer. Input will be provided on pond configuration, bank slope, water control structures, revegetation, and relationship with surrounding surface drainage. Pond maintenance plans will be developed for post-construction operation and ecological conservation maintenance. As a result of previous discussions with ACE members a draft Pond Reinstatement and Maintenance Plan has been prepared, as a stand alone document and is included in Appendix 2 of this Manual. Replanting of bamboo in the created drainage channels in the Au Tau Interchange area will be co-ordinated with the design and construction engineers.

To quantify the effectiveness of the proposed pond restoration, an ecological audit of herons and egrets utilisation of reinstated fish pond sites and replanted bamboo stands will be carried out quarterly over the first two years following construction. Birds will be recorded visually using binoculars and spotting scope from remote, elevated locations overlooking ponds. Ardeid locations will be plotted on 1:1000 or 1:5000 scale topographic maps at 15 minute intervals over 2-4 hours continuous time periods during early morning and late afternoon on three days during each quarter. Locations will be plotted using the UTM grid system. Data recorded for each pond and time interval will include identification to species, number of individuals, and activities of individual birds. Nest sites will be monitored during the period from April through June to determine species of nesting birds, count nests, and determine nest activity.

Post-construction - Fish Pond Contamination By Metals

Water samples will be collected twice per year (once during the dry season and once during the wet season) from at least 2 of the 3 fish ponds to be formed in the Au Tau Interchange area and from 2 ponds to be designated as controls over a period of two years following construction. The control ponds will be selected on the basis that they would be expected to represent prevailing local background concentrations of the specified metals. Water samples will be analysed by an accredited laboratory to determine concentrations of metals including cadmium, copper, lead, nickel, and zinc. The results will be issued to interested parties.

4.11 Data Recording

Standard pro-formas will be used for recording field data (See Appendix 3 for sample field data pro-formas). The data will then be input into a computerised database. These will serve as a systematic method of recording and storing data. In the event of complaints or evidence of unacceptable environmental impacts being obtained from the monitoring results, these data will be easy to reference.

Monitoring staff will record observations and events on the data forms to allow later interpretation of the results obtained.

4.12 Pollution Control Requirements

4.12.1 Site Environmental Inspection and Control Procedures

During construction, an Environmental Site Inspector (ESI) will carry out routine inspections to ensure all committed impact control measures are implemented. Details of the construction schedule will be reviewed by the ESI and the R3CC Construction Manager each week and used to plan the environmental site inspection activities. This will ensure that inspection activities are based on actual construction activities, particularly those in close proximity to sensitive receivers.

All committed impact control measures will be summarised in a Field Inspection Report to be used as a checklist by the ESI and will highlight any non-compliance.

The inspection reports will be summarised and included in the monthly EM\&A reports to be submitted to EPD.

Air Quality

- Weather condition
- Maintenance and/or use of:
- wheel washing troughs
- water spray on construction sites, assess roads and stockpiles
- dust covers on stockpiles and trucks
- site cleanliness
- plant with filtration equipment
- Vehicle speed on unpaved site roads

Noise

- Weather condition
- Use and maintenance of construction plant
- Use, maintenance and effectiveness of noise enclosures and barriers
- Hours of operation
- Location of noise emitting plant on site and distance from SRs
- Presence of any significant noise source beyond the site boundary
- Number of powered plant used on site
- Compliance with permit conditions in the event of evening and night time work

As described in Section 4 of the Northern Section DEIA, R3CC is committed to a detailed list of noise control measures to ensure that construction activities do not generate noise levels at nearby sensitive receivers that are above the $75 \mathrm{~dB}(\mathrm{~A})$ guideline limit. These commitments are reproduced in Tables 4.5 and 4.6 below. All these commitments will be included in the environmental inspection checklist and will be checked regularly by the ESI at locations dictated by the construction schedule. As an additional check, the ESI will take spot checks of \% operating times of all equipment operating in close proximity to noise sensitive receivers.

Table 4.5 Summary of committed noise mitigation measures for earthworks

Area of Action		R3CC Committed Mitigation
Chainage 280-680	-	haul traffic is confined to the centre of the alignment water pumps are acoustically screened
CH680 - Various Link Roads	- haul traffic is confined to the centre of the alignment water pumps are acoustically screened	
CH4150-4800	-	water pumps are acoustically screened
NSRs; R171, R1441, R1512, R2182	-	Acoustic barrier provided at NSR to screen line of sight of construction activities, subject to agreement with occupants

Table 4.6 Summary of committed noise mitigation measures for structural works

•	Bored piling is not undertaken concurrently with other structural operations at the construction site nearest to the NSR^{1}		
• Hand held breakers used within 100 m of R171 are acoustically screened at source ${ }^{2}$			
•	Hand held breakers used within 60 m of R1512 are acoustically screened at source ${ }^{2}$		1 Mitigation only required for R90, R171, R1441 \& R1512 if NSR not already screened
:---			
2 Mitigation only required if NSR not already screened			

Water Quality and Waste Management

- Weather condition
- Operation of sedimentation, and sewage treatment facilities
- Volume of sediments/oil in the basins and drains
- Direct discharge of sediment loaded washwater/run-off, if any
- Discolouration of water
- Storage and maintenance of fuel and chemicals
- Spillage/leakage of oil, fuel, or paint within the site
- Appropriate disposal of waste oils
- Cooling water for air conditioning
- Appropriate disposal of vegetation waste

4.12.2 Remedial Action

In the event of any breaches of the TAT levels, the ET will notify the Contractor/WC and necessary remedial action will be taken. The effectiveness of the action, and possible recommendations will be addressed in the Monthly Monitoring and Audit Reports.

4.12.3 Solid Liquid and Chemical Waste Control Procedures

The requirements are summarised as follows:

- The different categories of wastes will be segregated, stored, transported and disposed
of separately in accordance with EPD's required procedures. For instance, chemical and maintenance wastes will be collected by authorised collectors and sludge by hygiene services companies.
- As only a small amount of sludge will be produced on sites requiring periodic disposal, temporary on-site storage facilities may be required. Sludge/waste will be stored in enclosed containers to prevent odour emission.
- If transportation of hazardous materials is necessary, R3CC will ensure that hazardous materials, chemical wastes and fuel are packed or stored in containers or vessels of suitable design and construction to prevent leakage, spillage or escape.
- R3CC will prevent the uncontrolled disposal of hazardous materials and chemical waste to the air, soil, surface water, groundwater and coastal water.
- Dangerous materials including fuel, oil and lubricants as defined under the Dangerous Goods Ordinance will be stored in specially designed areas and be properly labelled on site. If leak, spill or discharge occurs, it can be contained more effectively in these specially prepared areas.

4.12.4 Contaminated Pond Mud - Testing

Timing

R3CC is currently in the process of attempting to obtain early access to the pond areas, prior to the land-handover (anticipated to be 1 December 1995), in order to obtain samples of the pond mud. Where access is unavailable the testing will be carried out immediately after the land-handover.

On obtaining the samples they will be analysed for a suite of parameters (see Testing Criteria below) by an accredited laboratory. The mud will remain in situ until the results have been received and advise from EPD on possible disposal/re-use options (see Disposal/Re-use Options below) has been obtained.

Testing Criteria

R3CC has discussed with EPD the methods of testing and the Practice Note, ProPECC PN 3/94 "Contaminated Land Assessment and Remediation" has been discussed as a reference document. This guideline document makes reference to the Dutch Indicative Index which provides comprehensive reference values for varying chemicals/hazardous substances in soils. The suitability of this guideline document (issued by EPD) will be discussed with EPD with particular reference to potential contaminants in pond mud.

In agreement with Appendix II of the aforementioned Practice Note, R3CC proposes to carry out simple on-site screening tests to identify the parameters of major concern. Although the pond mud is not envisaged to be contaminated the following parameters will be tested for as part of the screening exercise: copper, cadmium, chromium, lead, zinc, nickel and mercury. The above samples will be handled and stored in such a way as to prevent cross contamination (samplers will also be cleaned after each sampling event), they will then be sealed and labeled prior to dispatch to an accredited laboratory for chemical analysis.

Disposal/Re-use Options

Once the levels of contaminants and estimated quantities of possibly contaminated mud have been ascertained, R3CC will discuss with EPD in order to work towards a disposal/re-use solution. As a result of previous discussions with EPD:

- where the mud is shown to have acceptable levels of contaminants it will be re-used on R3CC's site (or others');
- where the mud is shown to have unacceptable levels of contaminants the most likely disposal option will be the Pillar Point Landfill. Should Pillar Point Landfill no longer be in a position to receive the mud, WENT Landfill will be assessed as an option. The details of the disposal route for the mud will be discussed with EPD when appropriate and reported in the relevant EM\&A Monthly Report.

Construction Phase Audit

Construction phase audit will be carried out in conjunction with the construction compliance monitoring programme. The audit will be conducted every month by the Environmental Manager as part of the preparation for the monthly report. The audit will check:

- Records of monitoring procedures
- Records of monitoring results
- Records of exceedance of any regulatory requirements/target levels
- Control and mitigation taken in response to unacceptable environmental impacts
- Records of any complaints from SRs and actions taken
- Inspection of waste handling
- Contractor malpractice
- Activities against contract requirements

Audit findings by the Environmental Manager will be presented in the Monthly Monitoring and Audit Report. The report will identify any unanticipated impacts and improvements required for future monitoring programme.

4.14 Operational Phase Audit

A post-project audit will be carried out when the road becomes operational (e.g. 3 months after completion of construction). The audit will:

- Review environmental management practises in terms of achieving environmental performance requirements
- Review the effectiveness of mitigation measures
- Review the effectiveness of, and requirements for, the on-going monitoring programme
- Recommend improvements in environmental control in the event of non-compliance.

A post-audit report will be submitted to EPD within 10 days after completion of the audit. All correspondence between the WC or the ET and Director of Environmental Protection (DEP) will be copied to the Director's Representative.

4.15

Reporting

A monthly Monitoring and Audit Report will be prepared within 14 calendar days of the end of each monthly monitoring period (set at the 20th of each month) with the first report due in the month after construction commences. Reports will be submitted to the WC and EPD. The report should include:

Executive Summary - A brief summary of the main points of the report.
Monitoring \mathcal{E} Audit Requirement - Summary of monitoring parameters, TAT levels and an implementation status report will be provided indicating the level of implementation of those requirements.

Monitoring Methodology - Monitoring locations, duration and frequency, as well as equipment calibration schedule.

Monitoring Results - Parameter, date, time, environmental conditions and locations. Results will be presented as full page graphs of each parameters over the previous 4 months at all the stations with TAT levels clearly shown on the graph. Graphs will be annotated where appropriate with the major activities carried out on site during the period, weather conditions and any other factors that may affect the results.

Audit Result - Review of pollution sources and working procedures in the event of noncompliance with environmental monitoring levels; action taken in the event of noncompliance; and follow up procedures related to earlier non-compliance actions. Summary of the number of TAT level exceedances in the month. List of active construction noise permits.

Site Inspection Report - Findings of site investigations, identification of deficiencies and action taken. Advice on solid and liquid waste management status.

Complaints Received - Liaison and consultation undertaken, subsequent action, database of complaints received, location of complaints, action plan, and follow-up procedures.

Schedule - Programme of site activities and a monitoring schedule for the next reporting period.

Impact Prediction Review - Revision of the predicted impacts related to an updated work schedule for the following reporting period.

Appendices - Appropriate drawings/tables of monitoring locations, SR locations, calibrated certificates from a HOKLAS accredited laboratory, environmental monitoring results (tabulated), audit check sheets and an implementation status report.

A disk containing all the measured data will be submitted with the monthly report. The format of the data will be agreed with EPD prior to the first report.

It should be noted that under normal circumstances, non-compliance and remedial action will be addressed in the Monthly EM\&A reports, but would also need to be dealt with on a day to day basis through the issue of action plans, detailing deviations from the specification and requesting the contractor to correct the deviations.

5 ENVIRONMENTAL COMPLAINTS RESPONSE PROCEDURES

5.1 Complaint Response Procedures

Complaints regarding environmental quality arising from the project area will be received from the EPD Hotline and direct enquiries to Government, the Franchisee or R3CC. Direct Hotiines will also be provided by R3CC. The following stups will be taken upon receipt of complaints. These are illustrated graphically in Figure 5.1.

- Log complaint and date of receipt onto the complaint database;
- Investigate the complaint to determine its validity, and to assess whether the source of the problem is due to recurring works activities;
- If complaint is valid and due to works, identify mitigation measures;
- Undertake additional monitoring and audit to verify the situation as necessary, and address the issue in the Monthly Monitoring and Audit report; and
- Log the monitoring data and results of the investigation onto the database.

5.2 Complaint Response Action Plan

Experience has shown that complaints received are generally based on the complainants perception of the environmental situation. Verification of complaints following the above outlined procedures is therefore advisable prior to undertaking any remedial action.

Depending on the severity of the complaint, individual complaint cases may be referred to the Deputy Project Manager and the Construction Manager. The Deputy Project Manager with the Environmental Manager will be responsible for determining the appropriate mitigation measures required. Both the project and the environmental teams will follow up on the implementation of mitigation measures.

5.3 Complaint Response Audit Follow-up Procedures

Investigation of the complaints will be initiated by R3CC within $24-48 \mathrm{hr}$ after receiving the complaint. and the complainants notified of this also within $24-48$ hours. The complainants shall be notified of results of complaint investigation. Audit response procedures will ensure that any valid reason for complaint does not recur.

Figure 5.1 Complaints Response Procedure

SRVYSHTS.XLS

A1-7
LEGEND
Potential Sensitive Receiver
Include in Noise/Air
Modeling
Project Site Boundary

	R495	Y	N	1	2	N	
	R496	Y	Y	3	4	G8	
	R497	Y	Y	3	4	G9	
	R498	Y	N	3	4	G10	
	R499	Y	Y	2	4	G11	
	R500	Y	Y	1	4	G15	
	R501	Y	Y	1	3	G14	
	RS02	Y	N	1	1	N	
	R 503	Y	N - TEMPLE	1	3	G12	
	8504	Y	Y	4	4	G13	
	R505	Y	Y	4	4	AS G13	
	R506	Y	Y	4	4	AS G13	
	R507	Y	Y	2	4	G16	
	R508	Y	Y	3	4	AS G13	
	R509	Y	Y	3	4	G18	
	R510	Y	Y	3	4	AS G18	
	R511	Y	Y	1	3	G19	
	R512	Y	Y	4	4	AS G18	
	R513	Y	Y	4	4	AS G18	
	R514	Y	Y	3	4	G20	
	R515	Y	Y	2	4	G21	
	R516	Y	N	1	3	N	
	R 517	Y	Y	2	4	G23	
	R518	Y	Y	3	4	G24	
	R519	Y	Y	3	4	AS G24	
	R520	Y	Y	3	4	H1	
	R521	Y	N	1	4	N	
	R522	Y	Y	2	4	G25	
	R523	Y	Y	2	4	H2	
	R524	Y	Y	2	4	H3	
	R525	Y	N	1	2	N	
	R526	Y	Y	3	4	H 4	
	R527	Y	Y	4	4	1	
	R528	Y	Y	3	4	1	
	R529	Y	Y	2	4	H11	
	R530	Y	Y	1	2	H12	
	R531	Y	N	1	4	N	
	R532	Y	Y	2	3	G22	
	R533	Y	Y	3	4	3	
	R534	\underline{Y}	Y	3	4	3	
	R535	Y	Y	2	4	1	
	R536	Y	Y	2	4	1	
	R537	Y	Y	3	4	1	
	R538	Y	Y	3	4	1	
	R539	Y	N	1	1	N	
	R540	Y	Y	3	4	1	
	R541	Y	Y	3	4	3	
	R542	Y	N	1	3	N	
	R543	Y	Y	3	4	1	
	R544	Y	Y	3	4	H6	
	R545	Y	Y	1	4	H5	
	R546	Y	N	1	2	N	
	R547	Y	Y	3	4	H7	
	R548	Y	N	0	1	N	
	R549	Y	Y	2	4	H8	
	R550	Y	N	1	2	N	
	R551	Y	Y	1	2	H19	
	R552	Y	Y	1	4	H10	
	R553	Y	Y	3	4	1	
	R554	Y	N	1	1	N	
	R555	Y	Y	2	4	1	
	R556	Y	Y	3	4	1	
	R557	Y	Y	2	4	1	
	R558	Y	Y	2	4	1	
	R559.	Y	N	2	4	N	
	R560	Y	Y	3	4	3	
	R561	Y	Y	2	4	1	
	R562	Y	Y	1	3	2	
	R563	Y	Y	3	4	1	
	R564	Y	Y	0	3	N	
	R565	Y	Y	2	2	H13	
	R566	Y	Y	2	2	H14	
	R567	Y	N	1	2	N	
	R568	Y	Y	3	4	H18	
	R569	Y	Y	1	3	H15, H16	

	R570	Y	Y	1	3	Hi2	
	R571	Y	N	0	3	N	
	R572	Y	Y	3	4	H19	
	R573	Y	Y	3	4	H19	
	R574	Y	Y	3	4	H26	
	R575	Y	Y	3	4	H19	
	R579	Y	Y	3	4	H24	
	R580	Y	Y	3	4	H27	
	R581	Y	Y	3	4	H26	
	R582	Y	Y	3	4	H28	
	R583	Y	Y	3	4	H31	
	R589	Y	Y	3	4	H32	
	R590	Y	Y	3	4	H33	
	R591	Y	Y	3	4	H35	
	R592	Y	Y	3	4	H37	
	R593	Y	Y	3	4	H36	
	R594	Y	Y	1	2	11	
	R595	Y	WORKSHOP	1	2	12	
	R596	N					
	R597	N					
	R598	N					
	R599	N					
	R600	Y	N	1	2	AS I4	
	R601	Y	N	1	2	AS I4	
	R602	Y	Y	1	2	13	
	R603	Y	N	1	2	AS 14	
	R604	Y	N	1	2	AS 14	
	R605	Y	N	1	2	AS I4	
	R606	Y	N	1	2	AS I4	
	R607	Y	N	1	2	AS I4	
	R608	Y	N	1	2	AS I4	
	R609	Y	N	1	2	AS I4	
	R610	Y	N	1	2	AS I4	
	R611	Y	N	1	2	AS I4	
	R612	Y	N	1	2	AS I4	
	R613	Y	N	1	2	AS I4	
	R614	Y	N	1.	3	N	
	R615	Y	Y	3	4	AS 16, 17	
	R615A	Y	Y	3	4	AS I5	
	R615B	Y	Y	3	4	AS I6, I7	
	R615C	Y	Y	3	4	AS 16, 17	
	R615D	Y	Y	3	4	AS 16, 17	
	R616	Y	Y	2	4	AS I6, I7	
	R617	Y	Y	3	4	AS I6, 17	
	R618	Y	Y	3	4	AS 16, 17	
	R619	Y	Y	3	4	AS I6, 17	
	R620	Y	Y	3	4	AS I6, I7	
	R621	Y	Y	3	4	I6, I7	
	R622	Y	N	1	4	N	
	R623	Y	N	1	2	N	
	R624	Y	Y	2	4	18	
	R625	Y	N	1	2	N	
	R626	Y	N	1	2	N	
	R627	Y	N	1	2	N	
	R628	Y	N	1	2	N	
	R629	Y	N	1	1	N	
	R630	Y	Y	1	2	110	
	R631	Y	Y	1	2	19	
	R632	Y	Y	1	3	19	
	R633	Y	Y	1	2	I11	
	R634	Y	Y	2	4	111	
	R635	Y	Y	1	2	I1I	
	R636	Y	N	1	1	N	
	R637	Y	N	1	1	N	
	R638	Y	Y	2	4	112	
	R639	Y	N	1	3	N	
	R640	Y	Y	2	4	I11	
	R641	Y	Y	1	4	114	
	R642	Y	Y	2	4	[13	
	R643	Y	N	1	2	N	
	R644	Y	N	1	2	N	
	R645	Y	N	1	2	N	
	R646	Y	N	1	2	N	

LEGEND
\square Potential Sensitive Receiver
Included in Noise/Air Modelling

- Project Site Boundary

Survey Map 4

	SURVEY SHEET - EXISTING SR'S SHEET 4						
	Key Used to	- Rate Conditio	ion of the Sensitivie R	Receivers :			
		1	Abandoned or Dere				
		2	Poor Construction ((Wood / Sheet	(No Glazing)		
		3	Solid Construction	(Concrete / Bric	ck/ Glazing)		
		4	Modern (e.g. Village	House)			
	R Werence	\%ifiks	4	Sist 4	\% ondieion	Thiod RAPetie	
	R91	Y	Y	1	2	A23	
	R92	Y	Y	1	2	A23	
	R93	Y	Y	1	2	A 23	
	R94	Y	Y	1	2	A23	
	R95	Y	Y	1	2	N	
	R96	Y	Y	1	2	A22	
	R97	Y	Y	1	2	A19	-
	R98	Y	Y	1	2	A. 2	
	R99	Y	Y	1	2	A19	
	R100	Y	N	1	2		
	R101	Y	Y	1	2	A19	
	R102	Y	Y	1	2	A21	
	R103	Y	Y	1	2	A20	.
	R104	N					
	R105	N					
	R106	N					
	R107	N					
	R108	N					
	R109	N					
	R110	N					
	R111	N					
	R112	N					
	R113	Y	Y	1	2	A18	
	R114	Y	Y	1	2	A18	
	R115	Y	Y	1	2	A17	
	R116	Y	N	1	2	N	
	R117	Y	N	1	3	N	
	R118	Y	N	1	2	N	
	R119	Y	N	1	3	N	
	R120	Y	N	1	2	N	
	R121	Y	Y	2	2	B9	
	R122	Y	Y	2	2	89	
	R123	Y	N	1	2	N	
	R124	Y	N	1	2	N	
	R125	Y	N	1	2	88	
	R126	Y	N	1	1	N	
	R127	Y	N	1	3	N	
	R128	Y	N	1	3	N	
	R129	Y	N	1	2	N	
	R130	Y	Y	1	2	87	
	R131	Y	Y	2	2	B6	
	R132	Y	Y	2	2	85	
	R133	Y	N	1	2	N	
	R134	Y	Y	1	2	B4	
	R135	Y	Y	1	2	83	
	R136	-	-	-	-	$-$	
	R141	Y	N	1	2	B12	
	R142	Y	N	1	2	N	
	R143	Y	Y	1	2	B10	
	R144	Y	Y	2	3	B11	
	R145	Y	N	1	1	N	
	R146	Y	N	1	1	N	
	R147	Y	N	1	1	N	
	R148	Y	Y	2	2	813	
	R149	Y	Y	2	2	814	
	R150	Y	Y	2	2	B15	
	R151	Y	Y	1	2	B16	
	R152	Y	Y	1	2	B16	
	R153	Y	N	1	1	N	
	R 154	Y	N	1	1	N	
	R155	Y	N	1	1	N	
	R156	Y	N	2	3	N	
	R157	Y	N	2	3	N	
	R158	Y	N	2	3	N	

SRVYSHTS.XLS

$\square \square \square \square]$

—

SRVYSHTS.XLS

	R249	Y	Y	2	3	D4	
	R250	Y	Y	2	3	D5	
	R251	Y	Y	2	3	D6	
	R252	Y	N	1	3	N	
	R253	Y	Y	1	3	D8	
	R254	Y	Y	1	3	D9	
	R255	Y	Y	2	2	C1	
	R256	Y	Y	1	2	D7	
	R257	Y	N	1	2	N	
	R258	Y	Y	1	2	Di0	
	R259	Y	Y	1	3	D11	
	R260	Y	Y	1	3	D16	
	R261	Y	Y	1	2	D17	
	R262	Y	Y	1	2	D15	
	R263	Y	N	1	2	N	
	R264	Y	Y	2	3	D18	
	R265	Y	Y	1	3	D19	
	R266	N					
	R267	N					
	R268	Y	Y	1	2	D23	
	R269	Y	Y	1	2	D22	
	R270	Y	Y	1	2	D22	
	R271	Y	N	2	1	N	
	R272	Y	N	2	1	N	
	R273	Y	N	2	1	N	
	R274	Y	N	2	1	N	
	R275	Y	N	2	1	N	
	R276	Y	N	2	1	N	
	R277	Y	N	2	1	N	
	R278	Y	N	2	1	N	
	R279	Y	N	2	1	N	
	R879	-	-	-	-	-	
	R880	Y	Y	2	2	K10	
	R881	Y	N-SCARPYARD	2	2	K11	
	R882	-	-	-	-	-	
	R883	-	-	-	-	-	
	R884	-	-	-	\cdot	-	
	R885	Y	N	1	2	N	
	R886	-	-	-	-	-	
	R887	-	-	-	-	-	
	R888	-	-	\checkmark	-	-	
	R889	-	-	-	-	-	
	R890	-	-	-	-	-	
	R891	-	-	-	-	-	
	R892	Y	N	1	2	N	
	R893	Y	Y	2	3	K12	
	R894	Y	N	1	3	N	
	R895	Y	N	1	2	N	
	R896	Y	Y	2	3	K13	
	R897	-	-	-	-	-	
	R898	Y	Y	1	3	K13	
	R899	Y	N	1	2	N	
	R900	Y	N	1	2	N	
	R901	-	-	-	-	-	
	R902	Y	N	1	2	N	
	R903	-	-	-	-	-	
	R904	Y	N	1	2	N	
	R 905	Y	N	1	2	N	
	R 906	Y	N	1	2	N	
	R 907	Y	N	1	2	N	
	R908	Y	N	1	2	N	
	R909	Y	N	1	2	N	
	R910	Y	N	1	2	N	
	R 911	-	-	-	-	-	
	R912	Y	Y	1	3	K16	
	R913	Y	N	1	2	N	
	R914	Y	Y	1	3	K16	
	R 915	Y	N	1	2	N	
	R916	Y	Y	1	3	K16	
	R 917	Y	N	1	2	N	
	R 918	Y	Y	2	3	K15	
	R919	Y	Y	1	2	K14	
	R920	Y	N	1	2	N	
	R921	N					

SRVYSHTS.XLS

LEGEND
Potential Sensitive Receiver
Included in Noise/Air
Modelling
Project Site Boundary
Monitoring Station

SRVYSHTS.XLS

SRVYSHTS.XLS

	R1183	Y	Y	1	1	N	
!	R1184	Y	N	1	2	M15	
	R1185	Y	Y	1	2	M14	
	R1186	Y	N	1	1	N	
Γ	R1187	Y	N	1	1	N	
	R1188	Y	N	1	1	N	
L;	R1189	Y	N	1	1	N	
	R1190	Y	Y	1	3	M13	
Γ	R1191	Y	Y	1	3	M12	
	R1192	Y	Y	1	2	M16	
[.	R1193	Y	N	1	1	N	
	R1194	Y	N	1	1	N	
	R1195	Y	N	1	1	N	
	R1196	Y	N	1	2	N	
1	R1197	Y	N	1	1	N	
	R1198	Y	N	1	1	N	
	R1199	Y	N	1	1	N	
	R1200	\bar{Y}	N	1	1	N	
	R1201	Y	N	1	1	N	
	R1202	Y	N	1	1	N	
	R1203	Y	Y	2	3	M18	
\square	R1204	Y	Y	1	2	M19	
	R1205	Y	N	1	2	N	
	R1206	Y	N	1	2	N	
	R1207	Y	N	1	2	N	
Γ	R1208	Y	N		2	N	
1	R1209	Y	N	1	2	N	
1	R1210	Y	N	1	2	N	
	R1211	Y	N	1	2	N	
	R1212	Y	N	1	2	N	
	R1213	Y	N	1	2	N	
$\underline{1}$	R1214	Y	N	1	2	N	
	R1215	Y	N	1	2	N	
	R1216	Y	N	1	2	N	
,	R1217.	Y	N	1	2	N	
	R1218	Y	N	1	2	N	
	R1219	Y	N	1	2	N	
	R1220	Y	N	1	2	N	
	R1221.	Y	N	1	2	N	
	R1222	Y	N	1	2	N	
	R1223	Y	N	1	2	N	
	R1224	Y	Y	1	2	M20	
\square	R1225	Y	N	1	2	N	
	R1226	Y	N	1	2	N	
L:	R1227	Y	Y	2	4	M21	
	R1228	Y	N	1	3	N	
Γ	R1229	Y	N	1	2	N	
	R1230	Y	N	1	2	N	
	R1231	Y	N	1	2	N	
	R1232	Y	N	1	2	N	
	R1233	Y	N	1	2	N	
	R1234	Y	N	1	2	N	
	R1235	Y	N	1	2	N	
	R1236	Y	N	1	2	N	
	R1237	Y	N	1	2	N	
\square	R1238	Y	N	1	2	N	
	R1239	\underline{Y}	Y	1	2	M22	
	R1240	Y	N	1	2	N	
	R1241	N					
Γ	R1242	Y	Y	2	3	M24	
	R1243	N					
L.	R1244	Y	N	1	2	N	
	R1245	Y	N	1	2	N	
Γ	R1246	Y	Y	2	3	M23	
	R1247	Y	N	1	2	N	
L	R1248	Y	N	1	2	N	
	R1249	N					
	R1250	Y	N	1	2	N	
	R1251	Y	N	1	2	N	
L	R1252	Y	N	1	2	N	
	R1253	Y	N	1	2	N	
	R1254	Y	N	1	2	N	
	R1255	Y	N	1	2	N	
	R1256	Y	N	1	2	N	
	R1257	Y	N	1	2	N	

SRVYSHTS.XLS

	R1333	N					
	R1334	N					
	R1335	N					
	R1336	N					
	R1337	N					
	R1338	N					
	R1339	N					
	R1340	N					
	R1341	N					
	R1342	N					
	R1343	N					
	R1344	N					
	R1345	N					
	R 1346	N					
	R1347	N					
	R1348	Y	N	1	1	N	
	R1349	N					
	R1350	N					
	R1351	N					
	R1352	N					
	R1353	N					
	R1354	N					
	R1355	Y	N	1	1	N	
	R1356	Y	N	1	1	N	
	R1357	Y	N	1	1	N	
	R1358	Y	Y	2	2	N17	
	R1359	Y	N	1	2	N	
	R1360	Y	N	1	2	N	
	R1361	Y	N	1	1	N	
	R1362	Y	Y	1	2	N16	
	R1363	Y	N	1	2	N	
	R1364	N					
	R1365	Y	N	1	1	N	
	R1366	Y	N	1	1	N	
	R1367	Y	N	1	1	N	
	R1368	N					
	R1369	N					
	R1370	N					
	R1371	Y	Y	2	2	N14	
	\$1372	Y	N	0	3	N	
	R1373	Y	N	1	2	N	
	R1374	Y	Y	1	2	N18	
	R1375	Y	Y	1	2	N15	
	R1376	N					
	R1377	Y	N	1	2	N	
	R1378	Y	N	1	2	N	
	R1379	Y	Y	1	2	N	
	R1380	Y	Y	1	2	N	
	R1381	Y	Y	1	2	N22	
	R1382	Y	Y	1	2	N	
	R1383	Y	Y	1	2	N23	
	R1384	Y	Y	1	2	N	
	R1385	N					
	R1386	Y	Y	2	2	N27	
	R1387	Y	N	1	2	N	
	R1388	Y	N	1	2	N	
	R1389	Y	N	1	2	N	
	R1390	N					
	R1391	N					
	R1392	N					
	R1393	N					
	81394	N					
	R1395	Y	Y	1	2	N 20	
	R1396	Y	Y	2	2	N21	
	R1397	Y	N	1	2	N	
	R1398	Y	N	1	2	N	
	R1399	Y	N	1	2	N	
	R1400	Y	Y	2	2	N25	
	R1401	Y	Y	1	2	N26	
	R1402	Y	N	1	2	N	
	R1403	N					
	R1404	N					
	R1405	N					
	R1406A	Y	N-GARACE	2	2	N28	
	R1406B	AS R1406A					

SRVYSHTS.XLS

	R1406C	AS R1406A					
	R1407	Y	N	1	2	N	
	R1408	Y	Y	1	2	N29	
	R1409	Y	N	1	1	N	
Γ	R1410	Y	N	1	2	N	
	R1411	Y	N	1	1	N	
L.	R1412	Y	N	1	1	N	
	R1413	Y	Y	1	2	N30	
Γ	R1414	N					
	R1415	N					
L.	R1416	N					
	R1417	N					
	R1418	N					
	R1419	N					
	R1420	N					
	R1421	N					
	R1422	Y	N	1	2	N	
-	R1423	Y	N	1	2	N	
L	R1424	Y	AS R1406A				
	R1425	N					
	R1426	N					
\square	R1427	Y	N	1	2	N	
	R1428	Y	N	1	2	N	
	R1429	Y	N	1	2	N	
	R1430	Y	N	1	2	N	
Γ	R1431	Y	Y	1	2	N23	
,	R1432	Y	Y	1	2	N34	
L.	R1433	Y	N	1	2	N	
	R1434	Y	N	1	1	N	
	R1435	N					
	R1436	Y	\underline{Y}	2	3	N31	
L	R1437	Y	N	2	2	N	
	R1438	Y	Y	2	4	N32	
	R1439	Y	Y	2	4	N33	
,	R1440	Y	N	1	2	N	
\square	R1441	Y	Y	2	4	N32	
	R1442	Y	N	1	2	N	
	R1443	Y	Y	1.	2	N24	
Γ	R1444	Y	N	1	1	N	
,	R1445	Y	N	1	1	N	
	R1446	Y	N	1	1	N	
	R1447	Y	N	1	1	N	
	R1448	Y	N	1	1	N	
-	R1449	Y	N	1	1	N	
L	R1450	-	-	-	-	\cdot	
	R1451	Y	N	1	1	N	
Γ	R1452	Y	N	1	1	N	
	R1453	Y	N	1.	1	N	
L.	R1454	Y	N	1	1	N	
	R1455	Y	N	1	1	N	
${ }^{-}$	R1456	Y	N	1	1	N	
	R1457	Y	N	1	1	N	
\square	R1458	Y	N	1	1	N	
	R1459	Y	N	1	2	N	
	R1460	Y	Y	1	2	O 12	
\square	R1461	Y	N	1	2	N	
Li	R1462	Y	N	1	2	N	
	R1463	Y	N	1	2	N	
	R1464	Y	N	1	2	N	
\square	R1465	Y	N	1	2.	N	
:	R1466	Y	N	1	2	N	
	R1467	Y	N	1	2	N	
	R1468	Y	N	1	2	N	
${ }^{*}$	R1469	Y	Y	1	3	O 2	
	R1470	Y	N	1	2	N	
L	R1471	Y	N	1	2	N	
	R1472	Y	Y	1	3	N37	
	R1473	Y	Y	1	3	O1	
\therefore	R1474	Y	N	1	2	N	
L	R1475	Y	N	1	1	N	
	R1476	Y	N	1	2	N	
	R1477	Y	Y	2	4	N36	
	R1478	Y	N	1	2	N	
	R1479	Y	N	1	2	N	
	R1480	Y	Y	1	2	N36	

	R1481	Y	Y	1	2	O3	
	R1482	Y	N	1	2	N	
	R1483	Y	N	1	2	N	
	R1484	Y	N	1	2	N	
	R1485	Y	Y	1	2	O4	
	R1486	Y	N	1	1	N	
	R1487	Y	N	1	1	N	
	R1488	Y	N	1	2	N	
	R1489	Y	N	1	2	N	
	R1490	Y	N	1	2	N	
	R1491	Y	Y	1	2	O5	
	R1492	Y	N	1	1	N	
	R1493	Y	N	1	1	N	
	R1494	Y	N	1	1	N	
	R1495	Y	N	1	1	N	
	R1496	Y	N	1	1	N	
	R1497	Y	Y	1	2	08	
	R1498	Y	N	1	1	N	
	R1499	Y	N	1	2	N	
	R1500	Y	N	1	2	N	
	R1501	Y	N	1	2	N	
	R1502	Y	N	1	2	N	
	R1503	Y	N	1	2	N	
	R1504	Y	N	1	2	N	
	R1505	Y	N	1	2	N	
	R1506	Y	N	1	2	N	
	R1507	Y	N	1	2	N	
	R1508	Y	N	1	2	N	
	R1509	Y	Y	1	3	06	
	R1510	Y	Y	1	3	O6	
	R1511	Y	N	1	2	N	
	R1512	Y	Y	1	3	07	
	R1513	Y	N	1	2	N	
	R1514	Y	$\mathrm{N}-\mathrm{SCHOOL}$	1	4	O37, 038	
	R1515	Y	Y	1	2	O 17	
	R1516	Y	N	1	2	N	
	R1517	Y	N	1	1	N	
	R 1518	Y	N	1	1	N	
	R1519	Y	N	1	1	N	
	R1520	Y	N	1	1	N	
	R1521	Y	N	1	1	N	
	R1522	Y	N	1	2	N	
	R1523	Y	N	1	2	N	
	R1524	Y	Y	1	2	018	
	R1525	Y	Y	1	3	09	
	R1526	Y	N	1	2	N	
	R1527	Y	N	1	2	N	
	R1528	Y	N	1	3	N	
	R1529	Y	Y	2	3	010	
	R1530	Y	N	1	2	N	
	R1531	Y	Y	1	3	O11	
	R1532	Y	N	1	2	N	
	R1533	Y	N	1	2	N	
	R1534	Y	N	1	2	N	
	R1535	Y	N	1	1	N	
	R1536	Y	N	1	1	N	
	R1537	Y	N	1	1	N	
	R1538	Y	N	1	1	N	
	R1539	Y	N	1	2	N	
	R1540	Y	Y	1	2	013	
	R1541	Y	N	1	1	N	
	R1542	Y	N	1	1	N	
	R1543	Y	N	1	2	N	
	R1544	Y	N	1	2	N	
	R1545	Y	N	1	2	N	
	R1546	Y	Y	1	3	014	
	R1547	Y	N	1	1	N	
	R1548	Y	N	1	1	N	
	R1549	Y	N	1	2	N	
	R1550	Y	N	1	2	N	
	R1551	Y	N	1	2	N	
	R1552	Y	N	1	2	N	
	R1553	Y	N	1	1	N	
	R1554	Y	N	1	2	N	
	R1555	N					

	R1536	Y	Y	1	2	O16	
	R1557	Y	N	1	2	N	
	R1558	Y	N	1	2	N	
	R1559	Y	N	1	2	N	
	R 1560	Y	N	1	2	N	
	R1561	Y	Y	2	2	O 15	
	R1562	N					
	R1563	N					
	R1564	N					
	R1565	N					
	R1566	N					
	R1567	N					
	R1568	N					
	R1569	N					
	R1570	N					
	R 1571	N					
	R1572	Y	Y	2	3	019	
	-						

SRVYSHTS.XLS

[
Potential Sent Site Boundary

[^0]

	R2137	Y	N	1	2	N	
	R2138	Y	Y	1	2	S24	
	R2139	Y	N	1	2	N	
	R2140	Y	Y	1	2	S25	
	R2141	Y	N	1	2	NN	
	R2142	Y	N	1	2	N	
	R2143	Y	N	1	2	N	
	R2144	Y	N	1	2	N	
	R2145	Y	N	1	2	N	
	R2146	Y	Y	1	2	T1	
	R2147	Y	Y	1	2	T1	
	R2148	Y	Y	1	3	T2	
	R2149	Y	N	1	3	N	
	R2150	Y	N	1	2	N	
	R2151	Y	Y	1	2	T3	
	R2152	Y	Y	2	4	T4	
	R 2153	Y	N	1	1	N	
	R2154	Y	N	1	1	N	
	R2155	Y	Y	1	2	T5	
	R2156	N					
	R2157	N					
	R 2158	Y	N	1	2	N	
	R2159	Y	N	1	2	N	
	R2160	Y	N	1	2	N	
	R2161	Y	N	1	2	N	
	R2162	Y	N	1	2	N	
	R2163	Y	N	1	2	N	
	R2164	Y	N	1	2	N	
	R2165	Y	N	1	2	N	
	R2166	Y	N	1	2	N	
	R2167	Y	Y	2	2	I6	
	R2168	Y	Y	2	3	T7	
	R2169	Y	Y	1	2	17	
	R2170	Y	N	1	2	N	
	R2171	Y	N	1	1	N	
	R2172	Y	Y	2	2	T8	
	R2173	Y	N	1	1	N	
	R2174	Y	N	1	1	N	
	R2175	Y	N	1	1	N	
	R 2176	Y	Y	1	2	19	
	R2177A	Y	Y	1	2	S2	
	R21778	Y	Y	1	2	S3	
	R2177C	Y	Y	1	2	T10	
	R2178A	Y	Y	1	2	T11	
	R2178B	Y	Y	2	3	U25	
	R2179	Y	Y	2	3	T12	
	R2180	Y	N	1	2	N	
	R2181	N					
	R2182	Y	Y	1	2	T13	
	R2183	Y	N	1	2	N	
	R2184	Y	N	1	2	N	
	R2185	Y	Y	2	2	T14	
	R2186	Y	N	1	2	N	
	R2187	Y	N	1	2	N	
	R2188	Y	Y	1	2	T17	
	R2189	Y	N	1	2	N	
	R2190	Y	N	1	2	N	
	R2191	Y	N	1	2	N	
	R2192	Y	N	1	2	N	
	R2193	Y	Y	1	2	T16	
	R2194	Y	Y	1	2	T15	
	R2195	Y	Y	1	2	T18	
	R 2196	Y	N	1	2	N	
	R2197	Y	N	1	2	N	
	R2198	Y	N	1	2	N	
	R2199	Y	Y	1	2	T19	
	R2200	Y	N	1	1	N	
	R2201	Y	N	1	1	N	
	R2202	Y	N	1	1	1	
	R2203	Y	N	1	1	1	
	R2204	Y	N	1	1	1	
	R2205	Y	N	1	1	1	
	R2206	Y	N	1	1	1	
	R2207	Y	N	1	1	1	
	R2208	Y	Y	2	3	T25	

SRVYSHTS.XLS

—

[

Reinstatement and Maintenance Plan for Fish Ponds at Au Tau Interchange

Route 3 TLT \& YLA - Northern Section

1 REGULATORY BACKGROUND

1.1 Construction Clauses and Wetland Mitigation

Construction Requirements of the Route 3 Project contain clauses 9.3 .2 and 9.3.3 which specify maintenance of fish ponds affected by the project. These clauses are:

Clause 9.3.2 The Franchisee shall be responsible for maintaining during the Construction Period those portions of ponds which form part of the Works Area and are not required for construction of the Works. Government is to hand these portions of ponds back to their former owners on completion of the Construction Period and the Franchisee is required to return the ponds to their original condition including the quality of the water.

Clause 9.3.2 The Franchisee shall be responsible for maintaining during the Construction Period all other ponds within the Works Sites which are not required for the Works. Ponds required temporarily during construction of the Works but not require do for the on-going maintenance and operation of the Constructed Facilities shall be reinstated to their original conditions including provision of suitable enhancements to improve their ecological value as determined by the Detailed Environmental Impact Assessment. As part of his construction proposals the Franchisee shall also design and re-prooide permanent access equivalent to that in existence at the date of the execution of the Project Agreement, to these ponds at his own cost.

Ponds meeting the criteria of both clauses are located within the northern section of the Route 3 Project. Ponds at the periphery of the Au Tau Interchange and alongside the alignment meet the criteria of Clause 9.3.2, and will revert to fish culture following completion of the project. Long-term maintenance of such ponds will be regulated by the agricultural leases under which the ponds are operated. Under these leases there are no provisions relating to wildlife conservation management.

Pond operators may choose to pursue altemate land uses involving conversion of fish ponds to other forms of agriculture or horticulture.

Ponds within the Au Tau Interchange area will not revert to fisheries management, but will be designated for use as wetland impact mitigation sites. These ponds meet the criteria of Clause 9.3.3, therefore must be restored with provision for enhanced ecological value.

1.2 Required Regulatory Guidance

1.2.1 Enhancement of "Ecological Value"

The phrase "ecological value' referred to in the Construction Requirements is qualitative and is potentially ambiguous. Characteristics of the water body, the pond contour, the surrounding topography, pond drainage, and the aquatic and pondside vegetation all influence the ecological value of the pond for various species of wild fauna. Ecological value may be high for some species of fauna, yet low for others. Changes in the physical or chemical characteristics of a pond may, therefore, benefit some species while discouraging use by others. For example, a shallow, reed-choked wetland would provide suitable cover and foraging habitat for birds of the Rallidae family (rails and crakes), but would discourage feeding by some birds of the Ardeidae family (herons and egrets). Shallow open water with peripheral vegetation would yield the opposite result.

Prior to release of the Planning Department study on the ecological value of fish ponds in the Deep Bay area, and for the purpose of this proposal, it is assumed that the ecological value to be enhanced is the ability of the ponds to support various species of birds which feed or nest in ponds or in wetland vegetation at the pond periphery or on the pond bunds.

1.2.2 Wildlife Management Versus Fisheries Management

Fish ponds which are covered by Clause 9.3.2 of the Construction Requirements are to be temporarily resumed during the construction phase, restored to their original condition, and then returned to their former owners for continued operation. These ponds are expected to provide ecological value equivalent to that provided prior to construction of the Route 3 Project. Because these ponds will revert to fisheries management, no wildlife conservation measures intended to enhance ecological value will be implemented. This is appropriate in that neither R3CC nor government will have authority to ensure that lessees will maintain or manage any such conservation measures.

Fish ponds covered by Clause 9.3.3 of the Construction Requirements will not revert to fish culture, but will be under the maintenance of the Hong Kong Government immediately following completion of construction. Because there is no requirement for fish culture in these ponds, the physical characteristics of the ponds and surrounding bunds will be designed and constructed to encourage use by birds of the groups indicated above. Design, construction, vegetation restoration, and maintenance measures for these ponds are described below.

2 POND DESIGN : ECOLOGICAL ENHANCEMENT
2.1 Drainage Design

2.1.1 Drainage Between Ponds

Drainage between ponds 1 and 2 is shown conceptually in Figure 1. Pond 2 would receive surface flow via box culvert C24. Overflow would be channelled to Pond 1 via underground pipeline. The overflow outlet level would be designed to prevent water from entering the
ponds from the Kam Tin River under high tide conditions, with some flexibility for altering pond water levels should this be required to optimise the ecological habitats.

Overflow from Pond 1 would be channelled through an underground pipeline through the Kam Tin River bank to Kam Tin River. As for Pond 2, the overflow outlet level would be a one-way gate to prevent Kam Tin River water from flowing into Pond 1 during high tides or periods of high stormwater levels.

Maintenance of the overflow structures would be the responsibility of the Hong Kong Government. Maintenance is anticipated to entail cleaning of any accumulation of debris from the water control structures.

2.1.2 Drainage Within Pond Catchments

Ponds 1 and 2 will be fed by short "stream" channels which will receive surface run-off from the slopes within the pond catchments. Stream channel beds will consist of coarse gravels with interspersed boulders to minimise risk of soil erosion.

2.2 Bank Slopes and Bottom Contours

2.2.1 Pond Banks

Pond banks will be gently sloped at the stream inlets to a gradient of approximately 1:10 (vertical:horizontal) (Kentula et al. 1992). The objective will be to provide a shallow zone at the stream inlet for water bird foraging. This will facilitate establishment of bank vegetation over a broad zone, and encourage use by water birds. Slightly steeper slopes would be acceptable at the outset because natural sedimentation would tend to reduce pond depth over time.

Pond banks which are continuations of highway fill slopes will be steeper (1:3) based on the contour of the fill slope.

2.2.2 Pond Bottom Contours

Pond bottom contours will be gently sloping to flat near the inlets of the constructed "stream channels". At the base of steeper fill slopes the bottom contours will be steeper. Inlet and overflow structures will be installed in ponds 1 and 2, but will not be required in pond 3 . These will be designed to allow for a minimum channel size necessary to discharge the design level flood.

2.3 Revegetation

Revegetation, and landscaping of fill slopes, pond banks, and stream channels will be accomplished by hydroseeding and transplanting of whips of shrubs, trees, and bamboo. Only shrubs and short trees (such as Gordonia axillaris) will be used on upper pond banks to avoid interference with highway line of sight requirements.

Species of trees used for revegetation of the constructed "stream channels" leading to ponds 1 and 2 will include the following :

- Sterculia lanceolata
- Celtis sinensis
- Sapium sebiferum
- Cleistocalyx operculata
- Syzygium jambos
- Bamboo (various species)

Pond margins will be planted with a mixture of wetland shrubs and bamboo. As noted in the Northern Section Detailed EIA (Section 7.8.4), bamboo is a preferred nest substrate of herons and egrets in the Kam Tin area.

3 MAINTENANCE

Contractually, R3CC will hand over responsibility to maintain the restored ecologically enhanced ponds immediately following completion of construction. At that time, maintenance responsibilities will be transferred to the Hong Kong Government. As described in Section 4.10, R3CC will complete a regular audit of the success of pond restoration quarterly with respect to ardeid use and twice per year for water quality, for 2 years following construction.

3.1 Planting

Pond bank and stream channel vegetation restoration will be audited as part of the EM\&A programme (refer to Section 4.10). Tree and shrub. survival will. be assessed, following which replacement plantings will be made as needed:

3.2 Water Control Structures

Water control inlets and outlets will be maintained to remove accumulated debris and to adjust water levels. The one-way flow gate at the Kam Tin River bank will be maintained to ensure that reverse flow of Kam Tin River water into pond 1 is not possible.

REFERENCES CITED

Kentula, M. E., R. P. Brooks, S. E. Gwin, C. C. Holland, A. D. Shennan, and J. C. Sifneos. 1992. An Approach to Improving Decision Making in Wetland Restoration and Creation. Edited by A. J. Hairston, U. S. Environmental Protection Agency, Environmental Research Laboratory, Corvallis, Oregon, USA. 151pp.

\square

$$
\lceil
$$

ROUTE 3 AIR MONITORING FIELD DATA SHEET

1. General

Test Number,	
\% Dateorsarmpling \%	

§. Sampler ype:	
\%. Serral number	

2. Weather summary

Observed estimate during sampling
Weather station ID

Rainfall (Y / N)

, \11/\#	
Tace	
Low	
Medium.	
High	

Location of nearest weather
data logger

South os tunnel (ont)	

Wind speed (Y/N)

, ${ }^{1}$	
Medinim	
Hig\%\%	

Northor Funhensis	

Wind direction (degrees)*

*NB this is the direction from which wind originates
3. Observed potential dust sources during monitoring

All boxes to be filled Y / N

COH5Cuctions
\square

4. 1-Hour Average TSP Results

Parameter		ग=, cub	
	Mounk		Hour 3

Field staff: \qquad Checked by:
Date: \qquad Date:

ROUTE 3 NOISE MONITORING FIEID DATA SHEET

1. General

Test Number,	
Date ofsamplify,	
StationDD.,	

Sampler type\%	
Serialnumber..	

2. Weather summary

Obseroed estimate during sampling
Weather station ID
Wind speed (Y/N)

Wind direction (degrees)*

Location of nearest weather data logger

NB this is the direction from which wind orginate
3. Calibration

	\% Weabbiatortype\%iv,		Signaitrequeticy 4 \%	

4. Observed noise sources during monitoring

All boxes to be filled Y / N

				\% \% \% Continutious, \%
\% Sorstucton*				

- Other than Route 3

5. Results

	Stat	End.
Moniomig perma		

	Eeg(5min), db($\%$)
有 2.4.	

[^1]
Field staff:

\qquad Checked by:

Date: \qquad Date: \qquad

ROUTE 3 - COUNTRY PARK SECTION

Fresh Water Quality Monitoring
Suspended Solids Concentration

Date : \qquad Test No.: \qquad

	Sample Identification			Filtered Sample Vol (mL)	Initial Weight of Filter (g)	Final Weight of Filter (g)	Weight Difference (g)	SS Conc (mg/L)
	Location	Sample No.	Filter Paper No.					
Batching Plant Discharge								

Date : \qquad Test No.: \qquad

	Sample Identification			Filtered Sample Vol (mL)	\quad InitialWeight ofFilter (g)	Final Weight of Filter (g)	Weight Difference (g)	$\begin{gathered} \text { SS Conc } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
	Location	Sample No.	Filter Paper No.					
Fresh Water Discharge								
Batching Plant Discharge								

Date 1

Checked by
Date

CONSULTANTSIN
Environmental
SCIENCES (ASIA) LTD

1. General

2. Weather summary

3. Calibration (a) DO Meter Calibration

4. Results

, Station,,$~$ Type	SationlD		Sandp 1 ing time		Temperature		$\mathrm{DO}(\mathrm{mon}$						pH		
FRESHWATERDISCHARGE															
BATCHING				1											
PLANT										\therefore					
DISCHARGE															
			-	-						\therefore					

Field staff:
Date:

Checked by:
Date:
\qquad
\qquad

[^0]: Consultantsin
 ENVIRONMENTAL * SCIENCES (ASIA)LTD

[^1]:

